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1. Introduction 
 

Information retrieval is the process of searching for relevant documents that satisfy a user’s 
information need (usually in the form of queries).  Some of its successful applications include library 
catalogue search, medical record retrieval, and Internet search engines (e.g., Google).  As the 
exponential growth of web pages and online documents continues, there is an increasing need for 
retrieval systems that are capable of dealing with a large collection of documents and at the same time 
narrowing the scope of the search results (not only relevant documents but also relevant passages or 
even direct answers). 

 
A number of conceptual models have been proposed for information retrieval, including the 

Boolean model [Baeza-Yates and Ribeiro-Neto, 1999], the vector-space model [Salton, 1989], 
probabilistic models [Robertson and Sparck Jones, 1976], the inference network model [Croft and 
Turtle, 1992], and the language models [Ponte and Croft, 1998; Hiemstra, 1998; Miller et al., 1999].  
Among these models, language models have recently received a lot of attention in the field of 
information retrieval, since they are based on the solid foundation of statistical natural language 
processing and are both intuitive and flexible for extensions with more features to handle the retrieval 
tasks. 

 
In language modeling, we view each document as a language sample and estimate the 

probabilities of producing individual terms in a document.  A query is treated as a generation process.  
Given a sequence of terms in a query, we compute the probabilities of generating these terms 
according to each document model.  The multiplication of these probabilities is then used to rank the 
retrieved documents: the higher the generation probabilities, the more relevant the corresponding 
documents to the given query. 

 
One big obstacle in applying language modeling to information retrieval is the sparse data 

problem.  Unlike a collection of documents where we can control the number of documents in it, a 
document itself is often small in size and its content is always fixed.  Even for a relatively long 
document, some of the words can still be rare or missing according to the Zipf’s law of language 
usage [Manning and Schütze, 1999].   As a result, the combination of individual probabilities through 
multiplications will be meaningless if one of the probabilities is zero (for a missing term in a 
document).   Thus, overcoming the sparse data problem is the key for the success of any language 
modeling system for information retrieval. 

 
For TREC 2006 Genomics Track (see http://ir.ohsu.edu/genomics/ for more information), the data 

set presents several new challenges for language modeling in specific and information retrieval in 
general.  First of all, the search is targeted to the relevant passages within documents (more or less 
corresponding to paragraphs), since users of the biomedical domain are likely interested in finding 
answers along with the context that provides supporting information and links to the original sources.  
Secondly, there is a need to balance the results across different documents and aspects.  An aspect is 
defined as a group of passages of similar content, which will be judged by human evaluators and 
identified by a set of MeSH terms for the Genomics data set.  By ensuring an adequate coverage of 
the results across documents and aspects, we can reduce the repeats (or duplicate passages) and 
maintain a reasonable number of novel/unique passages, which may be particularly useful for 



biomedical researchers.   Finally, the retrieved passages may need to be trimmed further to highlight 
the answers, since passages are typically organized as paragraphs and may contain irrelevant wording 
before and after the relevant answers. 

 
In the rest of the working note, we describe our retrieval method based on the language models 

and their combinations in section 2.   In section 3, we explain the enhancements for balancing the 
results for documents and aspects and narrowing the spans for the answers in the retrieved passages.  
In section 4, we discuss our experimental results on the Genomics data set.  Finally, we conclude and 
point future directions of our work in section 5. 
 
2. Language Models and Their Combinations 
 

In Song and Croft [1999], we proposed a general language model for information retrieval.  The 
model is based on a range of data smoothing techniques, including Good-Turing estimates, curve-
fitting functions, and model combinations. 

 
For TREC 2006 Genomics Track, we apply our model for information retrieval, but instead of 

searching for relevant documents, we move deeper to look for relevant passages.  Since passages are 
much smaller than documents, the sparse data problem is even more serious with a large number of 
terms missing for individual passages.  As a result, more attention needs to be directed to smooth the 
passage models so that the missing terms are allocated with meaningful probability mass and the 
generation probabilities for each query are non-zero and thus can be used to rank the retrieved 
passages. 
 
2.1. Smoothing a Passage Model with the Good-Turing Estimate 
 

We can compute the frequencies for each term in a passage.  To smooth the probabilities for all 
the terms, including the missing terms in a vocabulary, the Good-Turing estimate adjusts the raw term 
frequency (tf) values as follows: 
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Here, Ntf is the number of terms with frequency tf in a passage, and E(Ntf) is the expected value of Ntf. 
The probability of a term with frequency tf is then defined as tf*/Np, where Np is the total number of 
terms in passage p.  Note that when tf = 0, tf* is reduced to E(N1)/E(N0) and the probability for a 
missing term becomes E(N1)/E(N0)Np. 

 
However, obtaining E(Ntf) is almost impossible since a passage is fixed in size and content.  In 

practice, we hope to substitute the observed Ntf for E(Ntf) directly, but this creates two problems.  For 
the terms with the highest frequency tf, their adjusted tf* will be zero, since Ntf+1 is always zero, 
which is counter-intuitive.  Furthermore, due to the small size of a passage, the number of terms at 
some middle frequency levels may also be too small or even zero, resulting in an unstable or anomaly 
distribution. 

 
Table 1. A Typical Term Distribution for a Document Collection 

tf Ntf tf Ntf 

0 74,671,100,100 5       68,379 
1          2,018,046 6       48,190 
2              449,721 7      35,709 
3             188,933 8     27,710 
4             105,668 9     22,280 



One way to get around the above problems is to use a curve-fitting function to smooth the 
observed Ntf’s for the expected values.  Table 1 shows a typical term distribution for a document 
collection1, taken from Manning and Schütze [1999].   As can be seen, Ntf can be approximated by a 
decreasing curve as tf gets bigger.  Such a decreasing curve ensures that Ntf  = Ntf+1 and allows us to 
project a non-zero value for Ntf+1  with the highest tf. 

 
With a smoothing function S(Ntf) for Ntf , the probability for term t with frequency tf in passage p 

can be computed as follows: 
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2.2. Curve-Fitting for Good-Turing Estimates 
 

Given a set of data points (xi, yi) for i = 1, 2, … , n, linear regression helps us identify a line f(x) = 
mx + b that fits the data points as tightly as possible.  This is done by minimizing the sum of squares 
of differences: 

              ∑ ∑
= =

−−=−=
n

i

n

i
iiii bmxyxfybmSS

1 1

22 )()]([),(  

Using calculus (see Manning and Schütze [1999] for details), we can find the optimal solutions 
for m and b: 
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where x and y  are the averages of xi and yi  for i = 1, 2, … , n, respectively. 
 

Clearly, a linear line does not fit the distribution in Table 1 properly, since the values of Ntf go 
down very quickly as tf goes up.  This leads us to use a geometric distribution to model a decreasing 
exponential curve: 

 
           qpxf x=)(                =>      qpxxf loglog)(log +=  
 

By taking the logarithm on both sides, we turn a geometric distribution into a log-linear combination, 
which can then be solved in a way similar to linear regression. 
 

Unfortunately, a simple geometric curve does not fit the typical term distribution either: although 
Ntf decreases very quickly for smaller tf’s, the pace slows down dramatically as tf gets much bigger.  
To fit the typical term distribution as closely as possible, we replace the variable x by a nested 
logarithmic function: 

 
Zeroth order: xx =0log  

First order:  )1log(log1 += xx  

Second order: )1)1log(log(log 2 ++= xx  

Third Order: )1)1)1g(log(log(lolog 3 +++= xx  
…  

                                                
1 The table is actually for bigram (word pair) distributions, but a similar pattern is also applied to individual 
terms due to the Zipf’s law for language usage [Manning and Schütze, 1999]. 



Based on the nested logarithmic function, we develop a greedy algorithm that tries to find an 
“optimal” geometric distribution: 
 
  qxpxf m logloglog)(log +⋅=  
 
Here, the level of nesting m is selected by testing the above formula until no further improvement can 
be made in terms of sum of squares of the differences for all given data points. 
 
2.3. Combining Language Models by Shrinkage 
 

Good-Turing estimate provides us the first smoothing step towards building a suitable language 
model for passage retrieval.  However, a passage model is not stable and accurate in the sense that 
there is often a large number of missing terms and there can also be anomaly distributions for certain 
known terms.  In particular, we cannot differentiate the contributions of different missing terms at a 
passage level.  In a biomedical document, for example, a passage may not contain terms “genetic” and 
“crocodile”, but in terms of probability distribution, we would prefer that the probability for “genetic” 
be higher than that for “crocodile”, since the document is about biomedicine.  Obviously, we need to 
borrow information from outside the passage in order to make a proper differentiation for different 
missing terms. 

 
For TREC 2006 Genomics data set, there are multiple levels of structures: the collection consists 

of 59 journals2; each journal, multiple documents; and each document, multiple passages.  Using the 
Good-Turing estimate, we can also build language models for documents, journals, and even the 
entire collection.  Clearly, the collection model contains the most information.  The journal models 
are more stable and accurate than the document models, and the document models are more stable and 
accurate than the passage models.  For this reason, we want to extend a passage model by adding 
information from the corresponding document, journal, and collection models.   This can be done by 
the interpolation or shrinkage method: 
 
 )()|()|()|()|( 4321 tPjtPdtPptPptP collectionjournaldocumentpassagecombined λλλλ +++=  

 
where λ1, λ2, λ3, and λ4 are weighting parameters and λ1 + λ2 + λ3 + λ4 = 1.  Such a linear 
combination has the advantage that the resulting probabilities are normalized in the range of [0, 1]. 
 

The shrinkage combination has two useful effects.  One is that we borrow information from 
outside the passages so that we can further differentiate the contributions of different terms.  The other 
is that we align passage models against the document, journal, and collection models so that the 
probability distribution for the known terms can be more stable.  Intuitively, the document, journal, 
and collection models provide the average distributions and the passage models add the variations to 
them.  Together, we get more stable and accurate distributions for passage retrieval. 
 

 
3. Enhancing the Results for Coverage and Specificity 
 

For TREC 2006 Genomics Track, the retrieved results are evaluated at three different levels: 
passage retrieval, aspect retrieval, and document retrieval so that we can get insight into the overall 
performance for a user trying to answer a given topic.  Since each submitted run can contain only up 
to 1000 passages per topic, the retrieved passages from the initial search should be further processed 
to ensure a reasonable coverage for relevant documents and aspects.  Such efforts help reduce repeats 
or duplicate passages and at the same time increase the number of novel/unique passages in the search 
results. 

                                                
2 Actually, there are 49 journals, but one of them is further split into 11 subsets. 



3.1 Improving Coverage for Relevant Documents 
 

TREC 2006 Genomics data set provides legal spans for all passages (more or less corresponding 
to paragraphs).  Each passage is identified by three components: PMID (PubMed ID) --- uniquely 
assigned to each document; passage start --- the bye-offset in the document file where the passage 
begins; and passage length --- the length of the passage in bytes (8-bit ASCII code).  As a result, the 
corresponding document for a passage can be easily found by analyzing the passage identifier.  This 
leads us to a simple solution to ensure a wider coverage for relevant documents.   Given the top 
ranked passages for a particular topic, we first map them to the corresponding documents.  If a 
document has got a reasonable number of retrieved passages, the remaining passages for this 
document are thrown away.  This frees up more rooms in the top 1000 passages for other documents 
so that the coverage for relevant documents can be expanded. 
 
3.2 Improving Coverage for Relevant Aspects 
 

Unlike documents that have clear starts and ends, aspects are hidden units corresponding to 
groups of passages with similar contents, which will be judged by human evaluators and identified by 
a set of MeSH terms for the Genomics Track evaluation.  As stated in the TREC 2006 Genomics 
Track Protocol, one aspect typically corresponds to multiple passages, but one passage can also be 
linked to multiple aspects and some passages may overlap and/or belong to multiple aspects. 

 
Because aspects are subjectively determined and currently not available for training purposes, we 

may have to apply some kind of clustering techniques to discover the natural grouping among the 
available passages.  We limit ourselves to the partition of non-overlapping clusters.  In other words, 
no clusters may contain other clusters and there are no overlaps between clusters.  If we model aspects 
by clusters of passages, this assumption implies that each passage can only belong to one aspect and 
no two aspects share any passages in common.  Clearly, this assumption is too strong and needs to be 
relaxed further for future experiments. 

 
We use the heuristic clustering method introduced in Salton [1989] for computing aspects, since it 

allows us to create clusters rapidly with relatively little expense.  Each passage is represented as a 
weighted vector (TF x IDF) and the distance between two vectors is measured by the cosine similarity.  
As described in [Salton, 1989], heuristic clustering is a one-pass process, which takes the elements to 
be clustered one at a time in an arbitrary order.  The first element is placed into a cluster of its own.  
Each subsequent element is then compared against all existing clusters and is placed into the cluster 
that is the most similar to the new element.  If the new element is not sufficiently similar to any of the 
existing clusters, it forms a new cluster of its own.  This process is continued until all elements are 
processed.  Each cluster is represented by the centroid vector, which is updated every time a new 
element is added into the cluster. 

 
Once we obtain the aspects (or clusters) for a set of passages, we can prune the results in a way 

similar to what we did to documents in section 3.1.  In other words, we map the top-ranked passages 
for a topic to their corresponding aspects.  If an aspect gets a reasonable number of retrieved passages, 
the remaining passages for this aspect are discarded.  As a result, we can cover more aspects in the top 
1000 retrieved passages in the final results. 
 
3.3 Towards More Specific Answers for Retrieved Passages 
 

The goal of TREC 2006 Genomics Track is to find information that is close to “answers” for a 
question or information need.   Performing search at the passage level is helpful for achieving this 
goal, since documents are typically too long to be used as “answers”.  However, since passages more 
or less correspond to paragraphs, which are marked for the documents rather than for the answers to 
users, they may contain irrelevant wording before and after the relevant answers.  Thus, to highlight 



the answers in the retrieved passages, we may need to trim the irrelevant wording around the answers 
in the retrieved passages. 

 
We trim irrelevant wording through a two-step process.  First, we use a sentence splitter to break a 

passage into a sequence of sentences.  Then, we narrow down the scope of the result by identifying 
the first and last sentences that match some of the terms in a given topic.  Since sentences are natural 
units for semantic meanings, by keeping the complete sentences in the narrowed result, we can 
preserve meaning and ensure the readability of the final result for the retrieved passage. 

 
We follow Reynar and Ratnaparkhi [1997] and implement a sentence splitter based on a 

maximum entropy approach.   We use features of the words around an end-of-sentence punctuation 
mark (usually period, question mark, or exclamation mark) and train the maximum entropy model 
with labeled documents for end-of-sentence marks.  A maximum entropy model allows us to combine 
features of different kinds, which in our case contain such attributes as person titles, initial 
capitalization, abbreviations for months and days, etc. 

 
Table 1.  University of Guelph Results for TREC 2006 Genomics Track 

 UofG0 Run UofG1 Run UofG2 Run 
Topic Doc Passage Aspect Doc Passage Aspect Doc Passage Aspect 
160 .201938  .008583  .042549  .209704  .006814  .054574  .198381  .006337  .053360  
161 .332930  .062424  .130727  .339145  .044740  .068344  .339295  .044807  .068798  
162 .350694  .080812  .271507  .350694  .055556  .200000  .350694  .055556  .200000  
163 .610200  .027614  .077983  .631620  .024001  .070498  .605470  .019521  .067078  
164 .000934  .000159  .000302  .003026  .000846  .001606  .003058  .000860  .001657  
165 .164789  .119675  .475613  .169814  .036491  .373604  .168211  .036674  .374143  
166 .221656  .021541  .345639  .221656  .019178  .317630  .221667  .019178  .317641  
167 .605977  .162167  .161907  .629965  .039632  .154769  .608553  .037074  .161408  
168 .883041  .105436  .383726  .883041  .037130  .298134  .780575  .027088  .210447  
169 .401195  .079371  .061101  .410076  .038079  .058015  .417243  .038715  .063333  
170 .477868  .011498  .050052  .477868  .000109  .009783  .478161  .000109  .009783  
171 .014872  .000000  .000000  .014872  .000000  .000000  .014873  .000000  .000000  
172 .169132  .002330  .046692  .185275  .001797  .047749  .179225  .001680  .047434  
174 .460182  .081262  .794114  .465273  .068208  .798611  .457086  .067203  .799517  
175 .430558  .101289  .221640  .436614  .048859  .167209  .436614  .048861  .167209  
176 .318942  .008750  .050105  .318942  .004421  .043447  .319411  .004584  .043447  
177 .000000  .000000  .000000  .000000  .000000  .000000  .000000  .000000  .000000  
178 .344469  .031602  .068110  .344469  .000000  .000000  .344485  .000000  .000000  
179 .032316  .002630  .019841  .033363  .007515  .059524  .034495  .007515  .059524  
181 .455263  .077538  .150953  .578879  .067265  .153564  .533192  .059962  .165131  
182 .433443  .018683  .027919  .457443  .007514  .018645  .358112  .006618  .020015  
183 .307910  .037526  .479292  .309548  .036293  .477777  .310614  .036306  .477993  
184 .000992  .000000  .000000  .000992  .000000  .000000  .001004  .000000  .000000  
186 .834194  .166325  .713503  .836778  .157531  .610184  .814809  .156807  .610230  
186 .391575  .052223  .199145  .496574  .031027  .196430  .494297  .030157  .196986  
187 .698413  .030358  .052247  .698413  .000000  .000000  .698413  .000000  .000000  
Avg .351672  .049608 .185564 .365540  .028192  .160773  .352613  .027139  .158274  

 
 

4. Experimental Results 
 
We submitted three runs of results for TREC 2006 Genomics Track, each of which consists of 

1,000 retrieved passages for each topic for a total of 26 topics.   The first run “UofG0” is based on the 
language models with the shrinkage combination (described in section 2); the second run “UofG1” 
adds the effort for improving coverage of relevant documents (section 3.1); and the third run “UofG2” 



tries to improve coverage for aspects (section 3.2).  For all three runs, the results are enhanced by 
narrowing the scopes of the retrieved passages for more specific answers (section 3.3). 

 
For “UofG0” run, we use the greedy curve-fitting algorithm to optimize the Good-Turing 

estimates for each language model (mostly at the passage, document, and journal levels), and combine 
all the related models together through the shrinkage method.   Since no training data are available 
from the previous years for TREC 2006 Genomics data set, we set the weighting parameters as 
follows by intuition:  λ1 = 0.7, λ2 = 0.21, λ3 = 0.063, and λ4 = 0.027.  As can be seen in Table 1, the 
average MAP (Mean Average Precision) values of “UofG0” run are 0.351672 at the document level, 
0.049608 at the passage level, and 0.185564 at the aspect level.  These numbers are higher than the 
corresponding median scores over the 68 automatic runs from Table 2, which are 0.27905 for 
documents, 0.024008 for passages, and 0.116862 for aspects.  Note that a couple of refined conditions 
are added to further improve the retrieval performance.  First, each retrieved passage should have at 
least one term in common with the given topic in order to avoid over-smoothing with the shrinkage 
method.  Secondly, the first two passages that appear at the beginning or at the end of a document are 
removed from the search results, since they tend to be titles, authors, and references for the documents 
in TREC 2006 Genomics data set.   In future, we could further improve the retrieval performance 
when training data become available to fine-tune the weighting parameters. 

 
Table 2. Statistics Over 68 Automatic Runs 

 Document AP Passage AP Aspect AP 
Topic Best Median Worst Best Median Worst Best Median Worst 

160 .925200  .470600  .000000  .212300  .032200  .000000  .366700  .154900  .000000  
161 .933900  .332900  .000000  .185200  .044800  .000000  .886900  .285800  .000000  
162 .360700  .160000  .000000  .241700  .003300  .000000  .664300  .020900  .000000  
163 .699900  .551300  .040800  .249000  .039700  .000300  .463700  .248500  .002900  
164 .619300  .003600  .000000  .399100  .000600  .000000  .744300  .001700  .000000  
165 .756500  .212900  .000000  .279300  .036500  .000000  .731500  .409700  .000000  
166 .271800  .126100  .000000  .164300  .006200  .000000  .565500  .091500  .000000  
167 .750500  .498400  .024400  .218200  .072100  .000000  .348700  .164700  .000000  
168 .921600  .751300  .000000  .179300  .089600  .000000  .659800  .212900  .000000  
169 .732700  .248500  .000000  .459900  .021300  .000000  .773800  .100400  .000000  
170 .916700  .081600  .000000  .334900  .000400  .000000  .989100  .023200  .000000  
171 .725800  .002500  .000000  .244700  .000000  .000000  .508500  .000000  .000000  
172 .495300  .234700  .019000  .013800  .003400  .000000  .207300  .063200  .001100  
174 .674500  .329900  .000000  .327000  .009900  .000000  .941700  .194400  .000000  
175 .704200  .379300  .000000  .317300  .030700  .000000  .607400  .186900  .000000  
176 .492700  .044300  .000000  .108900  .000400  .000000  .629600  .007100  .000000  
177 .750000  .000000  .000000  .143800  .000000  .000000  .764600  .000000  .000000  
178 .366700  .011600  .000000  .080500  .000100  .000000  .068100  .001000  .000000  
179 .307600  .051800  .000000  .050800  .004200  .000000  .717700  .046600  .000000  
181 .830300  .578300  .000000  .333600  .117900  .000000  .431200  .151000  .000000  
182 .457400  .235700  .000000  .062500  .009700  .000000  .337500  .059800  .000000  
183 .521000  .255800  .000000  .060800  .006600  .000000  .740500  .074700  .000000  
184 1.00000  .001000  .000000  .067000  .000000  .000000  .572800  .000000  .000000  
185 .836800  .487400  .000000  .252500  .034500  .000000  .713500  .209300  .000000  
186 .849800  .614900  .000000  .319500  .056100  .000000  .654300  .302900  .000000  
187 1.00000 .590900  .000000  .358400  .004000  .000000  .425600  .027300  .000000  

Avg .688496  .279050  .003238  .217858  .024008  .000012  .596715  .116862  .000154  
 
For “UofG1” run, we set the maximum number of passages per document to be 5 and any more 

passages from the same document are discarded in the final results.  As shown in Table 1, this indeed 
improves the retrieval performance slightly at the document level with the average MAP of 0.36554, 
but at the cost of decreasing the performance at the passage and aspect levels: 0.028192 and 0.160773, 
respectively.  Due to the restriction of submitting only three runs, we are unable to test the system 



with different threshold values.  Clearly, there are conflicting factors in improving the performance 
across the passage, aspect, and document levels, and some kind of compromise has to be made in 
order to get a proper balance between the three different levels. 

 
For “UofG2” run, we set the minimum similarity level to be 0.5 in order to merge a passage into 

one of the existing aspects (clusters).  As illustrated in Table 1, the performance does not improve; in 
fact, all the performance numbers are slightly lower than those for “UofG1” run.  This is perhaps not 
surprising, since the heuristic clustering method is not one of the best clustering methods available 
and the number of terms within a passage is usually too small for computing the distance between 
passages.  The reason we choose the heuristic clustering method is because it allows us to create 
clusters rapidly with relatively low cost, which is desirable when we are under the constraints of time 
and machine resources.  Clearly, more work needs to be done in order to model and compute aspects 
efficiently and accurately. 
 
 
5. Conclusions and Future Work 
 

We show that language models combined by shrinkage are a promising method for passage 
retrieval.  In particular, extending a passage model with information from the corresponding 
document, journal, and even collection is desirable since a passage is usually too short to capture 
enough information for matching and comparison purposes.   Our approach for language modeling is 
intuitive and easy to understand, since models are obtained and optimized individually before they are 
combined with the shrinkage method. 

 
Although we tried to expand the coverage for documents and aspects, the results did not show 

much improvement.   More study is needed to identify a proper balance for the retrieval performance 
at the three levels of passages, aspects, and documents.  Furthermore, we need to explore different 
clustering methods to compute the aspects efficiently and accurately.   In particular, we need to relax 
the condition for non-overlapping clusters, since an aspect can correspond to multiple passages, and a 
passage can also belong to multiple aspects.  It will be a big challenge for computing such clustering 
structures efficiently, since the TREC 2006 Genomics data set contains a total of 12, 641,039 
passages, which is quite large to store and compute on a typical personal computer. 

 
Finally, we could continue improve the performance of our system for passage retrieval with 

training data.  For this year, the data and query sets are both new, so no training data are available.  
For the next year, we could use the evaluated results from this year as training data and investigate 
whether the weighting parameters for the model combination can be optimized and set automatically 
so that we can further improve the retrieval performance. 
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