
Index Pruning and Result Reranking:
Effects on Ad-Hoc Retrieval and Named Page Finding

(Wumpus at TREC 2006)

Stefan Büttcher Charles L. A. Clarke Peter C. K. Yeung
School of Computer Science

University of Waterloo, Canada

ABSTRACT
We describe experiments conducted for the TREC 2006
Terabyte track. Our experiments are centered around
two concepts: Static index pruning (for increased retrieval
efficiency) and result reranking (for improved precision).

We investigate their effect on retrieval efficiency and effec-
tiveness, paying special attention to the difference between
ad-hoc retrieval and named page finding. We show that in-
dex pruning and reranking based on relevance models can
be beneficial in an ad-hoc retrieval setting, but have a disas-
trous repercussion on the effectiveness of named page find-
ing. Result reranking based on anchor text, on the other
hand, is very useful for named page finding, but should not
be used for ad-hoc retrieval.

This dichotomy poses a problem for search engines, as
there is no easy way for a search engine to decide whether
a given query represents an ad-hoc retrieval task, with the
purpose to satisfy an abstract information need, or a named
page finding task, targeting a specific document.

1. INTRODUCTION
In the general context of text-based document retrieval,

we can distinguish between at least three different types of
search tasks:

• In an ad-hoc retrieval task, the user is interested
in all documents that satisfy an abstract information
need, e.g., that contain the answer to a question the
user might have. All documents satisfying this infor-
mation need are considered relevant, while documents
that do not satisfy it are considered irrelevant.

• In a topic distillation task, the user is looking for a
page that is representative of a certain topic, possibly
a page that contains links to other pages important in
the chosen context, and that gives her a good overview
of what information is available on this topic. A topic
distillation task can be thought of as a second-order
ad-hoc retrieval task, because the user is looking for
documents that give her easy access (for instance by
providing hyperlinks) to documents that would be con-
sidered relevant in an ad-hoc retrieval setting.

TREC 2006, November 14–17, 2006, Gaithersburg, Maryland, USA.
This paper is available on-line at:

http://stefan.buettcher.org/papers/buettcher trec2006.pdf

• In a named page finding task, the user is interested
in one specific document, or page. Only this partic-
ular page (plus possible duplicates) is relevant to the
user’s need, while all other documents are irrelevant.
Often the simulated scenario is the situation where a
user visited a web page some time ago and is trying to
find back to it several days or weeks later, only remem-
bering a few keywords. The home page finding task,
a web search task in which the user is interested in a
particular web home page, can be considered a special
case of named page finding.

These three task types are different in nature and thus
require different techniques if the search engine is to return
high-quality search results to the user. This was first noticed
when researchers – unsuccessfully – tried to apply link-based
retrieval methods, like PageRank [12], to ad-hoc retrieval
tasks [10] [9] [2] [8].

In order to apply the appropriate ranking functions to
the different tasks, a search engine would need to be able
to decide whether a given search query, submitted by the
user, represents an ad-hoc retrieval, a topic distillation, or a
named page finding task. Unfortunately, inferring the type
of the search task, given a keyword query, is not always easy.
For example, consider the following three queries:

• A. blue grass music festival history

• B. arizona retirement system history

• C. kalamazoo public library history

Query A (TREC 796) represents an ad-hoc topic (“De-
scribe the history of bluegrass music and give location
of bluegrass festivals.”), while queries B (NP849) and C
(NP1060) represent named page finding tasks, targeting
specific documents. By just looking at each query, it is
rather difficult to determine its type – even for a human,
and much more so for a computer.

In this paper, we do not try to solve the problem of infer-
ring the type of a search task from the given query. Instead,
we look at different techniques that can be applied to the
retrieval method used for any document retrieval task and
analyze their effects on the different types of tasks. In par-
ticular, we study a static index pruning method and two
different result reranking techniques and look at how they
affect the quality of the search results in ad-hoc retrieval
and in named page finding tasks.

2. EVALUATION METHODOLOGY
To be able to study the effect of different retrieval methods

on ad-hoc and named page finding tasks at the same time,
it is convenient to have a single evaluation measure that can
be applied to the search results for both task types. Unfor-
tunately, the quality measures that are usually employed do
not meet this criterion:

• In named page finding tasks, retrieval effectiveness is
usually measured by the mean reciprocal rank (MRR)
of the relevant documents in the rankings produced
by the search engine. This evaluation measure gives
high weight to documents ranking near the top of the
search results.

• In ad-hoc retrieval tasks, on the other hand, the most
prominent measure is mean average precision (MAP),
which puts more emphasis on recall than does MRR.

While MRR and MAP are compatible in the sense that using
MAP to evaluate the retrieval effectiveness in a named page
finding task, with only a single relevant document, leads to
the same result as MRR, doing so would be misleading. Es-
pecially when the effectiveness of result reranking techniques
that mainly affect the order of the top search results is to
be evaluated, changes in MAP will be dramatically different
between ad-hoc retrieval and named page finding, simply
because MAP does not give enough weight to top-ranking
documents if the number of relevant documents for the given
topic is large.

MRR, on the other hand, gives too much weight to top-
ranking documents, reducing the score of a ranking from 1
to 0.5 if the named page is moved from position 1 to position
2 in the ranking produced by the search engine. Of course,
this penalty is not reflected by the usefulness of the ranking
to the user. In most cases, the quality difference between
two such rankings will be negligible.

In our choice of the quality measure to be applied to both
ad-hoc retrieval and named page finding, we are guided by
view that what really matters to a user is the content of the
first page of search results. For an ad-hoc retrieval task, the
quality of the first page depends on the number of relevant
documents it contains; thus, we choose precision at 10 doc-

uments (P@10) as our primary measure. For a named page
finding task, the quality of the first page depends on whether
it contains the named page or not, and we choose success at

10 documents (S@10) as our primary measure. We combine
these two measures into one single measure Goodness@10
(G@10), our primary effectiveness measure:

G@10 =

(

S@10 for named page finding

P@10 for ad-hoc retrieval
(1)

When evaluating the two task types independently, we also
look at generalizations of this measure (G@k), as well as
more traditional measures, such as MAP, bpref, and MRR.

3. RETRIEVAL BASELINE
Our retrieval baseline is based on a standard document-

ordered frequency index, without any positional informa-
tion. Documents are ranked by Okapi BM25 [15], using
Porter’s algorithm [13] for term stemming. The retrieval
effectiveness of this method, for both ad-hoc retrieval and

Topics b = 0.60 b = 0.75 b = 0.90

701-750 (ad-hoc ’04) 0.5204 0.5041 0.4612

751-800 (ad-hoc ’05) 0.6280 0.5920 0.5620

801-850 (ad-hoc ’06) 0.5240 0.5200 0.4840

601-872 (NP ’05) 0.5040 0.5159 0.5119

901-1081 (NP ’06) 0.4641 0.5028 0.5249

Table 1: Varying the document length normaliza-
tion parameter in Okapi BM25. Precision is mea-
sured by G@10. Bold numbers indicate statistical
significance (paired t-test, p < 0.05) compared to the
default value b = 0.75.

named page finding, varying BM25’s document length nor-
malization parameter b, is shown in Table 1. It is interesting
that for both task types the default value (b = 0.75) does
not produce the best results. For the ad-hoc retrieval tasks,
search results are best if b ≈ 0.5 and degrade as b is in-
creased. For named page finding, on the other hand, the
best results are achieved with b ≈ 0.8 and get worse as b

gets smaller. Under other measures than our primary mea-
sure G@10, the difference for the named page finding topics
is even larger: For the 2005 named page finding topics, Suc-
cess@1 decreases from 0.3175 to 0.2659 when changing b

from 0.9 to 0.6 (MRR decreases from 0.3862 to 0.3524).
What this means is that on average a document that is

relevant to one of the ad-hoc topics tends to be substantially
larger than a typical named page. In fact, when analyzing
the qrels file for the topics from 2005, it turns out that for the
ad-hoc retrieval topics a relevant document contains 6537
tokens on average; for named page finding a relevant docu-
ment only contains 2350 tokens on average. It is not clear
whether this finding has any deeper meaning or whether it
is just an artifact of the topic creation process.

Since the optimal values of the BM25 parameter b are so
different between the two task types, and since it is not clear
which task the retrieval function should be optimized for, we
use the default value b = 0.75 throughout this paper.

Document Structure

Robertson et al. [14] proposed a method to integrate doc-
ument structure by computing within-document term fre-
quency values according to predefined weights of different
fields within each document (e.g., title, anchor text). This
is different from earlier methods, where information from
different fields was usually fused by computing a linear com-
bination of the individual scores.

We adjust term frequency values according to the follow-
ing rules:

• <title>: +3

• <h1>, <h2>, <h3>, , : +2

• <i>, , <u>, <dochdr>: +1

That is, every time a query term appears in the docu-
ment title, it is counted as 4 occurrences (1+3). When it
appears italicized (<i>) and underlined (<u>), it is counted
as 3 occurrences (1+1+1).

In contrast to Robertson et al. [14], we do not adjust the
value of BM25’s k1 parameter to take the now increased av-
erage TF values into account. This is because our retrieval

Topics G@3 G@10 MAP MRR

701-750 (ad-hoc ’04) 0.5442 0.4980 0.2373 0.7398

751-800 (ad-hoc ’05) 0.6667 0.5900 0.3065 0.7895

801-850 (ad-hoc ’06) 0.5200 0.4880 0.2564 0.3303

601-872 (NP ’05) 0.4683 0.5794 n/a 0.4236

901-1081 (NP ’06) 0.3923 0.5193 n/a 0.3528

Table 2: Effectiveness figures for the baseline re-
trieval method (Okapi BM25 + document struc-
ture). Parameter setting: k1 = 1.2, b = 0.75.

framework did not give us easy access to the necessary in-
formation.

The retrieval effectiveness of this structure-aware version
of BM25 on the given topic sets (ad-hoc and named page
finding) is shown in Table 2. By comparing the column for
G@10 in Table 2 with the numbers shown in Table 1, it can
be seen that that retrieval effectiveness for the ad-hoc re-
trieval tasks is almost unaffected by giving additional weight
to terms appearing in special fields of an HTML document;
the slight decrease is probably due to our not adjusting the
value of k1 when increasing the effective TF values. Effec-
tiveness for named page finding, however, as measured by
G@10, improves significantly, from 0.5159 to 0.5794 for top-
ics NP601-872. We therefore decided to use this variant of
BM25 as the baseline for all experiments discussed in the
remainder of this paper.

It should be noted that increasing TF values based on
document structure gives unfair advantage to HTML docu-
ments over unstructured text, like plain text and PDF. This
might be one reason why it performs so well in the named
page finding tasks, because named pages tend to be HTML
documents (again, this might be an artifact of the topic cre-
ation process).

Implementation Details and Efficiency Baseline

We implemented the method described above in the Wum-
pus1 information retrieval system. Document scores are
computed from posting lists stored in a frequency index,
containing for each term a list of postings of the form:

(document ID, term frequency)

The index does not contain any positional information, as
our baseline retrieval method does not make any use of prox-
imity information anyway. Postings are encoded as integers,
with the 5 least-significant bits representing the term fre-
quency and the remaining bits representing the document
ID. Term frequency values are encoded in the following way:

enc(tf) =

8

>

<

>

:

tf : tf ≤ 15

16 +
¨

log1.15(
tf

16
)
ˇ

: 15 < tf < 1218

31 : tf ≥ 1218

(2)

For the majority of all postings, this method leads to an
exact encoding of their term frequency values, while for most
other postings (those with tf values greater than 15), a small
error – less than 8% – will be introduced.

While this small inaccuracy for terms with high with-
document frequency results in a minor decrease of precision

1http://www.wumpus-search.org/

(MAP, for instance, decreased by about 0.005 in our exper-
iments), it has the advantage that queries can be processed
more efficiently. By using a similar bucketing technique for
document length values, the restriction to 31 possible tf val-
ues allows us to construct a table with precomputed score
impacts and to obtain the score impact of a given (doclen, tf)
pair through a simple table lookup — instead of having to
perform the full BM25 score computation for every posting.

The encoded postings are compressed using a byte-aligned
index compression technique [16]. This procedure results
in an inverted file with a total size of 13.6 GB for GOV2.
Queries are processed sequentially at a speed of 290 ms per
query on average (returning the document IDs of the top 20
documents for each of the 100,000 efficiency queries).

This number, as well as all other performance figures re-
ported in this paper, was obtained under Linux 2.6.13.3, run-
ning a 64-bit version of Wumpus on a single-core Athlon64
3500+ (2.2 GHz) with 2 GB of RAM and a 7,200-rpm SATA
hard drive, accessing the index through an ext3 file system.

4. STATIC INDEX PRUNING
The notion of static index pruning was officially intro-

duced by Carmel et al. [6]. In their paper, they propose a
method to limit the postings in each inverted list to those
that have the greatest impact on a document’s score when
encountered during query processing. By applying their
technique to an inverted file, it is possible to dramatically
decrease its size, which will then lead to faster query process-
ing at the cost of decrease retrieval effectiveness. By pruning
more or less aggressively, the right point in this efficiency

vs. effectiveness trade-off can be chosen.
Carmel’s pruning technique is static because it is applied

during index construction, without any knowledge about the
queries that are to be processed. It is term-centric because
each posting list is pruned independently of all the other
posting lists in the inverted file.

For last year’s TREC Terabyte efficiency task, we con-
ducted experiments with a variation of Carmel’s method,
where a pruned index for the n most frequent terms is held in
memory, while an unpruned index for all remaining terms is
kept on disk [3]. By increasing the value of n (we performed
experiments for 500 ≤ n ≤ 20000), the number of queries
for which the unpruned on-disk needs to be accessed can
be decreased, which then results in lower query processing
latency – again, at the cost of lower-quality search results.

More recently, we have conducted experiments with
document-centric static index pruning [4]. In document-
centric pruning, the index construction process does not
select the top postings from each term (as in [6] and [3]),
but the top postings from each document.

This type of pruning was first motivated by experiments
with pseudo-relevance feedback, trying to reproduce the re-
sults obtained by Carpineto et al. [7]. Carpineto’s method is
based on the Kullback-Leibler divergence between the un-
igram language model defined by an individual document
and the language model of the entire text collection. It uses
each term’s contribution to the document’s KL divergence
to assign feedback scores to potential expansion terms.

Given two discrete probability distributions (here: uni-
gram language models) P and Q, their KL divergence is:

KLD(P, Q) =
X

T∈T

P (T) · log

„

P (T)

Q(T)

«

, (3)

 25

 20

 15

 10

 5

8%7%6%5%4%3%2%

Av
er

ag
e

tim
e

pe
r q

ue
ry

 (m
s)

Relative number of postings in in-memory index

(a) Query processing performance

TREC TB 2005 efficiency queries
TREC TB 2006 efficiency queries

0.60

0.50

0.40

0.30

0.20

0.10

8%7%6%5%4%3%2%

G
oo

dn
es

s
at

 1
0

do
cu

m
en

ts

Relative number of postings in in-memory index

(b) Retrieval effectiveness

Ad-hoc topics 701-750 (TB 2004)
Ad-hoc topics 751-800 (TB 2005)

Named page topics 601-872 (TB 2005)

Figure 1: Impact of index pruning on query latency and retrieval effectiveness. Latency is measured for the
2005 and 2006 efficiency queries. Effectiveness is measured by mean Goodness@10 for the ad-hoc and named
page finding topics from 2004, 2005, and 2006.

where T is the set of all terms in the vocabulary, and P (T)
and Q(T) denote T ’s probability of occurrence under the
distribution P and Q, respectively. Note that KLD is not a
metric and in particular is not symmetric, i.e., in general we
have KLD(P, Q) 6= KLD(Q, P). However, it is non-negative,
and it is zero if and only if P = Q. Thus, it can be under-
stood as a measure for how far apart two term distributions
are from each other.

In their feedback mechanism, Carpineto et al. select a set
R of pseudo-relevant documents, build a language model
MR for each document R ∈ R, and compute the feedback
score of each term T appearing in R according to the rule

ScoreFB(T) =
X

R∈R

MR(T) · log

„

MR(T)

M∗(T)

«

, (4)

where M∗ is the global language model of the entire text
collection. That is, each term’s score is the sum of its con-
tributions to the documents’ KL divergence from the global
language model. The idea behind this definition of the feed-
back score is that a good expansion term is a term that
has a high contribution to the difference between relevant
documents and the rest of the collection.

When conducting some initial experiments with this feed-
back method, we noticed that for almost every documents
considered for feedback at least one of the query terms
what among the top expansion terms from the document (a
more detailed analysis is given in [4]). Thus, by performing
pseudo-relevance feedback on individual documents, with-
out taking any query into account, it is possible to predict
the terms for which each document would be assigned a top
rank if these terms appear in a search query.

This led us to a first definition of our document-centric
index pruning method. For each document D in the text
collection, a unigram language model MD is; each term T

in the document D is assigned a score:

ScoreDCP(T) = MD(T) · log

„

MD(T)

M∗(T)

«

, (5)

where M∗ is the background language model of the text col-
lection. All terms within a document are ranked according
to their score, and the top p% are kept for each document;
all other terms are discarded. Limiting the number of post-
ings per document in this way results in a pruned index that
is much smaller than the original, unpruned index. In fact,

Topics Latency G@3 G@10 MRR

701-750 (ad-hoc ’04) 27.2 ms 0.5510 0.4857 0.720

751-800 (ad-hoc ’05) 22.2 ms 0.6400 0.5640 0.770

801-850 (ad-hoc ’06) 24.1 ms 0.4933 0.5000 0.608

601-872 (NP ’05) 33.9 ms 0.2976 0.4048 0.282

901-1081 (NP ’06) 28.0 ms 0.3260 0.4088 0.290

Table 3: Impact of document-centric static index
pruning on average query latency and search result
quality, for pruning level p = 5 (top 5% terms from
each document). Note that latency is given for the
actual ad-hoc and named page topics, not for the
efficiency queries.

the index can be made so small that it can be completely
loaded into main memory, leading to even greater gains.

We performed experiments with this pruning function and
found that the pruned lists for very common terms, such as
“the”, tend to be rather long, longer than p% of their origi-
nal size, which would be suggested by the pruning criterion.
We just made a applied a minor modification to the pruning
function, giving less weight to the raw term frequency of a
term and more weight to the difference between the term’s
frequency in the given document and its relative frequency
in the whole collection:

ScoreDCP(T) = MD(T)1−δ · log

„

MD(T)

M∗(T)

«

, (6)

For the experiments reported here, we chose δ = 0.15, but
our experimental results indicate that anything between 0
and 0.2 results in both decreased query latency and im-
proved retrieval effectiveness, compared to the initial def-
inition with δ = 0.

Using the pruning criterion defined by equation 6, we built
pruned indices for various pruning levels p. The size of the
pruned index depends on the actual value of p. For p =
2, for instance (top 2% from each document), we obtain a
pruned index of size 439 MB. For p = 8 (top 8% from each
document), the size of the pruned index is 1509 MB. Note
that these numbers are different from those in [4]. This
is partly due to a slightly different index structure, taking
document structure into account, but mainly due to a bug

Topics P@10 P@20 MAP bpref

701-750 (ad-hoc ’04) 0.4980/0.5367/0.5531 0.4745/0.5214/0.5173 0.2373/0.2592/0.2467 0.3176/0.3359/0.3379

751-800 (ad-hoc ’05) 0.5900/0.6320/0.6320 0.5440/0.5900/0.6270 0.3065/0.3361/0.3291 0.3632/0.3898/0.4133

801-850 (ad-hoc ’06) 0.4880/0.5240/0.5500 0.4310/0.5030/0.5220 0.2564/0.2948/0.2791 0.3303/0.3561/0.3734

Table 4: Reranking based on relevance models and its effect on ad-hoc retrieval effectiveness. Precision
values for ρ = 0 (left), ρ = 1 (middle), and ρ = |Q| (right).

found in the original implementation of our pruning method.
For query processing, we follow the same strategy already

employed in [4]. The pruned index, loaded into memory,
and the original, unpruned index, stored on disk, are used
in parallel. Whenever a query term cannot not be found
in the pruned in-memory index, the unpruned index has to
be consulted. Of course, this leads to an increased query
latency. On the other hand, it seems like the only way to
guarantee that no terms are lost.

The impact of static index pruning on search efficiency
(average query latency) and search result quality (G@10) is
shown in Figure 4. For the ad-hoc topics, G@10 is almost
unaffected by pruning the primary index. Only for p <

6, the decrease becomes noticeable. This is not true for
named page finding. The loss of precision is huge; for p = 5
and the 2005 NP topics, for instance, Success@10 decreases
by 30% (from 0.5794 to 0.4048), compared to our baseline.
Table 4 proves that this difference is not just caused by
our using different measures (S@10 vs. P@10) for named
page finding and ad-hoc retrieval. Even when using the
same measure (MRR), the differences are enormous. They
are caused by the two task types being so fundamentally
different. In ad-hoc retrieval, if, by pruning the index, a
relevant document disappears from the top documents, it
can simply be replaced by another relevant document. For
named page finding, the document is lost, and – assuming
there are no duplicate documents – cannot be replaced by
another relevant document.

5. RERANKING FOR AD-HOC RETRIEVAL:
RELEVANCE MODELS

Lavrenko and Croft [11] presented a retrieval method
based on relevance models – language models derived from
the top documents in an initial retrieval stage. Their
method is similar to traditional query expansion by means
of pseudo-relevance feedback [7], but does not require a
predefined limit for the number of expansion terms, because
it replaces the original query by an entire language model,
without any bounds on the number of terms in it.

We present a method similar to theirs, but for perfor-
mance reasons do not use the language model constructed
from the top documents retrieved to perform a new ranking,
but only to rerank the documents retrieved by our baseline
retrieval function. The reranking is performed by comput-
ing the Kullback-Leibler divergence between the language
model of each document in the initial ranking and a lan-
guage model built from the top 10 documents of the initial
retrieval stage.

Given an initial ranking

R = (Dj , sDj
)1≤j≤K

(K = 1000 in our experiments), a language model M∗
k is

built from the top k documents (here: k = 10) by concate-

Topics ρ = 0 ρ = 1 ρ = |Q|

701-750 (ad-hoc ’04) 0.4980 0.5367 0.5531

751-800 (ad-hoc ’05) 0.5900 0.6320 0.6320

801-850 (ad-hoc ’06) 0.4800 0.5240 0.5500

601-872 (NP ’05) 0.5794 0.5754 0.3929

901-1081 (NP ’06) 0.5193 0.5193 0.3315

Table 5: The effect of reranking based on relevance
models. Precision is measured by G@10. Bold num-
bers indicate statistical significance (paired t-test,
p < 0.05) compared to ρ = 0.

nating them and treating them as a continuous stream of
terms. The language model is a mapping from each term to
its probability of occurrence:

M∗
k : T → [0, 1] ; T 7→ M∗

k(T) = p(T),

where T is the set of all terms in the text collection. We
use Porter’s algorithm to group all stem-equivalent terms
into equivalence classes and employ the maximum likelihood
estimate (MLE) to generate M∗

k.
After the language model M∗

k has been built from the
text found in the top k documents, each document D in the
initial ranking R is scored according to its similarity to M∗

k.
This is done by analyzing the text found inside D, building
a language model MD representing the document (using
MLE), and computing the Kullback-Leibler divergence be-
tween the language model MD and the background model
M∗

k. The definition of KL divergence has not changed since
the previous section; the KLD between these two language
models still is:

KLD(MD,M∗
k) =

X

T∈TD

MD(T) · log

„

MD(T)

M∗
k(T)

«

,

where TD is the set of all terms within the document D;
MD(T) and M∗

k(T) are the probabilites of occurrence for
the term T according to the respective language model. A
smaller KL divergence means that the language model de-
fined by document D is closer to the language model defined
by the top k documents. A larger KL divergence means that
it is farther away. In most cases, the KLD between the two
language models is fairly small (between 0.5 and 3.0).

When all KL divergence scores have been computed, the
final score for each document D in R is calculated according
to the rule:

s
(new)
D := sD − ρ · KLD(MD,M∗

k).

ρ is a tuning parameter that can be used to increase or
decrease the impact of the KLD score on the final ranking.

We tested two parameter configurations: ρ = 1 and ρ =
|Q|, where Q is the set of query terms that was used to

obtain the initial ranking (after stopword removal). The
rationale behind ρ = |Q| is that the initial document scores
(according to BM25) are usually higher when there are more
query terms. We tried to compensate for this by increasing
the weight of the KLD component in an equal fashion.

The effect of this reranking method on search quality is
documented by Tables 4 and 5. Table 4 shows that the
method improves precision in ad-hoc retrieval tasks sub-
stantially according to all four measures, consistently across
all three ad-hoc topic sets examined, and regardless of the
exact value of the reranking parameter ρ. Most of these im-
provements are statistically significant according to a paired
t-test (p < 0.05). For named page finding tasks, on the other
hand, reranking based on language models decreases search
quality. For ρ = |Q|, for instance, S@10 drops from 0.5794
to 0.3929 on the NP ’05 topic set. For ρ = 1, the quality also
deteriorates, but the decrease is not caught by our primary
measure G@10, as the reranking weight is not big enough
yes to push the named page out of the top 10 documents.

Apart from its not working for named page finding tasks,
the drawback of this method is that, in our current im-
plementation, it requires access to the full text of the K

documents that are to be reranked. As all documents are
stored on disk, this is very slow; it requires at least K disk
seeks. Faster implementations, using document vectors in
a forward index, are possible, but share the same general
shortcoming.

6. RERANKING FOR NAMED PAGE FIND-
ING: ANCHOR TEXT

For the named page finding task, the relatively simple
Okapi BM25 baseline, with weighted fields to take docu-
ment structure into account, already works very well for
named page finding, as shown in section 3. Not surpris-
ingly, though, it is still underperforming compared to link-
or anchor-text-based retrieval functions. The best named
page finding run in the TREC 2005 Terabyte track, for in-
stance, which made use of the anchor text found in incoming
links of a document, achieved an MRR of 0.463 (MRR of our
baseline: 0.4236).

We addressed this issue by integrating a result reranking
technique, similar to the one discussed in the previous sec-
tion, that, however, is based on the anchor text of incoming
hyperlinks instead of the text found in the document itself.
Every link from a document Dj to document Dk whose an-
chor text includes some of the query terms is considered ad-
ditional evidence that Dk is relevant. The strength of this
evidence depends on Dj ’s original score and the number of
query terms found in the anchor text.

More precisely, given an initial ranking

R = (Dj , sDj
)1≤j≤K ,

for each document Dj among the top K search results (K =
1000 in our experiments) we compute its anchor score as

aD =
1

P

Q∈Q
wQ

·
X

Q∈Q

aD,Q · wQ, (7)

where wQ is the IDF weight of the query term Q, and aD,Q is
the anchor score of the term Q for the document D. The set
Q, however, is not simply the set of query terms, but is aug-
mented by a pseudo-term Q∗. This pseudo-term, which by

Topics ρ = 0 ρ = .1 ρ = .2 ρ = .3

701-750 (ad-hoc ’04) 0.544 0.503 0.476 0.463

751-800 (ad-hoc ’05) 0.667 0.607 0.600 0.593

801-850 (ad-hoc ’06) 0.520 0.520 0.513 0.507

601-872 (NP ’05) 0.468 0.496 0.508 0.516

901-1081 (NP ’06) 0.392 0.470 0.508 0.492

Table 6: The effect of reranking based on query
terms found in the anchor text of incoming links.
Precision is measured by G@3. Bold numbers indi-
cate statistical significance (paired t-test, p < 0.05)
compared to ρ = 0.

Topics MRR S@3 S@10

NP601-872 0.424/0.459 0.468/0.508 0.579/0.611

NP901-1081 0.353/0.419 0.392/0.508 0.519/0.569

Table 7: Reranking based on anchor text and its
effect on named page finding effectiveness. Preci-
sion values for ρ = 0 (left) and ρ = 0.2 (right). The
improvement is statistically significant for all three
measures on both topic sets.

definition appears in the anchor text assigned with any hy-
perlink between two documents, is assigned the IDF weight

wQ∗ :=
1

4

X

Q∈Qorig

wQ, (8)

where Qorig is the original set of query terms, without the
pseudo-term. The effect of adding the pseudo-term Q∗ to
the query is that a link between two documents carries some
weight (20% of its maximum weight), even if it does not con-
tain any query terms. The anchor score aD,Q for a document
D and a query term Q is then computed as follows:

aD,Q =
vD,Q

k1 + vD,Q

, (9)

vD,Q =

K
X

j=1

[Dj →Q
D] ·

sDj

sD1

· dj−1
, (10)

where

[Dj →Q
D] =

8

>

<

>

:

1 : Dj uses Q in the anchor text of
a link to D

0 : otherwise

The formulation of equation 9 was motivated by BM25; for
the free parameter k1, we chose its BM25 default value:
k1 = 1.2. The parameter d in equation 10 is a standard
damping factor that limits the impact of the “long tail” of
documents on the ranking of highly ranked documents. In
our experiments, we set d := 0.99.

The technique can be thought of as letting the documents
in the initial ranking vote for each other (hence the notation
vD,Q). If a document Dj links to the document D and uses
the query term Q in the anchor text that goes with this link,
then we count this as a vote for D’s relevance. The weight
of the vote is a combination of Dj ’s rank and score in the
initial ranking. Votes from the top-ranking document carry

Topics P@10 P@20 MAP bpref

uwmtFadTPRR 0.6100 0.5540 0.3524 0.4091

uwmtFadTPFB 0.6020 0.5570 0.3392 0.4251

uwmtFadDS 0.5180 0.4770 0.2877 0.3582

uwmtFmanual 0.7900 0.7030 0.4246 0.4785

Table 8: Official submissions for the ad-hoc retrieval
task. Retrieval effectiveness for ad-hoc topics 801-
850 (TREC Terabyte 2006).

Topics S@1 S@3 S@10 S@20 MRR

uwmtFnpstr1 0.249 0.387 0.514 0.597 0.3446

uwmtFnpstr2 0.249 0.392 0.530 0.597 0.3474

uwmtFnpRR1 0.282 0.453 0.547 0.641 0.3856

Table 9: Official submissions for the named page
finding task. Retrieval effectiveness for NP topics
901-1081 (TREC Terabyte 2006).

weight 1; votes from documents further down the list have
a weight that is somewhat smaller.

The votes for each pair (D, Q) are scored in an Okapi-
like fashion (equation 9), and these scores are combined as
defined by equation 7. Once the anchor score aD for each
document D has been computed, it is combined with the
original score sD according to the following formula:

s
(new)
D = s

(old)
D ∗ (1 + ρ · aD). (11)

This gives us a new ranking Rnew. The parameter ρ in
equation 11 is a tuning parameter and was set to ρ = 0.15
in our official runs.

Table 6 shows the results we obtained for various values
of the reranking parameter ρ, starting from the anchor-text-
unaware retrieval function defined in section 3 (BM25 plus
document structure). For named page finding, the improve-
ments caused by the anchor-based reranking, compared to
the baseline, technique are statistically significant for all
measures we looked at. With ρ = 0.3, our method improves
Success@3 by 10% on the 2005 NP topics and by 25% on
the 2006 NP topics.

For the ad-hoc retrieval topics, however, the effect is com-
pletely different. Precision decreases, and it does so quite a
bit. Reranking with ρ = 0.3 decreases Precision@3 by 15%,
11%, and 3%, respectively, for the three different ad-hoc
topic sets. Thus, we have the same situation that we had
for the relevance-model-based reranking technique discussed
in the previous section, only that this time an improvement
is achieved for named page finding, while the search result
quality for ad-hoc retrieval suffers.

Like for the reranking method based on relevance models,
discussed in section 5, our current implementation of the
reranking technique described above requires access to the
full text of all documents involved in the reranking step.

7. OFFICIAL RUNS
We submitted runs for all three tasks of this year’s Ter-

abyte track. The runs we submitted are slightly different
from the experiments described in this paper, because the
system used a slightly different set of tokenization rules and

Topics Latency P@5 P@10 P@20

uwmtFnoprune 246.0 ms 0.5520 0.5180 0.4770

uwmtFdcp12 32.0 ms 0.5720 0.5300 0.4790

uwmtFdcp06 17.5 ms 0.5280 0.5220 0.4610

uwmtFdcp03 12.5 ms 0.5160 0.4820 0.4110

Table 10: Official submissions for the efficiency
task. Retrieval effectiveness for ad-hoc topics 801-
850 (TREC Terabyte 2006). Query latency for the
efficiency query stream composed of 100,000 queries.

because we optimized the parameters of the retrieval func-
tion for the respective task.

Ad-hoc Retrieval

For the ad-hoc retrieval task, we submitted four runs –
three automatic runs and one manual run. All three auto-
matic runs were title-only.

uwmtFadTPFB – This is a pseudo-relevance feedback run,
using the technique described by Billerbeck and Zo-
bel [1], with 15 pseudo-relevant documents and 15 ex-
pansion terms. The initial ranking is produced by
BM25TP [5] (k1 = 1.2, b = 0.5).

uwmtFadTPRR – For this run we used the reranking tech-
nique based on relevance models described in section
5. Like for uwmtFadTPFB, the initial ranking was
produced by BM25TP (k1 = 1.2, b = 0.5).

uwmtFadDS – This run is very similar to the baseline re-
trieval method described in section 3, except that we
set b := 0.5 instead of 0.75 in BM25.

uwmtFmanual – A manual run involving the assessment of
1,800 documents by a bored PhD student.

Named Page Finding

For the named page finding task, we submitted three runs.
All three runs used a frequency index in which the term
frequency values were updated according to the procedure
discussed in section 3. The BM25 document length normal-
ization parameter was b = 0.75 for all runs.

uwmtFnpstr1 – Simply the baseline method from section 3.

uwmtFnpstr2 – This run is like uwmtFnpstr1, except that,
as a postprocessing step, all documents for which there
is a duplicate document with higher rank are removed
from the ranking. Since in named page finding, as
opposed to ad-hoc retrieval, duplicate documents only
count once, this procedure can be expected to result
in a slight improvement over uwmtFnpstr1.

uwmtFnpsRR1 – The anchor-text-based reranking method
described in section 6, with the reranking parameter
set to ρ = 0.15.

Efficiency

For the efficiency task, we submitted four runs. All four
runs were conducted on a single PC with an AMD Athlon64
3500+ CPU. Three of the four runs make use of the static
index pruning method discussed in section 4. For none of
the four runs, document structure was taken into account.

For all of them, BM25’s document length normalization pa-
rameter was set to b := 0.5. In contrast to the experiments
reported on in section 4, our official runs exclusively used
the pruned in-memory index to produce search results and
did not access the unpruned on-disk index at all. This re-
sulted in a slightly decreased query latency (between 1 and
2 ms per query for the efficiency query streams), at the risk
of missing query terms not present in the pruned index.

uwmtFnoprune – This run is very similar to the baseline
method from section 3, with the exception that doc-
ument structure was not taken into account and that
the BM25 document length normalization parameter
was set to b := 0.5.

uwmtFdcp03 – Document-centric pruning, as described in
section 4. The top 3% of all terms in a document were
taken into the pruned index.

uwmtFdcp06 – The same as uwmtFdcp03, with 6% of the
terms within a document taken into the pruned index.

uwmtFdcp12 – Similar to uwmtFdcp06, with 12% of the
terms within a document taken into the pruned in-
dex. The only difference is that, because the original
pruned index, compressed using a byte-aligned encod-
ing method, was too large to fit into main memory,
we recompressed it using a Huffman code that treated
the gaps between two consecutive document IDs and
the term frequency values independently, building
two separate Huffman trees. The resulting pruned
index was almost 30% smaller than the byte-aligned
index, but required some extra computational effort at
query time, due to the more complicated compression
method.

8. CONCLUSION
We have studied the effects of static index pruning and two

different result reranking techniques, one based on language
models, the other one based on anchor text in links between
the top-ranking documents, on ad-hoc retrieval and named
page finding effectiveness.

Index pruning can decrease the average query latency
greatly and – if not applied too aggressively – almost does
not affect search quality in ad-hoc retrieval tasks. For named
page finding, however, index pruning has disastrous effects
on search quality. Similarly, search result reranking based
on language models created from the top documents and
reranking based on the anchor text found in inter-document
hyperlinks only work for one task type, while they decrease
the quality of the search results when used for the other
type. This makes it difficult to apply these techniques in
a general-purpose search engine that is regularly confronted
with both types of search tasks.

We leave the problem of designing a unified ranking func-
tion, optimizing the quality of search results in both search
contexts, for future work.

9. REFERENCES
[1] Billerbeck, B., and Zobel, J. Questioning Query

Expansion: An Examination of Behaviour and
Parameters. In Proceedings of the 15th Conference on

Australasian Database (2004), pp. 69–76.

[2] Buckley, C., and Walz, J. SabIR Research at
TREC-9. In Proceedings of the 9th Text REtrieval

Conference (Gaithersburg, USA, 2000).

[3] Büttcher, S., and Clarke, C. L. A. Efficiency vs.
Effectiveness in Terabyte-Scale Information Retrieval.
In Proceedings of the 14th Text REtrieval Conference

(Gaithersburg, USA, November 2005).

[4] Büttcher, S., and Clarke, C. L. A. A
Document-Centric Approach to Static Index Pruning
in Text Retrieval Systems. In Proceedings of the 15th

ACM Conference on Information and Knowledge

Management (Arlington, USA, November 2006).

[5] Büttcher, S., Clarke, C. L. A., and Lushman,

B. Term Proximity Scoring for Ad-Hoc Retrieval on
Very Large Text Collections. In Proceedings of the

29th ACM SIGIR Conference on Research and

Development in Information Retrieval (Seattle, USA,
August 2006).

[6] Carmel, D., Cohen, D., Fagin, R., Farchi, E.,

Herscovici, M., Maarek, Y., and Soffer, A.

Static Index Pruning for Information Retrieval
Systems. In Proceedings of the 24th ACM SIGIR

Conference on Research and Development in

Information Retrieval (2001), pp. 43–50.

[7] Carpineto, C., de Mori, R., Romano, G., and

Bigi, B. An Information-Theoretic Approach to
Automatic Query Expansion. ACM Transactions on

Information Systems 19, 1 (2001), 1–27.

[8] Gevrey, J., and Rüger, S. M. Link-Based
Approaches for Text Retrieval. In Proceedings of the

10th Text REtrieval Conference (Gaithersburg, USA,
2001).

[9] Hawking, D. Overview of the TREC-9 Web Track.
In Proceedings of the 9th Text REtrieval Conference

(Gaithersburg, USA, September 2001).

[10] Hawking, D., Voorhees, E., Craswell, N., and

Bailey, P. Overview of the TREC-8 Web Track. In
Proceedings of the 8th Text REtrieval Conference

(Gaithersburg, USA, February 2000).

[11] Lavrenko, V., and Croft, W. B. Relevance-Based
Language Models. In Proceedings of the 24th ACM

SIGIR Conference on Research and Development in

Information Retrieval (New Orleans, USA, August
2001), pp. 120–127.

[12] Page, L., Brin, S., Motwani, R., and Winograd,

T. The PageRank Citation Ranking: Bringing Order
to the Web. Tech. rep., Stanford Digital Library
Technologies Project, 1998.

[13] Porter, M. F. An Algorithm for Suffix Stripping.
Readings in Information Retrieval 14, 3 (1980),
130–137.

[14] Robertson, S., Zaragoza, H., and Taylor, M.

Simple BM25 Extension to Multiple Weighted Fields.
In Proceedings of the Thirteenth ACM Conference on

Information and Knowledge Management (New York,
USA, 2004), pp. 42–49.

[15] Robertson, S. E., Walker, S., Jones, S.,

Hancock-Beaulieu, M., and Gatford, M. Okapi
at TREC-3. In Proceedings of the Third Text REtrieval

Conference (Gaithersburg, USA, November 1994).

[16] Scholer, F., Williams, H. E., Yiannis, J., and

Zobel, J. Compression of Inverted Indexes for Fast
Query Evaluation. In Proceedings of the 25th ACM

SIGIR Conference on Research and Development in

Information Retrieval (Tampere, Finland, 2002).

