
Melbourne University at the 2006 Terabyte Track

Vo Ngoc Anh William Webber Alistair Moffat
Department of Computer Science and Software Engineering

The University of Melbourne
Victoria 3010, Australia

Abstract: This report describes the work done at The University of Melbourne for the TREC-
2006 Terabyte Track. For this track, we participated in all three main tasks. We continued our
work with impact-based ranking and sought to reduce indexing as well as query time. However, to
support the named-page task, more conventional retrieval mechanisms were also employed. The
results show that, in general, the efficiency performance is slightly better than the previous year.
The effectiveness level remains the same.

1 Introduction

In TREC 2006, The University of Melbourne participated in three tasks of the Terabyte Track:
ad-hoc, efficiency, and named-page. For the first two tasks impact-based ranking was employed.
For the named-page task, BM25 was also used. All the experiments were performed using our
locally-developed software. The system was developed last year and enhanced further with new
index compression schemes and index structures.

2 Ranking Schemes

This year, we continue to employ an impact-based ranking technique [Anh and Moffat, 2005] as
the main retrieval mechanism. In the framework of the track, the technique turned out to provide an
excellent combination of retrieval efficiency and retrieval effectiveness. However, for the named-
page task, we also applied the BM25 model.

2.1 Impact-Based Ranking

This sub-section expands the description of impact-based ranking described in our 2005 TREC
paper. Impact ranking specifies a method to map each pair (t,x), where t is a term in text x, to
an integer impact value that represents the importance of t in x. When x is a document d from a
document collection, the resultant impact ωt,d is referred to as the document term impact of t in d.
When x is a query q, the value ωt,q is the query term impact of t in q. Document and query term
impacts normally correlate with the term frequencies in documents or queries, but might or might
not also depend on some collection-wide statistics such as collection frequency ft.

The mapping from each term-document pair (t,d) to the corresponding impact ωd,t is done lo-
cally within each document during the indexing phase in the following manner. First, frequencies
of terms appearing in d are counted. Then, the list of within-document terms is sorted in decreasing
order of frequencies. Next, the list is then partitioned in k intervals, with interval lengths forming
a geometric sequence. Finally, all terms in the i-th interval (1 ≤ i ≤ k) are assigned the same
integral impact value of k − i + 1. Since document term impacts do not rely on collection-wide



statistics (in particular, they are independent of IDF), the indexing can be done with only one pass
through the document collection.

In contrast to conventional information retrieval systems, where raw term statistics are stored
in indexes, and most of the similarity calculation is carried out during query processing, impact-
based ranking allows computation of all of the document term impacts while the index is being
constructed. The document term impacts are then stored in the index, reducing the computational
burden during query processing. Normally, the indexes are impact-sorted.

The mapping from each term-query pair (t,q) to the corresponding impact ωq,t is done at query
time, using within-query frequencies and collection frequencies. First, for each term t ∈ q, the
collection frequency ft and within-query frequency fq,t are determined. Then, a vector-space
formulation of within-query term weight is applied to generate the term weight wq,t (in our ex-
periences, any vector-space formulation that involves IDF factor can be used for this purpose).
Finally, the value of wq,t is transformed in a uniform manner, and truncated to an integral impact
ωq,t, so that the maximal value of ωq,t for all terms in the query is exactly k.

Once the document and query term impacts have been determined, the ranking of documents d
against a query q is done based on the similarity score:

Sd,q =
∑

t∈d∩q

ωd,t · ωq,t . (1)

Note that although the indexing does not depend on any collection-wide statistics, the IDF factor is
still used in ranking as an integrated part of the query impact. Also, the above scoring computation
is performed based only on the integral document and query term impacts. No floating-point
operations are required, and no document weights are used or even computed. This makes the
ranking process fast. Anh and Moffat [2005] also describe a ranking technique which is also
employed in our runs to further enhance the querying speed.

2.2 BM25

For the named-page task, in addition to each original document, we also employ the incoming an-
chor text to it. This year, we simply add all incoming texts found in the collection to the respective
document, creating a new document collection. This collection is then used as the input to the
indexing process.

We noticed that after adding anchor text to the destinated documents, there might be a great
change in within-document term frequency distribution. For example, a small number of terms
might be boosted to a very high frequency level. That, in turn, might affect the above described
process of assigning document impacts, and perhaps in a negative manner. To test this hypothesis,
we also employ BM25 [Robertson et al., 1994]. The exact formulation used is:

S(d, q) =
∑

t∈d∩q

ln
N − ft + 0.5

ft + 0.5
·

fd,t

0.5 + 1.5 · Wd/W
avg
d + fd,t

, (2)

where Wd is the size of d, measured in bytes, and W
avg
d is the average value of Wd over the

collection.

3 Index Structures

For a document collection, the principal component of its index is the inverted file, where each
distinct term of the collection is associated with an inverted list. For the 2006 Terabyte Track, a
number of different inverted list structures were employed:



impact-sorted: The impact-sorted inverted list for a term t is a list of equal-impact blocks. Each
block represents one distinct impact value k, and contains the sequence of document num-
bers in which t appears and has an impact score of k. Inside a block, document numbers are
arranged in increasing order, to facilitate compression. The blocks are arranged in decreas-
ing order of associated impacts, so as to support effective pruning.

block-interleaved: This is a common name for a family of document-sorted indexes described
by Anh and Moffat [2006b]. In terms of index content there are three variants of indexes,
depending on the components used to represent each pair (d, t). Namely, the pair is rep-
resented by (d, ωd,t) in IDI indexes, by (d, fd,t) in IDF indexes, by (d, ωd,t, fd,t) in IDIF

indexes, and by (d, ωd,t, fd,t, p
∗) in IDIFP indexes. Note that the last variant is used for fully

positional indexes, with p∗ representing the list of positions of t within d. In terms of struc-
ture, each inverted list is arranged in the block-interleaved manner. For example, an inverted
list of the IDIF is a sequence of index blocks, where each index block is a sequence of three
fixed-length blocks, one for each of d, ωd,t, and fd,t. In each block, the elements are sorted
in increasing order of document numbers, and no equal-impact blocking is performed.

Compression is applied to inverted files. In all of our Terabyte Track experiments the word-
synchronized compression scheme slide [Anh and Moffat, 2006a] was used for inverted list com-
pression. This method provides a good balance between index space and decoding speed. In
comparison with the compression scheme employed last year, slide in general has better compres-
sion effectiveness and roughly the same decoding speed.

4 Hardware Configurations and Efficiency Metrics

As in 2005, two hardware configurations were used in our experiments this year:

Single: A machine with a single 2.8 GHz Intel Pentium-4 processor, 1 GB of memory and
250 GB of local SATA disk, running Debian GNU/Linux.

Cluster: A Beowulf-style cluster, consisting of a server and eight additional nodes, where each
node is a Single. The server is a dual 2.8 GHz Intel Xeon with 2 GB of memory, again run-
ning Debian GNU/Linux. In this configuration, the document data are uniformly distributed
across the nodes in a cyclic manner. Indexing and querying are done in parallel, without
communication between the nodes, in an autonomous document-distributed manner. The
server only plays the role of a broker: it receives queries, broadcasts queries to the nodes,
receives the answer lists from the nodes, and selects the final document output based on the
local similarity scores computed by the nodes.

The efficiency metrics reported in our experiments include Index Time (elapsed time for index-
ing, not including any time needed to distribute documents to the nodes, and, for the case of using
incoming anchor text, not including the time to locate and link the anchor text to the destinated
document); Index Size (total size of the index, including vocabulary and inverted files); and Query
Time (average elapsed time to process a query). Over a sequence of queries, the total of Query Time
was measured from the moment when the first query arrived, until the last query had been pro-
cessed, not including the initialization costs associated with loading a range of memory-resident
files. Note that in all but one run, queries are processed sequentially, with a single query being
active in the system at any given time. There is one exceptional case in the efficiency task, where
multi-threading (with 4 threads) was used so that CPU idle periods arising from disk operations in
one process could be exploited by another process.



RunID Topics 801–850
MAP R-prec R.Rank P@10 P@20

AdhocBase 0.3039 0.3479 0.6969 0.5460 0.5130
AdhocBase+Prox 0.2888 0.3324 0.7150 0.5300 0.4860
AdhocBase,Prox 0.2926 0.3414 0.7067 0.5300 0.4880

RunID Topics 701–850
MAP R-prec R.Rank P@10 P@20

AdhocBase 0.3073 0.3491 0.7694 0.5765 0.5426
AdhocBase+Prox 0.3025 0.3422 0.7693 0.5711 0.5191
AdhocBase,Prox 0.3007 0.3448 0.7492 0.5651 0.5211

Table 1: Effectiveness performance in the automatic ad-hoc task. All results relate to the GOV2 collection.

5 Ad-hoc Performance

Four runs were submitted for the ad-hoc task, including one manual and three automatic run.

5.1 Automatic Runs

In doing the automatic runs this year, we targetted the tie-breaking problem in impact ranking.
Because the maximal value of impact, k = 8, is relatively small, the number of documents that
have equal similarity score with respect to a query is potentially high. This year we experimented
with using proximity for breaking ties. That is, the original impact score is further adjusted by a
score calculated from the proximity of query terms in the document. The three submitted runs are:

AdhocBase (MU06TBa2). This is the baseline, performed with a standard impact-sorted index,
using the Local-By-Rank-(TF) computation as described earlier. For this run, all the normal
content of documents are indexed. No special treatment was applied to any fields (meta,
title, heading, and so on). Incoming anchor text is not considered.

AdhocBase+Prox (MU06TBa5). This run is similar to the baseline, except that positions of terms
in documents are taken into account. The index is document-sorted rather than impact-
sorted (that is, it is an impact-positional index). Impact scoring is also applied, but the total
score for a document is enhanced by another integer score which is calculated based on the
inverse of the least distance in words between the positions of any of the query terms in the
document.

AdhocBase,Prox (MU06TBa6). This run is the same as Base+Prox, except that the proximity
score is employed just to break the tie of the main impact score. That is, the final ranking
is performed by sorting the documents using impact score as the primary sort key, and
proximity score as a secondary sort key.

Table 1 shows the effectiveness performance of these ad-hoc runs. In terms of effectiveness,
all of the runs had similar performance. It suggests that the treatment by proximity distance fails
to give the desired effects.

5.2 Manual Runs

AdhocBase+Prox+Manual (MU05TBa1). This run is almost identical to the AdhocBase+Prox,
except that manual queries are used instead of automatic. Manual queries are developed by



RunID Topics 801–850
MAP R-prec R.Rank P@10 P@20

AdhocBase+Prox+Manual 0.2927 0.3186 0.8301 0.6160 0.5420
AdhocBase+Prox 0.2888 0.3324 0.7150 0.5300 0.4860

Table 2: Effectiveness performance of the manual run in comparison with the similar automatic run. All
results relate to the GOV2 collection.

RunID Hardware

Efficiency
Index Index Query
size time time

(GB) (minutes) (secs)
AdhocBase Single 6.04 334 0.16
AdhocBase+Prox Cluster 38.60 57 0.21
AdhocBase,Prox Cluster 38.60 57 0.20
AdhocBase+Prox+Manual Cluster 38.60 57 0.31

Table 3: Efficiency performance of all ad-hoc run. The fist run employed impact-sorted index, while all
other runs used an IDIFP index.

us based on our perception of the topics. In many cases, a simple process of adding some
related terms to the query is applied. Consequently, manual queries are in general longer
than respective automatic queries.

Table 2 compares the effectiveness of using manual queries with that of using automatic
queries. It is interesting to notice that although manual run does not improve MAP, it significantly
increases R.Rank, P@10, and P@20.

The main problem of manual queries is their inconsistent quality. There are some cases when
manual query gives worse effectiveness relative to the respective automatic queries. Naturally
there are some cases when manual queries do very well. The best two manual queries of our
group, that gave best performance amongst all Terabyte runs this year, are for topics 816 and 849
that have MAP scores of 0.9032 and 0.5459 respectively. The original topics are “816. USAID
assistance to Galapagos” and “849. Scalable Vector Graphics”, while the manual versions are
“816. USAID galapagos islands biodiversity activities” and “849. scalable vector graphics svg
portability zoom”.

Efficiency performance of all ad-hoc run is presented in Table 3. As can be seen from the table,
the last three runs, that employed IDIFP indexes, are much slower than the first one, which used
impact-sorted indexes.

6 Efficiency Performance

In addition to the ad-hoc runs, the following four runs were submitted for the efficiency task:

SpeedBase (MU06TBy1). This is the baseline run for the efficiency task. It employed basically
the standard impact-based ranking process, with a slight modification intended to improve
R.Rank. Unfortunately, it is not as good as AdhocBase in terms of P@10 and P@20.

SpeedBase+Smoothing (MU06TBy2). This run had the same initial setting as the SpeedBase, but
with a smoothing process designed to reduce the relative gaps between lower contribution
to the similarity score.



RunID Hardware

Efficiency
Index Index Query
size time time

(GB) (minutes) (secs)
SpeedBase Single 6.04 334 0.19
SpeedBase+Smooth Single 6.04 334 0.23
SpeedBase+Prune Single 6.04 334 0.08
SpeedBase+Prune+Multithread Single 6.04 334 0.05

Table 4: Efficiency performance of efficiency runs. All runs employed impact-sorted indexes. All results
relate to the GOV2 collection.

RunID Topics 801–850
MAP R-prec R.Rank P@10 P@20

SpeedBase 0.0793 0.1124 0.7102 0.5440 0.4820
SpeedBase+Smooth 0.0838 0.1190 0.6998 0.5540 0.5050
SpeedBase+Prune 0.0821 0.1166 0.7059 0.5440 0.4890
SpeedBase+Prune+Multithread 0.0821 0.1166 0.7059 0.5440 0.4890

RunID Topics 751–800
MAP R-prec R.Rank P@10 P@20

SpeedBase 0.0633 0.0758 0.8169 0.6240 0.5520
SpeedBase+Smooth 0.0668 0.0805 0.8162 0.6180 0.5770
SpeedBase+Prune 0.0641 0.0772 0.8312 0.6220 0.5590
SpeedBase+Prune+Multithread 0.0641 0.0772 0.8312 0.6220 0.5590

Table 5: Effectiveness performance of efficiency runs. All results relate to the GOV2 collection.

SpeedBase+Prune (MU06TBy5). This run had SpeedBase as a starting point, but used a dynamic
index pruning technique, under which the low-impact blocks were excluded from the index
during indexing time.

SpeedBase+Prune+Multithread (MU06TBy6). This run has the same setting as SpeedBase+Prune,
but queries are processed with four threads as required by the task.

Efficiency performance is described in Table 4. Using a single commodity machine, we can
index the GOV2 collection in 8.2 hours, at a rate of approximately 70 GB per hour, and can process
queries at the rate of approximately five per second. Moreover, the index is small – just 1.4% of
the size of the original document collection.

Table 4 shows the significant improve in query speed of the pruning strategy (with no loss on
effectiveness, as shown in Table 5). However, it also shows that the multi-threading run is not up
to the desired level. We expect that the situation can be improved with more programming effort.

Effectiveness performance is shown in Table 5. As mentioned earlier, the baseline run is not
in line with that of the adhoc runs, and the pruned run is even slightly better than the full run. In
addition, the smoothing process does help to improve P@20, but only slightly.



RunID
Query Effectiveness
time R.Rank Found Found Found Not
(secs) at 1 at 5 at 10 Found

NP,Impact 0.20 0.317 23.2% 39.8% 47.0% 14.4%
NP,BM25 0.27 0.397 28.7% 52.5% 62.4% 13.8%
NP,IVSM 0.26 0.329 23.2% 43.6% 50.8% 14.9%
NP,Impact+BM25 0.49 0.396 29.8% 54.1% 58.6% 13.3%

Table 6: Performance of named-page runs. All results relate to the modified GOV2 collection, where incom-
ing text is added to destonated documents.

7 Performance in the Named-Page Task

As described earlier, the document collection used for the named-page (NP) task is not the original
one. In the new collection, all incoming anchor text is added to the destinated documents. Given
that, the time for indexing can be greatly depends on the time to modify the collection. We were
not able to measure this additional time, and the indexing time officially reported excludes the
time for modifying the collection. This indexing time is not reported here.

Different index structures are employed, as described in the list of runs belows. All runs were
performed in the Single hardware.

NP,Impact (MU06TBn2). This is the baseline run, using an IDI index. The scoring mechanism is
the standard impact-based one.

NP,BM25 (MU06TBn5). This run employs an IDF index and BM25 scoring mechanism. The moti-
vation behind this run is that the original impact-based ranking might be badly affected by
the modification of term frequencies using incoming impact. Hence, NP,BM25 represents a
second baseline.

NP,IVSM (MU06TBn6). This run employ an IDI index, and a modified vector-space scoring mech-
anism over impact. That is, the impact score is now modified by document length, which in
turn is calculated based on document impacts (ie. not based on within-document frequencies
as usually).

NP,Impact+BM25 (MU06TBn9). This run employs IDIF, and is operationally equivalent to merg-
ing the results of NP,Impact and NP,BM25. Let s1 and s2 be the scores of a document in
two different ranking systems, the merged score s is defined as:

s = 1 − (1 −
s1

smax
1

) × (1 −
s2

smax
2

) ,

where smax
i is the maximal score for the considered query, using retrieval scheme i.

Table 6 describes the performance of the named-page runs. The table shows that the original
impacts are in-competitive for this approach of modifying document collection. The NP,IVSM is
better than its baseline, but is still not as good as the NP,BM25 baseloine. Finally, the merged
approach seems to have a positive affect.

8 Conclusions and Future Directions

This year, we applied a number of changes to our system, mainly to allow different kinds of
indexes and retrieval approaches. In general, the efficiency performance is slightly better than the
previous year. The effectiveness level remains the same.



Note that we failed to perform the additional task, where the requirement is to employ a pub-
licly available system to compare the efficiency. The reason is that the indexing using the public
software was unable to operate on the hardware configuration that was used for the efficiency task.

Acknowledgement This work was supported by the Australian Research Council and the ARC
Centre for Perceptive and Intelligent Machines in Complex Environments.

References

V. Anh and A. Moffat. Improved word-aligned binary compression for text indexing. IEEE
Transactions on Knowledge and Data Engineering, 18(6):857–861, 2006a.

V. N. Anh and A. Moffat. Simplified similarity scoring using term ranks. In G. Marchionini,
A. Moffat, J. Tait, R. Baeza-Yates, and N. Ziviani, editors, Proc. 28th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 226–
233, Salvador, Brazil, August 2005. ACM Press, New York.

V. N. Anh and A. Moffat. Structured index organizations for high-throughput ext querying. In
F. Crestani, P. Ferragina, and M. Sanderson, editors, Proc. 13th Int. Symp. String Processing
and Information Retrieval, pages 304–315, Glasgow, Scotland, October 2006b. LNCS 4209,
Springer.

S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at TREC–3. In
D. Harman, editor, Proc. Third Text REtrieval Conference (TREC–3), pages 109–126, Gaithers-
burg, MD, November 1994. National Institute of Standards and Technology (Special Publication
500-225). URL http://potomac.ncsl.nist.gov:80/TREC/t3_proceedings.html.


