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Abstract

The BlogVox system retrieves opinionated blog posts spec-
ified by ad hoc queries. BlogVox was developed for the
2006 TREC blog track by the University of Maryland, Bal-
timore County and the Johns Hopkins University Applied
Physics Laboratory using a novel system to recognize legiti-
mate posts and discriminate against spam blogs. It also pro-
cesses posts to eliminate extraneous non-content, including
blog-rolls, link-rolls, advertisements and sidebars. After re-
trieving posts relevant to a topic query, the system processes
them to produce a set of independent features estimating the
likelihood that a post expresses an opinion about the topic.
These are combined using an SVM-based system and inte-
grated with the relevancy score to rank the results. We eval-
uate BlogVox’s performance against human assessors. We
also evaluate the individual splog filtering and non-content
removal components of BlogVox.

Introduction
Blog posts contain noisy, ungrammatical and poorly struc-
tured text. This makes open-domain, opinion retrieval for
blogs challenging. In addition any text analytics system that
deals with blogs must address two key issues: (i) detect-
ing and eliminating spam blogs and spam comments and (ii)
eliminating noise from link-rolls and blog-rolls.

The BlogVox system was developed by the University of
Maryland, Baltimore County and the Johns Hopkins Uni-
versity Applied Physics Laboratory to perform the opinion
retrieval task defined by the 2006 TREC Blog Track. In this
task, a user enters a query for a topic of interest (e.g., March
of the Penguins) and expects to see a list of blog posts that
express an opinion (positive or negative) about the topic.
The results are ranked by the likelihood that they are ex-
pressing an opinion about the given topic. The approach
used in BlogVox has several interesting features. Two tech-
niques are used to eliminate spurious text that might mis-
lead the judgment of both relevance and opinionatedness.
First, we identify posts from spam blogs using a machine-
learning based approach and eliminate them from the col-
lection. Second, posts are ”cleaned” before being indexed to
eliminate extraneous text associated with navigation links,
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blog-rolls, link-rolls, advertisements and sidebars. After re-
trieving posts relevant to a topic query, the system applies
a set of scoring modules to each producing a vector of fea-
tures estimating the likelihood that a post expresses an opin-
ion about the topic. These are combined using an SVM-
based system and integrated with the overall relevancy score
to rank the results.

Opinion extraction and sentiment detection have been
previously studied for mining sentiments and reviews in do-
mains such as consumer products (Dave, Lawrence, & Pen-
nock 2003) or movies (Pang, Lee, & Vaithyanathan 2002;
Gilad Mishne 2006). More recently, blogs have become a
new medium through which users express sentiments. Opin-
ion extraction has thus become important for understanding
consumer biases and is being used as a new tool for mar-
ket intelligence (Glance et al. 2005; Nigam & Hurst 2004;
Liu, Hu, & Cheng 2005).

Blog posts contain noisy, ungrammatical and poorly
structured text. This makes open-domain, opinion retrieval
for blogs challenging. In addition any text analytics system
that deals with blogs must address two larger issues: (i) de-
tecting and eliminating posts from spam blogs (commonly
known as splogs) and spam comments and (ii) eliminating
irrelevant text and links that are not part of the post’s con-
tent.

Recently, Spam blogs, or splogs have received significant
attention, and techniques are being developed to detect them.
Kolari, et al. (Kolari, Finin, & Joshi 2006) have recently
discussed the use of machine learning techniques to iden-
tify blog pages (as opposed to other online resources) and to
categorize them as authentic blogs or spam blogs (splogs).
(Kolari, Java, & Finin 2006) extends this study by analyz-
ing a special collection of blog posts released for the Third
Annual Workshop on the Weblogging Ecosystem held at the
2006 World Wide Web Conference. Their findings on spam
blogs confirms the seriousness of the problem, the most re-
cent data shows about 64% of “pings” collected from the
most popular ping-server for English blogs are from splogs.

Blog posts are complex documents and consist of a core
containing the post’s real content surrounded by an array
of extraneous and irrelevant text, images and links. This
“noise” includes links to recent posts, navigational links, ad-
vertisements and other Web 2.0 features such as tag rolls,
blog rolls, Technorati tags, Flickr links and often accounts



for 75% or more of the post’s size. The presence of this
extra material can make it difficult for text mining tools to
narrow down and focus on the actual content of a blog post.
Moreover, these features may also reduce search index qual-
ity. Discounting for such noise is especially important when
indexing blog content. Blog posts are complex documents
and consist of a core containing the post’s real content sur-
rounded by an array of extraneous and irrelevant text, im-
ages and links. This “noise” includes links to recent posts,
navigational links, advertisements and other Web 2.0 fea-
tures such as tag rolls, blog rolls, Technorati tags, Flickr
links and often accounts for 75% or more of the post’s size.
The presence of this extra material can make it difficult for
text mining tools to narrow down and focus on the actual
content of a blog post. Moreover, these features may also
reduce the quality of the search index. Discounting for such
noise is especially important when indexing blog content.

The paper is organized as follows: first we give a brief
overview of the 2006 TREC Blog Track, and its associated
dataset in section . Then we describe our system, BlogVox,
in Section . The next three sections explain how BlogVox
works. In Section we explain how we deal with splogs. Fol-
lowing that we describe in Section a simple, yet effective,
heuristic for cleaning the blog post to remove any extrane-
ous links and other features. Then we explain how BlogVox
scores posts for opinion ranking in Section . We present the
TREC results along with an evaluation of the post cleaning
and splog filtering techniques in Section . Finally, we dis-
cuss our results in Section and conclusions in Section .

The TREC Blog Track
The 2006 TREC Blog track, organized by NIST, asked par-
ticipants to implement and evaluate a system to do “opinion
retrieval” from blog posts. Specifically, the task was defined
as follows: build a system that will take a query string de-
scribing a topic, e.g., “March of the Penguins”, and return a
ranked list of blog posts that express an opinion, positive or
negative, about the topic.

For training and evaluation, NIST provided a dataset of
over three million blogs drawn from about 80 thousand
blogs. The TREC dataset consisted of a set of XML for-
matted files, each containing blog posts crawled on a given
date. The entire collection consisted of over 3.2M posts
from 100K feeds (Macdonald & Ounis 2006). These posts
were parsed and stored separately for convenient indexing,
using the HTML parser tool 1. Non-English blogs were ig-
nored in addition to any page that failed to parse due to en-
coding issues.

In order to make the challenge realistic NIST explicitly
included 17,969 feeds from splogs, contributing to 15.8%
of the documents. There were 83,307 distinct homepage
URLs present in the collection, of which 81,014 could be
processed. The collection contained a total of 3,214,727
permalinks from all these blogs.

TREC 2006 Blog Track participants built and trained their
systems to work on this dataset. Entries were judged upon
an automatic evaluation done by downloading and running,

1http://htmlparser.sourceforge.net/

without further modification to their systems, a set of fifty
test queries.

BlogVox Design
Compared to domain-specific opinion extraction, identify-
ing opinionated documents about a randomly chosen topic
from a pool of documents that are potentially unrelated to
the topic is a much more difficult task. Our goal for this
project was to create a system that could dynamically learn
topic sensitive sentiment words to better find blog posts ex-
pressing an opinion about a specified topic. After cleaning
the TREC 2006 Blog Track dataset in the pre-indexing stage,
blog posts are indexed using Lucene, an open-source search
engine. Given a TREC query BlogVox retrieves a set of rel-
evant posts from the Lucene index and sends the posts to the
scorers. Using a SVM BlogVox ranks each document based
upon the score vector generated for the document by the set
of scorers show in Figure 2. Section explains how the indi-
vidual scorers, some of which employ learning algorithms,
function.
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Figure 1: BlogVox text Preparation steps: 1. Parse the TREC
corpus 2. Remove non English posts 3. Eliminate splogs from the
collection (Section ) 4. Remove spurious material from the DOM
tree. (Section )
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Figure 2: After relevant posts are retrieved, they are scored
by various heuristics and an overall measure of oinionated-
ness computed by a SVM.

We tuned Lucene’s scoring formula to perform document
length normalization and term specific boosting 2. Lucene

2http://lucene.apache.org/java/docs/scoring.html



internally constructs an inverted index of the documents by
representing each document as a vector of terms. Given
a query term, Lucene uses standard Term Frequency (TF)
and Inverse Document Frequency (IDF) normalization to
compute similarity. We used the default parameters while
searching the index. However, in order to handle phrasal
queries such as “United States of America” we reformulate
the original query to boost the value of exact matches or
proximity-based matches for the phrase.

Identifying and Removing Spam
Two kinds of spam are common in the blogosphere (i) spam
blogs or splogs, and (ii) spam comments. We first discuss
spam blogs, approaches on detecting them, and how they
were employed for BlogVox.

Problem of Spam Blogs
Splogs are blogs created for the sole purpose of hosting
ads, promoting affiliate sites (including themselves) and get-
ting new pages indexed. Content in splogs is often auto-
generated and/or plagiarized, such software sells for less
than 100 dollars and now inundates the blogosphere both at
ping servers (around 75% (Kolari 2005)) that monitor blog
updates, and at blog search engines (around 20%, (Kolari
et al. 2006b)) that index them. Spam comments pose an
equally serious problem, where authentic blog posts feature
auto-generated comments that target ranking algorithms of
popular search engines. A popular spam comment filter 3

estimates the amount of spam detected to be around 93%.
Figure 3 shows a splog post indexed by a popular blog

search engine. As depicted, it features content plagiarized
from other blogs (ii), displays ads in high paying contexts
(i), and hosts hyperlinks (iii) that create link farms. Scores
of such pages now pollute the blogosphere, with new ones
springing up every moment. Splogs continue to be a prob-
lem for web search engines, however they present a new set
of challenges for blog analytics.

Detecting Splogs
Splogs are well understood to be a specific instance of
the more general spam web-pages (Gyöngyi & Garcia-
Molina 2005). Though offline graph based mechanisms like
TrustRank (Gyöngyi, Garcia-Molina, & Pedersen 2004) are
sufficiently effective for the Web, the blogosphere demands
new techniques. The quality of blog analytics engines is
judged not just by content coverage, but also by their abil-
ity to quickly index and analyze recent (non-spam) posts.
This requires that fast online splog detection/filtering (Ko-
lari, Finin, & Joshi 2006)(Salvetti & Nicolov 2006) be used
prior to indexing new content.

We employ statistical models to detecting splogs as de-
scribed by (Kolari et al. 2006b), based on supervised ma-
chine learning techniques, using content local to a page, en-
abling fast splog detection. These models are based solely
on blog home-pages, and are based on a training set of 700
blogs and 700 splogs. Statistical models based on local blog

3http://akismet.com

(i)
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Figure 3: A typical splog, plagiarizes content (ii), promotes other
spam pages (iii), and (i) hosts high paying contextual advertise-
ments

Feature Precision Recall F1
words .887 .864 .875
urls .804 .827 .815
anchors .854 .807 .830

Table 1: SVM Models with 19000 word features and 10000 each of
URL and anchor text features (ranked using Mutual Information)
can be quite effective for splog detection.

features perform well on spam blog detection. See Table
1. The bag-of-words based features slightly outperforms
bag-of-outgoingurls (URL’s tokenized on ‘/’) and bag-of-
outgoinganchors. Additional results using link based fea-
tures are slightly lower that local features, but effective
nonetheless. Interested readers are referred to (Kolari et al.
2006b) for further details. Therefore, BlogVox used only
local features to detect splogs.

Comment spam

Comment spam occurs when a user posts spam inside a blog
comment. Comment spam is typically managed by indi-
vidual bloggers, through moderating comments and/or us-
ing comment spam detection tools (e.g. Akismet) on blog-
ging platforms. Comment spam and splogs share a common
purpose. They enable indexing new web pages, and pro-
moting their page rank, with each such page selling online
merchandise or hosting context specific advertisements. De-
tecting and eliminating comment spam (Mishne, Carmel, &
Lempel 2005) depends largely on the quality of identifying
comments on a blog post, part of which is addressed in the
next section.



Identifying Post Content
Most extraneous features in blog post are links. We de-
scribe two techniques to automatically classify the links into
content-links and extra-links. Content links are part of either
the title or the text of the post. Extra links are not directly
related to the post, but provide additional information such
as: navigational links, recent entries, advertisements, and
blog rolls. Differentiating the blog content from its chaff is
further complicated by blog hosting services using different
templates and formats. Additionally, users host their own
blogs and sometimes customize existing templates to suit
their needs.

Web page cleaning techniques work by detecting com-
mon structural elements from the HTML Document Object
Model (DOM) (Yi & Liu 2003; Yi, Liu, & Li 2003). By
mining for both frequently repeated presentational compo-
nents and content in web pages, a site style tree is con-
structed. This tree structure can be used for data cleaning
and improved feature weighting. Finding repeated struc-
tural components requires sampling many web pages from
a domain. Although blogs from the same domain can share
similar structural components, they can differ due to blog-
ger customization. Our proposed technique does not require
sampling and works independently on each blog permalink.

Instead of mining, we used a simple general heuristic. In-
tuitively extraneous links tend to be tightly grouped contain-
ing relatively small amounts of text. Note that a typical blog
post has a complex DOM tree with many parts, only one of
which is the content of interest in most applications.

Figure 4: A typical blog post containing navigational links,
recent posts, advertisements, and post content with addi-
tional links in it. Highlighted links are eliminated by the
approximation heuristic.

After creating the DOM tree we traverse it attempting to
eliminate any extraneous links and their corresponding an-
chor text, based upon the preceding and following tags. A
link a is eliminated if another link b within a θdist tag dis-
tance exists such that:

Algorithm 1 Blog post cleaning heuristic
Nodes[] tags = tags in the order of the depth first traversal
of the DOM tree
for all i such that 0 ≤ i ≤ |tags| do

dist = nearestLinkTag(tags, i);
if dist ≤ θdist then

eliminate tags[i]
end if

end for

Procedure 2 int nearestLinkTag(Nodes[] tags, int pos)

minDist = |tags|
textNodes = 0
textLength = 0
title = false;
for all j such that pos − θdist ≤ j ≤ pos + θdist do

node = tags[j]
if j = 0||j = pos||j > (|tags| − 1) then

continue
end if
if node instanceOf TextNode then

textNodes++;
textLength += node.getTextLength();

end if
dist = |pos − j|
if node instanceOf LinkNode && dist < minDist
then

minDist = dist
end if
if node instanceOf T itleNode then

title = true
end if

end for
ratio = textLength / textCount
if ratio > αavgText||title == true then

return tags.size()
end if
return minDist

• No title tags (H1, H2...) exist in a θdist tag window of a.

• Average length of the text bearing nodes between a and b
is less than some threshold.

• b is the nearest link node to a.

The average text ratio between the links, αavgText was
heuristically set to 120 characters and a window size, θdist

of 10 tags was chosen. The Algorithm 1 provides a detailed
description of this heuristic.

Next we present a machine learning approach to the link
classification problem. From a large collection of blog posts,
a random sample of 125 posts was selected. A human evalu-
ator judged a subset of links (approximately 400) from these
posts. The links were manually tagged either content-links
or extra-links. Each link was associated with a set of fea-
tures. Table 2 summarizes the main features used. Using



ID Features
1 Previous Node
2 Next Node
3 Parent Node
4 Previous N Tags
5 Next N Tags
6 Sibling Nodes
7 Child Nodes
8 Depth in DOM Tree
9 Char offset from page start

10 links outside the blog?
11 Anchor text words
12 Previous N words
13 Next N words

Table 2: Features used for training an SVM for classifying
links as content links and extra links.

Method Precision Recall F1
baseline heuristic 0.83 0.87 0.849
svm cleaner (tag features) 0.79 0.78 0.784
svm cleaner (all features) 0.86 0.94 0.898

Table 3: Data cleaning with DOM features on a training set of
400 HTML Links.

this feature set an SVM model was trained 4 to recognize
links to eliminate. The first set of features (1-7) was based
on the tag information. The next set of features (8-9) was
based on position information and the final set of features
(10-13) consisted of word-based features. Using features (1-
7) yields a precision of 79.4% and recall of 78.39%, using all
our features (1-13) yields a precision of 86.25% and recall
of 94.31% under 10-fold cross validation.

We compared the original baseline heuristic against hu-
man evaluators. The average accuracy for the baseline
heuristic is about 83% with a recall of 87%.

Scoring
To improve the quality of opinion extraction results, it is im-
portant to identify the title and content of the blog post be-
cause the scoring functions and the Lucene indexing engine
can not differentiate between text present in the links and
sidebars from text present in content of the blog post. Thus,
a post which has a link to a recent post titled ‘Why I love
my iPod’ would be retrieved as an opinionated post even if
the post content is about some other topic. This observation
lead to the development of our first scorers.

As shown in figure 2, a number of heuristics are employed
to score the results based on the likelihood that it contains
an opinion about the query terms. These scorers work by
using both document level and individual sentence level fea-
tures. Some of the scoring heuristics were supported by a
hand-crafted list of 915 generic postive and 2712 negative
sentiment words.

4http://svmlight.joachims.org/

The following is a brief description of each scoring func-
tion:

Query Word Proximity Scorer finds the average num-
ber of sentiment terms occurring in the vicinity of the query
terms using a window size of 15 words before and after the
query terms. If the query is a phrasal query, the presence of
sentiment terms around the query was weighted twice.

Parametrized Proximity Scorer was similar to the
Query Word Proximity Scorer. However, we used a much
smaller dictionary which was divided into two subsets:
highly polar sentiment words, and the relatively less polar
words. We used parameters to specify the window of text
to search for sentiment words (five and fifteen), and to boost
sentiment terms around phrase queries (one and three). This
resulted in a total of eight scorers.

Positive and Negative Scorers counted the number of
sentiment words (positive, negative) in the entire post.

Lucene Relevance Score was used to find how closely
the post matches the query terms.

We also experimented with other scoring functions, such
as adjective word count scorer. This scorer used an NLP tool
to extract the adjectives around the query terms. However,
this tool did not perform well mainly due to the noisy and
ungrammatical bsentences present in blogs.

Once the results were scored by these scoring modules,
we used a meta-learning approach to combine the scores us-
ing SVMs. Our SVMs were trained using a set of 670 sam-
ples of which 238 were positive (showed a sentiment) and
the rest were negative. Using the polynomial kernel with
degree gave the best results with precision of 80% and recall
of 30%. The model was trained to predict the probability of
a document expressing opinion. This value was then com-
bined with the Lucene relevance score to produce final runs.

Evaluation
The opinion extraction system provides a testbed applica-
tion for which we evaluate different data cleaning methods.
There are three criteria for evaluation: i) improvements in
opinion extraction task with and without data cleaning ii)
performance evaluation for splog detection iii) performance
of the post content identification.

Splog Detection Evaluation
Our automated splog detection technique identified 13,542
blogs as splogs. This accounts for about 16% of the iden-
tified homepages. The total number of splog permalinks is
543,086 or around 16% of the collection, which is very close
to the 15.8% explicitly included by NIST. While the actual
list of splogs are not available for comparison, the current es-
timate seem to be close. To prevent the possibility of splogs
skewing our results permalinks associated with splogs were
not indexed.

Given a search query, we would like to estimate the im-
pact splogs have on search result precision. Figure 5 shows
the distribution of splogs across the 50 TREC queries. The
quantity of splogs present varies across the queries since
splogs are query dependent. For example, the topmost
spammed query terms were ‘cholesterol’ and ‘hybrid cars’.
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Figure 5: The number of splogs in the top x results for 50
TREC queries. Top splog queries include “cholesterol” and
“hybrid cars”

Such queries attract a target market, which advertiser can
exploit.

The description of the TREC data (Macdonald & Ounis
2006) provides an analysis of the posts from splogs that were
added to the collection. Top informative terms include ‘in-
surance’, ‘weight’, ‘credit’ and such. Figure 6 shows the
distribution of splogs identified by our system across such
spam terms. In stark contrast from Figure 5 there is a very
high percentage of splogs in the top 100 results.

Post Cleaning Evaluation

In BlogVox data cleaning improved results for opinion ex-
traction. Figure 7 highlights the significance of identify-
ing and removing extraneous content from blog posts. For
50 TREC queries, we fetched the first 500 matches from a
Lucene index and used the baseline data cleaning heuristic.
Some documents were selected only due to the presence of
query terms in sidebars. Sometimes these are links to recent
posts containing the query terms, but can often be links to
advertisements, reading lists or link rolls, etc. Reducing the
impact of sidebar on opinion rank through link elimination
or feature weighing can improve search results.

Table 3 shows the performance of the baseline heuristic
and the SVM based data cleaner on a hand-tagged set of
400 links. The SVM model outperforms the baseline heuris-
tic. The current data cleaning approach works by making a
decision at the individual HTML tag level; we are currently
working on automatically identifying the DOM subtrees that
correspond to the sidebar elements.

Distribution of Splogs that appear in
'spam contexts' indentified in TREC
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Figure 6: The number of splogs in the top x results of the
TREC collection for 28 highly spammed query terms. Top
splog queries include ’pregnancy’, ’insurance’, ’discount’

Trec Submissions

The core BlogVox system produces results with two mea-
sures. The first is a relevance score ranging from 0.0 to
1.0, which is the value returned by the underlying Lucene
query system. The second was a measure of opinionated-
ness, which was a real number greater than 0.0. We pro-
duced the sim numbers for each of the runs from a weighted
average of the two numbers after normalizing them using the
standard Z-normalization technique.

The baseline run was exectuted on the uncleaned dataset
using a selection of what we anticipated to be the seven best
scorer features and with an equal weighting for relevance
and opinionatedness. This run was also the best performing
run amongst our official runs. Runs two through five were
made on the semi-cleaned dataset and using a larger set of
eleven scorer features. After normalizing the result scores,
we used weights of (1,1), (1,2), (1,3) and (2,1).

Figure 8 shows the results from the TREC submissions
for opinion retrieval. Figure 9 shows the results for the topic
relevance. The Mean Average Precision (MAP) for opinion
retrieval of the original TREC submissions was 0.0764 and
the R-Prec was around 0.1307. The MAP for topic relevance
was about 0.1288 with an R-Prec of 0.1805. After inspec-
tion of the code, it appeared that this may have been due to
a minor bug in the original code that was used for the offi-
cial run. Upon correcting this and re-executing the run, we
found that the MAP for opinion task was about 0.128 and
for retrieval was about 0.1928. A final run was performed
by running the queries against an index recreated by clean-
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Figure 8: Mean average precision (for opinion) of original TREC submission UABas11 ,updated runs and clean index runs.
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Figure 7: Documents containing query terms in the post ti-
tle or content vs. exclusively in the sidebars, for 50 TREC
queries, using 500 results fetched from the Lucene index.

run opinion topic relevance
map r-prec map r-prec

UABas11 0.0764 0.1307 0.1288 0.1805
UAEx11 0.0586 0.0971 0.0994 0.1367
UAEx12 0.0582 0.0934 0.0985 0.1355
UAEx13 0.0581 0.0923 0.0978 0.1360
UAEx21 0.0590 0.0962 0.0998 0.1366
Corrected 0.1275 0.202 0.1928 0.2858
Cleaned 0.1548 0.2388 0.2268 0.3272

Table 4: The results for the opinion and topic relevance per-
formance of different runs

ing all the posts using heuristics described in Section . Table
4 summarizes the results obtained. We find that cleaning
significantly improved both opinion and retrieval scores of
our system. Figure 11 compares the precision recall curves
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Figure 9: Mean average Precision (for topic relevance) of original TREC submission UABas11, updated runs and clean index runs.

for these these runs.
We think that the retrieval performance could be improved

by using the following approaches: use of query expansion
modules, applying relevance feedback and using the descrip-
tion and narrative fields from the TREC queries to formulate
the final Lucene query.

Discussion
For TREC runs, we used an index on blog posts that had
not been cleaned for all of the runs. For run one we eval-
uated these uncleaned posts using a complement of seven
heuristics. For runs two through five, we retrieved a fixed
number of post ids using the index of uncleaned data and
then cleaned the resulting posts “on the fly”. A larger set of
eleven heuristic scoring functions was used for these runs.
After cleaning a post, we did a heuristic check to ensure that
at least some of the query terms remained. If not, the post
was discarded. We believe that this ad hoc approach sig-
nificantly lowered our precision scores for these runs due

to at least three reasons. First, the relevance scores were
computed by Lucene on the uncleaned posts and were not
accurate for the cleaned versions since the term frequencies
for both the collection and for each document were altered.
Second, discarding many of the posts after the cleaning re-
duced the number of available results, already low due to
the impending deadline. Finally, the cleaned posts were in
many cases likely to be less relevant that their scores would
indicate due to the removal of query words.

Manual inspection of some of the results showed that
there were a number of matches that were due to the pres-
ence of the query terms in extraneous links. In order to ver-
ify the effectiveness of cleaning we created a new index us-
ing only the cleaned versions of the posts. We find that us-
ing this cleaner index improved not only retrieval results but
also effective mean average precision for opinion retrieval.
As can be observed from Figure 10, in almost all the cases
the mean average precision for the runs on cleaned data out-
perform those on unclean data. The queries for which data
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Figure 10: Difference of MAP from Median for original TREC submission UABas11, updated runs and clean index runs.

cleaning made a significant improvement were “larry sum-
mers”, “bruce bartlett”, “Fox News Report” and “zyrtec”.
Comparing these with Figure 7 indicates that these were also
queries that contained a higher number of matches that had
the terms exclusively in the sidebar. On the other hand for
queries like ‘audi’, ‘oprah’ and ‘colbert report’ the cleaned
runs had a lower precision possibly due to the strict thresh-
olds for cleaning.

Conclusion
We developed the BlogVox system as an opinion retrieval
system for blog posts as part of the 2006 TREC Blog Track.
This task requires processing an ad hoc queries represent-
ing topics and retrieving posts that express an opinion about
them. Our initial experiments with the blog post collection
revealed two problems: the presence of spam blogs and the
large amounts of extra, non-content text in each posts.

We identified posts from spam blogs using a machine-
learning based approach and eliminated them from the col-

lection. The remaining posts were “cleaned” before being
indexed to eliminate extraneous text associated with naviga-
tion links, blog-rolls, link-rolls, advertisements and sidebars.
After retrieving posts relevant to a topic query, the system
applies a set of scoring modules to each producing a vector
of features estimating the likelihood that a post expresses an
opinion about the topic. These are combined using an SVM-
based system and integrated with the overall relevancy score
to rank the results.

Our evaluation of the BlogVox results showed that both
splog elimination and post cleaning significantly increased
the performance of the system. The overall performance as
measured by the mean average precision and R-precision
scores showed that the system worked well on most of the
fifty test queries. We believe that the system can be im-
proved by increasing the accuracy of the post-cleaning and
refining the opinion scorers.
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