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ABSTRACT 
We developed a two-step approach that finds relevant blog documents containing opinioned content for a 
given query topic. The first step, retrieval step, is to find documents relevant to the query. The second step, 
opinion identification step, is to find the documents containing opinions within the scope of the document set 
from the retrieval step. In the retrieval step, we try to improve the retrieval effectiveness by retrieving based 
on concepts, and doing query expansion using pseudo feedback, Wikipedia feedback and web feedback. In 
the opinion identification step, we train a sentence classifier using subjective sentences (opinioned) and 
objective sentences (non-opinioned), which are relevant to a query topic. This classifier labels each sentence 
in a given document as either subjective or objective. A document containing subjective sentences relating to 
the query is finally labeled as an opinioned relevant document (ORD). We tried two strategies to rank the 
ORDs that became two submitted runs. 
 
1. INTRODUCTION 
A blog document is said to be an opinioned document regarding a query topic, if this document is related to 
the query, and it contains user opinions about the query, no matter the opinions are positive or negative. It 
also does not matter if the opinions are from the blog article or from other people's comments. We consider 
this opinioned document retrieval as a two-step procedure. The first step is to retrieve the documents relevant 
to the query. This is an Information Retrieval (IR) process. We applied concept identification, query 
expansion techniques in this step to improve the effectiveness. The second step is to find the opinions 
relevant to the query in the retrieved documents, so that the document can be claimed as an opinioned 
document for the query. We look for the subjective sentences in a retrieved document. These sentences 
express opinions. Then the subjective sentences that are relevant to the query are extracted from the 
subjective sentence set. We call such sentences the opinioned relevant sentences. Given a query, we train a 
sentence classifier with a subjective sentence training set and an objective sentence training set, both of 
which are related to the query. This classifier is used to classify every sentence in a document as either 
subjective or objective. When a subjective sentence, s, is found, a group of (2n+1) sentences is generated by 
including s, n sentences prior to it, and n sentences after it. S is considered as a opinioned relevant sentence if 
a certain number of query terms are found in this sentence group. 
 
2. QUERY PROCESSING 
The “title only” run only utilizes a few terms in the query titles. These terms are not enough to achieve high-
quality retrieval results. In order to improve the retrieval effectiveness, two query pre-processing methods are 
introduced. The first one is concept identification and concept based retrieval accordingly, which finds 
concepts from the original query and then retrieve documents based on the identified concepts. The other one 
is the query expansion. More relevant terms are collected by using methods, such as local pseudo feedback, 
Wikipedia and web-based feedback, to expand the original query. 
 
2.1 CONCEPT IDENTIFICATION 
We define a concept in a query as either a multi-word phrase consisting of adjacent query words, or a single 
query word that can not form a phrase with its adjacent words. Four types of concepts are defined with 
different significance power. They are proper nouns, dictionary phrases, simple phrases and complex phrases. 
Proper nouns are the noun phrases referring to people, place, event, organization, position, or other particular 
things. A dictionary phrase is a phrase that has an entry in a dictionary. Proper noun can be considered as a 
special type of dictionary phrase. A simple phrase is a 2-word noun phrase, which is grammatically valid but 
not having a dictionary entry, e.g. “small car”. A complex phrase is a grammatically valid noun phrase 
having 3 or more words but not having a dictionary entry. We developed an algorithm that combines several 



tools to identify concepts in a query. We use Minipar, WordNet, and Wikipedia [3] for proper noun and 
dictionary phrase identification. Collins Parser is used to find the simple phrase and complex phrase. Web 
search engine (Google) is used to provide statistical information for phrase verification and selection 
purpose. The algorithm detail can be found in [11] 
 
2.2 QUERY EXPANSION USING LOCAL PSEUDO FEEDBACK 
In local pseudo feedback method, the original query is used to retrieve a ranked document list from a 
document collection. The terms that are highly correlated to the query terms in the top n documents of the list 
are returned as the expanded words. The assumption is that the top ranked documents in the list should be 
relevant to the query, and the terms co-occurred with the query terms should be related to the query terms. In 
our implementation, the term correlation calculation is similar to the one described in [1]. An extracted term 
is assigned a weight based on its correlation with the query terms. We use the Okapi BM25 term weighting 
scheme [8] to compute query-document similarity. The detail can be found in [5]. 
 
2.3 QUERY EXPANSION USING WIKIPEDIA 
Wikipedia [3] is another source for our query expansion if the query terms have entries in Wikipedia. An 
Wikipedia entry article may have multiple titles. All these titles point to the same article. If this is the case, 
all the titles are considered as expanded terms. For example, when we search "American Indian", Wikipedia 
redirects the query to an entry titled "Native Americans in the United States". Then " Native Americans in the 
United States" is an expanded term. Accordingly, this entry article must also be highly related to the query. 
The important words from the article are also returned as expanded terms. The article consists of several 
sections including “summary”, “history”, “development”, “list of”, “references”, “see also”, “external links”, 
etc., in which the sections such as “see also”, “external links” are useless and thus are discarded. The terms, 
including concepts and individual content words, from the article are extracted. Each term is assigned a 
weight based on its frequency of occurrence in the article. The terms having the highest weights are 
considered as the expanded terms of the query. 
 
2.4 QUERY EXPANSION USING WEB FEEDBACK 
Using web feedback for query expansion is similar to the above local pseudo feedback. A query is submitted 
to a web search engine, which returns a ranked list of documents. In the top ranked documents, the terms that 
are highly correlated to the query terms are used for query expansion. We use Google in our system as the 
search engine. 
 
3. RELAVENT DOCUMENT RETRIEVAL AND RANKING 
After concepts identification and query expansion, an original query will be expanded with a list of concepts 
(if exists) and a list of expanded words. Every single term in the original query has weight of 1. The concepts 
are found from the original query. They also have weights of 1. The weights of the expanded terms are 
greater than 0 but smaller or equal to 1, where a weight of 1 means the expanded term is a synonym of the 
original query term. If an expanded term is returned from multiple expansion methods, the weights of this 
term from different methods are added together as the final weight for this term. If this final weight is greater 
than 1, it is set to 1. The idea is that the weight of an expanded term can not exceed that of an original term. 
The 20 top weighted expanded terms are chosen as the final expanded terms. 
 
The similarity score between a query and a document consist two of parts: the concept similarity and the 
single term similarity (concept-sim, term-sim). The concept-sim is computed based on the identified concepts 
in common between the query and the document. The term-sim is the usual term similarity between the 
document and the query using the Okapi formula [8]. Each query term that appears in the document 
contributes to the term similarity, irrespective of whether it occurs in a concept or not. Since we emphasize 
that the concept is more important than individual terms, the concept-sim has a higher priority than the term-
sim. Consider, for a given query, two documents d1 and d2 having similarities (x1, y1) and (x2, y2), 
respectively. d1 will be ranked higher than d2 if either (1) x1 > x2, or (2) x1 = x2 and y1 > y2. Note that if xi>0, 
then the individual terms which contribute to concept-sim will ensure that yi>0. The calculation of concept-
sim is described in [4]. 
 
4. SUBJECTIVE/OBJECTIVE SENTENCE CLASSIFICATION 
After a ranked list of documents regarding a query is retrieved, the documents containing opinions toward 



that query need to be identified. We break a document to sentences and evaluate the subjectivity of each 
sentence. We say that a relevant document is an opinioned relevant document (ORD) if it is a relevant 
document from the retrieval process; and it contains opinioned sentences toward the query. The ORDs are 
our final objective for the Opinion Track. For each query topic, we collect a set of subjective sentences and a 
set of objective sentences respectively. Both sets must be related to the query topic. The subjective sentences 
are comments and reviews about the query. The objective sentences are descriptions of the query without any 
subjective opinions. A sentence classifier is then trained using these two training sets. The classifier can label 
a test sentence as either subjective or objective, which refer to opinioned and non-opinioned respectively. 
This classifier does not need to tell if the opinion in a subjective sentence is toward the query. Connecting an 
opinioned sentence to the query is another process after the sentence subjectivity classification is done, 
which will be described in Section 5. We want each query topic will have a customized classifier of itself 
because different queries have different language characteristics in their domains. For example, opinions 
toward movies may be "excellent performance”, “funny”, etc. But they hardly appear in the opinions about a 
food such as Subway sandwich. So each query must have its own classifier. 
 
4.1 USE WIKIPEDIA AND WEB TO GET OBJECTIVE SENTENCES 
Given a query, we think that a dictionary entry of that query should be a high-quality data source of the 
objective text, since the dictionary definition should describe the term in an objective way. We use Wikipedia 
as the primary source to find the objective sentences for a query. Web search engine is used as a backup if 
Wikipedia does not have entry for a term. Given a query, we get the concepts in the query. These concepts 
are searched in Wikipedia to gather objective sentences. Once an entry is found for a concept, the whole 
entry contents are considered as objective data. 
 
Case 1. The query contains one concept and Wikipedia returns one entry article for that concept. A query has 
one concept means that the whole query itself is a concept. The single Wikipedia article uniquely describes 
this concept. All the sentences in this article are saved as the objective sentences for this concept. 
 
Case 2. The query contains one concepts and Wikipedia returns multiple articles for that concept. This 
means that the concept has multiple senses. We use Google to pick top 2 senses the returned articles. The 
concept, as a phrase, is submitted to Google. The search is restricted to be within the site of en.wikipedia.org 
by using “site:.en.wikipedia.org”. The documents returned from Google are all from Wikipedia. We save the 
sentences from the top 2 documents as the objective sentence set for that concept. We save the top 2 entries 
because we do the "title only" run in Blog Track. We do not know which entry to pick if a concept leads to 
multiple senses in Wikipedia. A safe move is to pick multiple entries in order to include the correct entry. But 
we do not want to keep all of the related entries neither, because too many articles introduce too many words, 
causing the real useful terms in the correct entry less significant, which in turn will decrease the quality of 
the sentence classifier to be generated. So we set 2 as the number of entries to save in this case. For example, 
a query "sun" has more than 40 related entries in Wikipedia about the star, companies, basketball teams, 
persons, newspapers, etc. Google ranked the entries of (1) “Sun as the star in our solar system” and (2) “the 
company Sun Microsystems” at the top 2 positions. So these two entry articles are saved. 
 
Case 3. The query has one concept but Wikipedia does not have an entry for the concept. The concept as a 
phrase is submitted to Google without any search restriction to get a document list. The top n documents of 
this list form a set A. We also submit the concept as a phrase plus two additional words "blog", "comments" 
and a phrase “I think” to Google to get another document list, the top n documents of which form another set 
B. The sentences of the document set (A-B) are saved as the objective sentence set for the concept. We set n 
to 10 in our system. The rationale is that when Wikipedia does not have an entry for a concept, we search it 
via a web search engine. But the documents in the list B are very likely to contain opinions and thus should 
be excluded. 
 
Case 4. The query contains multiple concepts. All the concepts that are not equal to the query itself form a 
partition of the query. Each of these concepts falls into one of the three cases above, and will get an objective 
sentence set respectively. All of these objective sentence sets are merged together as a single set for the 
whole query. For example, a query “whale watching California” contains two concepts: dictionary phrase 
“whale watching”, single term concept “California”, and a complex noun phrase “whale watching 
California”. The first two concepts partition the query. The last concept is the query itself and thus is not 



used in this case. Wikipedia returns one article for each of “whale watching” and “California” respectively. 
The sentences from these two articles are put together as the final objective sentence set for the query. 
 
4.2 USE RATEITALL.COM AND WEB TO GET SUBJECTIVE SENTENCES 
The comments and reviews toward a topic are mostly subjective contents, thus are good for the classifier 
training. In order to automatically collect high quality subjective data for various queries, we need a source, 
which covers a broad range of topics and has sufficient amount of subjective texts. Rateitall.com [10] is a 
web site asking users to provide opinions for various topics, including products, entertainment, people, 
politics, sports, foods, etc. The topics are organized in a hierarchical tree structure. We choose rateitall.com 
as the primary source of the comments and still use web search engine as a backup. We treat all the text of 
the comments from rateitall.com as subjective sentences. Although this is not true for every sentence, once 
we collect a large sentence set, the noise level of the set should be low. 
 
The web site has a search interface to locate a topic directly. Each topic page has one short paragraph 
describing the topic, followed by a list of user reviews. Each review record contains comments. We utilize 
the search interface to find the topic page for a Blog Track query and extract the comments part. If the topic 
page only has small amount of comments, they may not be enough to train a high quality classifier later on. 
So, other than the searched topic page, we also collect comments from a certain number of the sibling topic 
pages of the searched page, in order to get enough subjective data. These sibling pages are the review pages 
of other topics, which are in the same category as the topic being searched. The language characteristics of 
these sibling pages and the searched page should be very similar. For example, the words in the comments 
toward "Chicago Bulls" should be very similar to those toward "Miami Heat" because they are both in the 
"NBA teams" category. A comment "good team" is suitable for both. 
 
A Blog query is searched in rateitall.com. A list of relevant topics is returned. We pick the top 10 topics and 
compute a similarity score for each query-topic pair. The reason is that we think the original ranking from 
raiteitall.com does not always reflect the real importance of the topics. We need a re-rank process to adjust 
the ranking. A record in the search result list has a structure of <rank, topic title, snippet, name of the parent 
directory, URL to the topic page, URL to the parent directory>, where rank is a number between 1 and 10, 
the smaller the rank number, the higher the rank. The topic title is the name of the entity being commented, 
e.g. “Chicago Bulls”. The snippet is a short paragraph containing the query terms from the description part of 
the topic page. We also follow the URL of the parent directory p to get the name of the parent directory of p 
(the name of the topic's grandparent node) for the re-ranking calculation. 
 
Now we formally define the re-ranking function. Let Q = {q1, q2, … , qn} be a query where qi (i = 1 .. n) is a 
query term. Let L = <r1, r2, … , r10> be the list of the top 10 search results from raiteitall.com, where ri (i = 1 
.. 10) = < ranki, titlei, snippeti, parenti, grandparenti > is the i_th ranked record. The elements of ri follow the 
descriptions in the last paragraph. Let si_new be the new ranking score of the record ri. Then si_new is 
determined by a re-ranking function h(ri, L, Q). More in detail, h(ri, L, Q) = f( fr(ranki), ft(titlei, Q), 
fs(snippeti, Q), fp(parenti), fg(grandparenti) ) 

( ) ( ) ( ) ( ) ( ) ( )[ ]L ,tgrandparenf,L ,parentf,Q ,snippetf,Q ,titlef,rankff=QL,,rh=S igipisitirinewi
 

The intuitions of these functions are: a higher original ranking score should contribute more to the new 
ranking score than a lower original ranking score does. This is to respect the ranking from rateitall.com. A 
result ri has the query Q in its title, while another result rj not, then titlei should contribute more to the new 
ranking score than titlej. This means a title containing Q is more valuable than a title not containing Q. A 
result ri has more query terms in its snippet than another result rj, then the snippeti should contribute more to 
the new ranking score than snippetj does. The case of snippet is similar to that of the title. Given two parent 
names p1 and p2 found in L, p1 should contribute more to the new score than p2 does if the number of 
occurrence of p1 is larger than that of p2 in L. For example, 4 of the top 10 rateitall.com results for the query  
“java” come from the parent category of “Computer & Technology Books”. This indicates that the query is 
more likely to be related to “Computer & Technology Books”. Therefore, the four “Computer & Technology 
Books” related results should be considered more valuable than other results. The same idea applies to the 
grandparent names. Given two grandparent names g1 and g2 in L, g1 should contribute more to the new 
score than g2 does if the number of occurrence of g1 is larger than that of g2 in L,. According to these 
considerations, we designed the re-ranking function and the sub-functions as follows: 
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In (5), we consider that the grandparent category have the same functionality as the parent category but less 
value. So we use a co-efficient (0.5) to adjust the score of (5) in the final formula. 
 

Original Re-ranked Count 
1 1 28 
0 1 6 
1 0 0 
0 0 14 
- - 2 

Table 1. Effect of re-ranking 
 
Table 1 shows the effect of re-ranking. In the first and second column, 1 stands for the top ranked record is 
the best choice, 0 otherwise. A “hyphen” means no search result is returned. 6 of the 50 queries (second row) 
benefit from the re-ranking. Their top results in the re-ranked lists are better than the top ones in the original 
list. None of the queries gets worse top result after the re-ranking. After re-ranking, we choose the best result 
from the re-ranked result list according to the characteristics of the queries and the results. 
 
Case 1. 1-word query Q; Q is found in the title of the top-ranked result of the re-ranked list; the top result is 
the only one having Q in the title in the list. In this case, the top-ranked result is chosen as the topic page for 
the query. This is a straightforward case. 
 
Case 2. 1-word query Q; Q is found in the titles of multiple result records, or Q is found in the titles of non-
top-ranked results of the re-ranked list. In this case, we build a vector of description terms for Q, and then 
compare it to the term vectors of the results. The result having the highest cosine similarity will be chosen as 
the answer. This description term vector consists of the 20 most frequent content words from the objective 
sentence of Q, which is generated in Section 4.1. Then for every result, the terms in the title, snippet, parent 
category name and grandparent category name form a term vector. The intuition is that the words in the result 
record can be considered as a short description of the corresponding topic page. The result that is most 
similar to the description vector should be chosen. For example, in the re-ranked list for the query “sun”, all 
records have that term in the titles. The top ranked record is about a Jazz singer. Others are about NBA 
teams, songs, TV shows, star and company. The 20 most frequent stemmed terms from the objective sentence 
set are “solar, earth, magnetic, energy, surface, corona, temperature, atmosphere, core, photosphere”. After 
computing the similarity between these 20 terms and those result records, the topic page in the “Stars, 
Constellations, and Asterisms” category is chosen. 
 
Case 3. 1-word query Q; Q is NOT found in the title of any record in the re-ranked list. The title can not give 
us any information in this case. We first find the parent category that has the largest number of records in the 
re-ranked list. Then we find the highest ranked record that has this category as its parent category. This 
record is chosen as the topic page for the query. The rationale is that none of the records is directly related to 
the query because Q is not shown in the titles. But rateitall.com does return results for this query. These 
results must be related the Q. The parent category is the possible common information among them. So we 
find the most frequent parent category the re-ranked list, and pick the highest ranked result from this 
category. For example, searching “PCI” returns 4 results, none of which has that term in the title. The top 
record is in “International Politicians (Past & Present)” category. Other three are in the “Desktop 
computers” category. So the top record from the “Desktop computers” category is chosen. 



 
Case 4. Multi-word query Q; search the whole query as a PHRASE; all the query terms are found in the title 
of the top ranked result in the re-ranked list. We pick this top ranked result in the re-ranked list as the 
comment page for the query. Rateitall.com allow the user search several words together as a phrase, which 
means the words are in adjacent positions as they are submitted. If the phrase search returns result, and the 
top ranked result have all the query terms in title, this is a very strong indication that this top result should be 
the correct answer of the query. So we pick this top result. For example, searching “blue book” as a phrase 
gets five results. The top one has the exact phrase in title while others do not have both “blue” and “book” in 
titles. Thus the top one is chosen. 
 
Case 5. Multi-word query Q; search the whole query as a PHRASE; no result is returned or not all of the 
query terms are found in the title of the top ranked result in the re-ranked list. This means the query, as a 
phrase, is too strong to search. We search Q again as a “bag of words” and results are returned. In this case, 
we examine the top 10 results in the re-ranked list, and pick the results that have different query terms in title 
and parent category. If such result records exist, we pick the highest ranked record from them as the 
comment page for the query Q. The rationale is that: Since the phrase search in the Case 5 does not return a 
desired result, the title does not hold all the query terms. We add the parent category as an additional place to 
search for the query terms. If part of the query is found in the title and another part of the query is found in 
the parent category, it is also a good indication of a good result. For example, searching “hydrogen fuel 
automobiles” as a phrase yields no result. While searching it as a bag of words, seven results are returned. 
One of the results has a title of “hydrogen” and a parent category of “Alternative Fuels”. The term 
“hydrogen” is found in title and term “fuel” is found in the parent category name. The other result does not 
have any of the query terms in title. So this “hydrogen” topic page is picked for the query. 
 
Case 6. Any other case that no result is returned. Rateitall.com does not have comments about the query. We 
submit the query Q plus words of “blog”, “comments”, and a phrase “I think” to Google; get the top 30 
documents returned from Google; save the contents of these 30 documents as the subjective sentence set of 
query Q. The intuition is that the additional query words “blog”, “comments” and “I think” all indicate 
existence of subjective comments. We search the query Q with these words, hoping to get documents 
containing comments. A query “mutual fund predictors” is such a case. 
 
After we get a rateitall.com topic page for a query, all the comments in that page are saved. Furthermore, we 
randomly choose up to 59 (make the total number of pages no exceeding 60) sibling topic pages of the 
chosen page, save the comments in these pages too. The reason is that the comments from the best related 
page may not have enough content as the subjective training set for the sentence classifier, so we utilize the 
comments of the sibling pages in the same category to collect enough data. 
 
4.2 TRAIN A SENTENCE CLASSIFIER BY USING SIGNIFICANT WORD FEATURES 
The way we utilize the collected objective and subjective texts is to pick feature terms from the sets and use 
these feature terms to train the classifier. These features represent the language characteristics of the 
subjective and objective sentences about a query. We use word unigrams (single words) and bigrams (pair of 
words) as the feature types. We use the unigram to illustrate the feature term picking process. All distinct 
unigrams in a query’s subjective and objective sentence sets are collected.  For every distinct unigram t, the 
standard chi-square test [2] is conducted to test the hypothesis that t is distributed unevenly in the two sets. 
The term t is accepted as a feature term if the hypothesis holds. 
 

 Have t Does not have t Row total 
Subjective set a11 a12 a11+a12 
Objective set a21 a22 a21+a22 
Column total a11+a21 a12+a22 Grand total a11+a12+ a21+a22 

Table 2. A chi-square test table. 
 
In the test, four numbers related to t are counted: a11: number of subjective sentences having t; a12: number of 
subjective sentences not having t; a21: number of objective sentences having t; a22: number of objective 
sentences not having t. These 4 values are the observed values. For each of the observed value Oij, the 
corresponding expected value Eij is calculated as: 
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The final chi square test value for t represents how different the subjective set and the objective set are in 
terms of t. The larger the value is, the more significant the difference is. A term with large chi-square value 
means its distributions in the two sentence sets are very different, thus this term is a good indicator of either 
the subjective sentence or the objective sentence but not both. After the chi square values of all the word 
unigrams are calculated, we rank these unigrams by descending order of their chi-square values. Unigrams 
with a chi-square value greater than a threshold are saved as feature unigrams. Other unigrams are discarded. 
We repeat the above procedure to process all the word bigrams to get the featured bigram set. We set the 
threshold to 5.02, which represents the significance level of 0.025. 
 
When the featured unigrams and bigrams are ready, we convert all the subjective and objective sentences of 
the query to corresponding vector representations. Each sentence vector has a label indicating subjective or 
objective. All the feature unigrams and bigrams found in this sentence are listed in the vector. A term from 
the subjective (objective) data has a label of 1 (-1). We only record the existence of a featured term, but do 
not record its frequency in this sentence. Several opinion classification literatures [7] [9] have reported that 
using the existence information of a term instead of the frequency got higher accuracy. The Support Vector 
Machine (SVM) [6] with the default linear kernel is used to build the sentence classifier. All the subjective 
and objective sentence vectors are used as the training set of the SVM algorithm. The output is a SVM 
classifier. This classifier takes a sentence vector as the input, and outputs the predicted label (subjective or 
objective) and an associated score. Subjective sentence gets a positive score while objective sentence gets a 
negative score. The score represents the confidence level of the classifier to this answer. Larger absolute 
score value (toward infinity) means higher confidence, while a score close to 0 means low confidence. 
 
5. OPINIONED DOCUMENT CLASSIFICATION 
A ranked document set (about 1500 documents) regarding a query topic is obtained from Section 3. Each 
document in this set is decomposed into an ordered sentence list by a sentence splitter module. Each sentence 
is tested and labeled by the sentence classifier. If all the sentences are labeled as objective, the corresponding 
document is considered as not opinioned and is discarded. Otherwise, for each of the labeled subjective 
sentence, we get two sentences prior to it and two sentences following it. Then we search the original query 
terms and the expanded query terms within this five-sentence text window. There are three special cases: 

(1) If the original query has one word and it is found in text window. 
(2) If the original query has multiple words and at least two of the original query words are found in this 

text window. 
(3) If (1) and (2) do not hold and at least three expanded terms are found in this window. 

 
If any of these three cases happens, the subjective sentence is labeled as an opinioned relevant sentence. If 
none of the above three situations happens, the relevant sentence is considered as not relevant to the query 
and is discarded. A document having at least one opinioned relevant sentence is said to be an opinioned 
relevant document (ORD) of the query topic. 
 
Two ranking methods are tried to rank the ORDs. The first method is to keep the original ranking order of the 
relevant documents from the information retrieval step in Section 3. Then remove all the documents that are 
not opinioned. The ranking formula is: 

( ) ( ) ( ) (1)             ,,, QDIQDSim=QDScorerank ×  
where 
Sim(D, Q) is the relevance score from the retrieval step. 



I(D, Q) = 1 if document D contains relevant opinion sentence about the query Q, 0 otherwise. 
 
In Section 4.2, the SVM classifier gives every tested sentence a classification score representing how 
subjective or objective the sentence is. An ORD must contain one or more opinioned relevant sentences. We 
use the sum of the classification scores of the opinioned relevant sentences in an ORD as the second ranking 
method. The ranking formula is: 
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where 
scoreclassification(s) is the score given by the SVM classifier to a sentence s. 
relevant(s, Q) = 1 if the sentence s satisfies any of the three cases described above, 0 otherwise. 
 
Given a query, we rank all the documents in descending order of the scores calculated by (1) and (2) 
respectively. Two ranking results are submitted as two runs. The “uicsr” run uses formula (1) and “uicst” run 
uses the formula (2). Both runs are title-only automatic runs. The overall scores of the two runs are listed in 
Table 3. 
 

RUN MAP GMAP R-Precision P@10 
UICSR 0.1636 0.0921 0.2522 0.4380 
UICST 0.1885 0.1083 0.2771 0.5120 

Table 3. Summary of UIC Blog Track Title-Only Automatic Runs 
 
6. CONCLUSIONS 
In the opinion task of the TREC 2006 Blog Track, we develop a two-step model to retrieve documents that 
have opinioned content about a query topic. We adopt the concept identification and multi-source query 
expansion techniques in the relevant document retrieval step. Subjective/Objective sentence classification is 
used in the opinion identification step. Two ranking methods are used to create ranked opinioned relevant 
document set to answer a query. 
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