
MITRE’s Qanda at TREC-15
John D. Burger

The MITRE Corporation
john@mitre.org

Introduction
Qanda is MITRE’s TREC-style question answering
system. In recent years, we have been able to apply
only a small effort to the TREC QA activity,
approximately six person-weeks this year.
(Accordingly, much of this discussion is plagiarized
from prior system descriptions.) We made a number
of small improvements to the system this year,
including expanding our use of Wordnet. The
system’s information retrieval wrapper now performs
iterative query relaxation in order to improve
document retrieval. We also experimented with an ad
hoc means of “boosting” the maximum entropy model
used to score candidate answers in order to improve its
ranking ability.

1. TREC-15 system description
Underlying architecture
Qanda uses a general computational infrastructure for
human language technology called the Annotation
Management System (AMS). AMS is a flexible
library for pairwise interactions between language
processors, based on the Catalyst infrastructure used in
previous versions of Qanda (Burger 2004,
Burger & Mardis 2002, Nyberg et al. 2004). AMS
provides an extensible wrapper between a consistent
internal programming model for language processors
and the wide range of ways the language processor can
be invoked, as well as the wide range of possible
annotation formats and storage types. Philosophically,
it is similar to IBM’s UIMA infrastructure (Ferrucci &
Lally 2004), without the benefits and drawbacks
associated with the strong programming assumptions
that UIMA makes.

Major system components
Qanda has a by now banal QA architecture, which
proceeds in several phases. Questions are analyzed for
expected answer types, documents are retrieved using
an IR system and are then processed by various
taggers to find entities of the expected types in
contexts that match the question. Qanda is composed
of several dozen components connected via AMS—
below we describe each of the major phases in turn.

• Common question and document processing: This
consists of several steps: tokenization, sentence
boundary detection, part of speech tagging
(Ratnaparkhi 1996), morphological analysis
(Minnen et al. 2001), fixed phrase tagging (see
below), and entity tagging. For the latter, we use
Phrag (Burger et al. 2002), an HMM-based tagger,
to identify named persons, locations and
organizations, as well as temporal expressions.

• Question analysis: After the common initial phase
of analysis, questions are chunked and parsed, and
salient features of the meaning of the question are
extracted. See Section 2 below for more detail.
(Retrieved documents do not have this level of
analysis applied to them.)

• Document retrieval: AMS components have been
written for several IR engines. These take the
results of the question analysis and formulate a
series of queries for each question—Section 3
explains this in more detail.

• Passage processing: After the retrieved documents
pass through the common analysis phase, Qanda
identifies lexical relations between the words in
each sentence and those in the question (see
Section 4). It also assigns a preliminary score to
each sentence by summing the log-IDF (inverse
document frequency) of words common to the
sentence and the question. Those sentences with a
low score are not processed by most of the system,
improving the efficiency of more expensive
downstream components.

• Fixed repertoire taggers: In addition to named
entity tagging, we have a simple facility for
constructing AMS taggers from fixed word- and
phrase-lists. Some of these are used in question
analysis to help determine the expected answer
type. Others re-tag many named locations more
specifically as cities, states/provinces, and
countries. Qanda also identifies various other
(nearly) closed classes such as precious metals,
birthstones, several animal categories (e.g., state
bird), and so on (although these latter are less
relevant to the more recent TREC QA
incarnations).

• Numeric tagging: A fixed repertoire tagger is run
on the retrieved passages to identify words and
phrases denoting units of measure, and then a
simple pattern-based tagger combines these with
numeric expressions to identify full-fledged
measure phrases, as well as currency, percentages
and other numeric phrases.

• Overlap: The question is compared to each
sentence, and a number of overlap features are
computed, some in terms of).

• Answer collection and ranking: Candidates are
identified and merged, a number of features are
collected, and a score is computed (Section 4).

• Answer selection: A final component down-selects
the candidates and generates the actual answer
strings. For factoid questions, this is simply the
highest-scoring phrasal candidate, but definition
and list questions require other processing, as
detailed in Section 5.

All of these components communicate by consuming
and producing stand-off annotations via AMS. A
separate declarative facility is used to indicate which
components are interested in consuming which
annotations, and AMS arranges for the components to
be connected appropriately.

2. Question analysis
In previous TREC evaluations, Qanda performed a
limited analysis of the questions. We tagged for part-
of-speech and named entities, and also applied a
simple fixed-repertoire tagger that maps head words to
answer types in Qanda’s ontology, using a set of
approximately 6000 words and phrases, some
extracted heuristically from WordNet, some identified
by hand. As of last year, the system includes a
detailed parsing phase using MITRE’s conditional
random field chunker Carafe (Wellner, 2005) and the
Pro3Gres dependency parser from the University of
Zurich (Schneider et al. 2004).

Perhaps due to the scarcity of questions in standard
corpora, many of our corpus-based tools require a
repair phase to address some of the more egregious
misinterpretations of questions as declarative
statements. For instance, it is not uncommon for a part
of speech tagger trained on declarative data to attempt
to tag questions like Who does John love? as if John
love is a noun-noun compound. We find analogous
problems in chunking and parsing as well, which we
are able to correct to some extent using simple
heuristics.

Once these tagging phases are complete, Qanda’s
question analysis component uses a set of structural
heuristics to identify the following aspects of each
question:

• Anchor: the object that the answer refers to. The
answer may be the anchor, or it may be a property
(e.g., length, color) or name of the anchor. The
anchor will have a type and supertype from
Qanda’s (rather simple) ontology, e.g., PERSON
and AGENT. The supertype is used as a backoff
for some statistics.

• Property: the property, if any, of the anchor that is
the actual answer, e.g., the height of a mountain.
Properties also have a type and supertype in
Qanda’s ontology.

• Name: the name, if any, of the anchor that is the
actual answer. This case can arise in questions
which require descriptive answers, as in Who is
Henry Kissinger?

• Answer restriction: an open-domain phrase from
the question that describes the anchor, e.g., first
woman in space.

• Superlative: Relevant adjectives from the question
restriction, e.g., first, or fastest.

• Event: the main event in the question, if any;
typically the main verb, unless it is simply be.

• Salient entity: What the question is “about”.
Typically a named entity, this corresponds roughly
to the classical notion of topic, e.g., Matterhorn in
What is the height of the Matterhorn?

• Geographical and temporal restriction: Phrases
that can be interpreted as restricting the question’s
geophysical domain, or time period, e.g., in
America, or in the nineteenth century,
respectively.

These features are emitted as annotations on the
question, and are then available for down-stream
components to consume.

3. Document retrieval
The results of question analysis are passed to a
document retrieval component—for TREC this was an
AMS wrapper around the Java-based Lucene engine
(Apache 2002). This formulates an IR query from the
question components described above with the goal of
retrieving documents likely to answer the question.
An ideal document would contain every term from the
question, in fact, every question component as a full
phrase. This is, of course, usually too much to hope

for, so Qanda begins with a restrictive query, but then
relaxes it until a target number of documents is
retrieved, typically 50. Question components are
relaxed in a heuristic order that we arrived at through
trial and error, and new documents are added to the
retrieval set until the target number is reached. This is
similar to the first “feedback cycle” performed by
some of LCC’s TREC QA systems (Moldovan et al.
2002).

For example, for question 143.4:

 Who is the senior vice president of the American
Enterprise Institute ?

Qanda formulates the following initial query:

 +”senior vice president” +”American Enterprise
Institute”

In Lucene’s query syntax, the quotes indicate that only
the complete phrases should match, while the plus
signs require the phrases to be present. Such a query
retrieves only documents containing both exact
phrases—there are apparently only four such
documents in the AQUAINT collection, so another
round of retrieval is attempted, with a weaker query:

 senior vice president “senior vice president”
+”American Enterprise Institute”

This query still requires the topic phrase, as that is
deemed most important, but has weakened the
requirements on the other phrase—the words can
appear individually, and in fact none of the words need
appear in a retrieved document. The entire phrase is
still retained as optional, as Lucene will more highly
rank documents containing the phrase.

The second, weakened query retrieves 350 documents,
and the system greedily adds novel documents to the
result set from the original query. When the target
number of documents is reached, the cycle of query
relaxation stops, and the documents are passed to the
rest of the system. In this case, if necessary, a fully
weakened query would have been used:

 senior vice president “senior vice president”
American Enterprise Institute ”American
Enterprise Institute”

Lucene’s query syntax also allows weighted terms,
and in actuality, Qanda uses different weights for each
question component, even when weakened. Like the
relaxation order, these weights were arrived at
heuristically, and only a small portion of the full query
space is explored by Qanda. Ideally, we would like to
automatically acquire the weights, relaxation order,
etc., so as to optimally traverse this space.

4. Answer ranking
The retrieved documents are then examined by a
number of taggers and other processors. As indicated
in the overview, most components of Qanda skip
sentences that do not sufficiently match the question,
based on an IDF-weighted overlap threshold. This
year we lowered this threshold substantially so that,
effectively, every sentence containing at least one
content word from the question is fully processed.
Qanda collects candidate answers by gathering phrasal
annotations from all of the semantic taggers, and
identifies a number of features for each candidate.
These are combined using a conditional maximum-
entropy model trained from past TREC QA data sets.
Several TREC participants have used this approach,
e.g., Ittycheriah et al (2001).

Answer candidate features
Many of the features used in the maxent model reflect
particular kinds of overlap between the question and
the context in which the candidate answer is found:

• Context IDF Overlap: Described above.

• Context Unigram and Bigram Overlaps: Raw
counts of words/bigrams1 in common with the
question.

• Context Question Component Overlaps: Raw
counts of words from various components of the
question (see Section 2).

• Context Wordnet Overlap: Raw counts of words
that could be synonyms, hypernyms, etc. of
questions words. Count features for most Wordnet
relations (Fellbaum 1998) are used.

A number of features are computed based on the
candidate itself, or its location in the context sentence:

• Candidate Overlap: Raw count of words in
common between the candidate itself and the
question, to bias against entities from the question
being chosen as answers.

• Candidate Overlap Distance: Number of
characters between the candidate and the closest
(content) question word in the context.

• Candidate Question Component Distances:
Number of characters between the candidate and
various components of the question found in the
candidate context.

1All of the “raw count” features described in this section
omit stop words.

Candidates from the same document with the same
textual realizations are merged, with the combined
candidate retaining the best value for each feature.
This is the extent of Qanda’s candidate combination—
no coreference is currently performed. We use several
cross-candidate features:

• Merge Count: (log of) count of identical
candidates merged together.

• Answer similarity: Average character-level
similarity between this candidate and all others.

The latter feature allows textually similar candidates to
“vote” for each other, allowing, for example, January,
1964 and Jan 64 to support each other without
requiring any explicit coreference. We have also used
such an approach to combine answers from multiple
QA systems (Burger & Henderson, 2003).

A number of boolean features are also computed that
compare the question’s expected answer type with the
semantic type of the candidate:

• Type Same: True if the candidate and expected
answer types are identical.

• Type Consistent: True if the candidate’s type is
“similar” to the expected answer type.

• Type-Pair: This is a series of features
corresponding to selected pairs of consistent types
(see below).

For the most part, candidates are only considered for a
question if their types are consistent. For example,
Where questions lead to an expected answer type of
LOCATION, which is consistent with LOCATION,
CITY and COUNTRY candidates; How much questions
lead to QUANTITY, consistent with PERCENTAGE.

Ideally, Qanda would consider all candidates for all
questions, but, if nothing else, performance
considerations justify limiting this. We do not even
represent all consistent pairs as explicit features.
Instead, we use a small set of approximately 20
combinations chosen by hand, as indicated in Figure 1.
These represent particular biases or preferences that
we feel justified in trying to acquire from the training
data. In addition, some of these pairwise features
represent exceptions to the consistency requirement,
e.g., PERSON is not consistent with COUNTRY, but
we wish to consider such candidates anyway, as the
latter can sometimes answer questions such Who
started the six-day war? Similarly, we wish to
consider certain named entity types as candidates,
even when question analysis was unsuccessful in
divining an expected answer type (unknown).

After all of the (merged) candidates have been
acquired, most of the raw feature values described
above are normalized with respect to the maximum
across all candidates for a particular question, resulting
in values between 0 and 1. We have previously found
that features normalized in this way are more
commensurate across questions (Light et al. 2001).
This year we also explored unit Gaussian
normalization, as well as quantile normalization, but
found results to be inconclusive. All of our official
TREC runs simply used max-value-per-question
normalization.

Maximum entropy models
The normalized features are combined using the
weights assigned by a maxent model during training.
This year, we trained the model using the question sets
from TREC 1999 through 2004, including the 2001 list
questions and the 25 AQUAINT definition evaluation
questions. Last year’s questions (TREC 2005) were
used as a development set, although for our final run
(MITRE2006D) we included this development data in
the training. We used the MegaM package (Daumé
2004) to train these models.

In previous years we have struggled with a number of
issues involving training this part of the system, for

Question expected
answer type

Candidate
type

PERSON ORGANIZATION
PERSON COUNTRY
NAME PERSON
NAME ORGANIZATION
NAME LOCATION
CITY LOCATION
DATE YEAR
DATE YEAR
ORGANIZATION other
AMBIGLONG DURATION
AMBIGLONG LENGTH
AMBIGBIG LENGTH
AMBIGFAST SPEED
MEASURE MASS
MEASURE MONEY
MEASURE MISCMEASURE
MEASURE other
QUANTITY PERCENT
unknown LOCATION
unknown ORGANIZATION
unknown PERSON

Figure 1: Type-pair features used in evaluating
answer candidates

example, the question of how to normalize feature
values discussed above. Other issues arise because we
are using a fairly small data set—there are arguably
too few positive instances to acquire adequate feature
weights, especially if we are interested in feature
combination (our training data s typically 98–99%
negative instances). Last year, we experimented with
forcing Qanda to consider all correct answers (as
defined by NIST’s judgment sets) during training,
even those the system would ordinarily not examine,
but ultimately found this to produce inferior results.

This year we spent some time exploring the problems
involved in using a discriminative model such as
maxent to rank candidates. We encountered a number
of cases of feature additions or other modification to
the system that decreased the maxent model’s
estimation error, but had negative effects on its
ranking ability. This is frustrating, but perhaps
understandable—MegaM is choosing feature weights
to maximize the likelihood of all of the data, but we
are in fact only interested in the candidate that ranks
highest using the resulting probability estimate.

For many questions, there are multiple correct answer-
document pairs—some are harder than others for the
model to “justify”. In a sense, we would like the
model to focus on those correct answers that it can
more easily rank highly, possibly at the expense of
other correct, but more “difficult” candidates, in the
context of a particular question. MegaM in fact has a
simply facility for weighting some instances more than
others, and we used this to perform a crude form of
“answer boosting”. Our procedure is thus: we first
train a maxent model from the training data, and then
use this to rank all of the training answers for each
question. Then, within a question, we weight the top n
instances with a weight w (greater than 1), and retrain
the model. This second model is then used at runtime.

Again, the intuition is to force the model to focus on
those correct candidates that can already be ranked
fairly highly. Similarly, we wish to focus on those
incorrect candidates that are confusable with the best
correct candidates. We are willing to “sacrifice”
poorly ranked candidates if at least one correct
candidate per question can be ranked highly. We
typically used values of 100 and 2 for n and w,
respectively, and found that this ad hoc procedure
could consistently improve our factoid scores by
roughly ten percent, relative. Our TREC runs, A and
C differ only in whether this boosting was performed
(see Figure 3).

5. Definition questions
Qanda has no real facility for processing definition
(other) questions as such. Instead, we leverage our
factoid question processing, which for the most part
only considers named and other entities as candidate
answers. Of course, very few definition answers
correspond directly to named entities, per se, but we
have noticed that certain kinds of named entities were
involved with some definition answers, as indicated in
the example below:

 Who is Gunter Blobel?

 Is at Rockefeller University
1999 Nobel prize in Medicine
was born in 1936
was born in Waltersdorf, Silesia, Germany

In a sense, while named entities alone might not
constitute good definition nuggets, they form the
“kernel” of many nuggets. Qanda’s question analysis
component can already identify the semantic type of
the definition target (e.g., PERSON, above). Since
definition answers do not need to be exact, we allow
Qanda to consider certain entity types as pseudo-
answers to definition questions. Then, at the end, the
actual definition text is constructed from the matrix
sentences in which these pseudo-answers are found
(see Section 6).

We used the type-pair features described in Section 4
to license certain combinations of definition target
type and candidate type, as shown in Figure 2.
Additionally, we inject some non-entity candidates
using crude heuristics for identifying short fragments
occurring in appositional contexts. Our hope is that
the type-pair features, as well as the candidate count
feature, allow the system to find some definition
answers. As training data, we use the explicit other
questions from recent TRECs, the AQUAINT

Definition
target type

Candidate
type

PERSON DATE
PERSON YEAR
PERSON PERSON
PERSON LOCATION
PERSON COUNTRY
PERSON fragment
ORGANIZATION LOCATION
ORGANIZATION COUNTRY
ORGANIZATION PERSON
ORGANIZATION fragment
unknown fragment

Figure 2: Type-pair features used in evaluating
definition pseudo-answers

definition questions, and a number of questions from
previous years that we determined were essentially
definition questions.

6. Final answer generation
Most of Qanda’s processing is independent of whether
the question is factoid, list, or other. One exception is
the fragment pseudo-answers generated for definition
questions, another is that the question type is, in fact,
available as a feature to the maxent scoring model.
Otherwise, however, the system performs the same
processing on all questions, until the very last stage,
actual answer string generation. Special processing is
required to generate both definition (other) and list
answers.

List questions generate a set of short (factoid) answers,
while definition questions are a set of full sentences
containing the candidate pseudo-answers described
above. Earlier versions of Qanda simply picked the
top n candidate answers, with fixed cutoffs for list and
definitions. For several years, we have used
something slightly more sophisticated—the system
determines this cutoff dynamically so as to maximize
the expected score for each question.

The basic idea takes advantage of Qanda’s candidate
evaluation mechanism—since the maxent model
produces probability estimates for the correctness of
each individual answer, we can use these to reason
about the expected value of the score an entire answer
set might receive. Our algorithm for generating list and
definition answers is thus to greedily add each of the
ranked candidates to an answer set in turn, stopping
when the expected score appears to decrease.

The expected score of an answer set of course depends
on the scoring metric to be used. Both list and
definition questions are scored with variants of F-
measure, the weighted harmonic mean of precision
and recall:

!

F =
" 2 +1()PR
" 2P + R

P is precision, the fraction of our generated answers
that are correct, while R is recall, the fraction of all
possible correct answers that we generated.

!

" is a
weight used to place more emphasis on either
precision or recall. For list questions, NIST weighted
P and R evenly, and so the evaluation simply reduces
to the following:

!

F
list

=
2c

n + r

For definition questions,

!

" is set to three, and
precision is approximated with a length penalty:

!

Fdef =
10 ˆ P R

9 ˆ P + R

ˆ P = min(1.0, 100c / l)

R = c /r

In both Fdef and Flist, c is the number of correct
answers—either the number of distinct list answers
judged correct, or the number of correct nuggets found
in a definition answer. r is the total number of correct
answers possible, according to the NIST assessors.
For list questions, n is the total number of answers
generated, and for definition questions, l is the total
length of an answer.2

Based on these equations, Qanda can estimate the
expected score of an answer set. We estimate c as the
sum of the maxent scores for the answers in the set. It
remains to estimate r, the number of correct answers
possible. This is, of course, difficult,3 and so we
simply use a fixed value, in this case the means from
last year’s data.

rlist = 12
rdef = 4

For list questions, we add each factoid-style answer to
the answer set in turn, incrementing n by 1 with each,
as long as Flist increases. Similarly, for definition
questions, we add each pseudo-answers matrix
sentence to the answer set, incrementing the length l
appropriately, as long as Fdef continues to increase.

7. Submitted runs and results
This year we submitted three variant runs (see Figure
3). Run A is from a basic system, with the features
described above. Run C differs only in that the
candidate scoring model has been “boosted” as
described in Section 4—the roughly ten percent
improvement is similar to what we saw with our
development data. It is unclear why the evaluation list
questions appear to be unaffected by the boosting.
Run D differs mainly in that our development set has
been added to the training set, namely, last year’s
questions. This did not include, however, the

2Qanda ignores the distinction between inessential and
essential correct nuggets.
3David Lewis (personal communication) has suggested
using the sum of scores over all answer candidates for a
particular question as an estimate for r, but we have found
this to worsen our results.

definition questions, perhaps accounting for run D’s
loss in this area.

8. Conclusion
As well as the usual description of this year’s system
architecture, we have discussed Qanda’s question
analysis and our use of maximum entropy models for
answer selection, in particular a method for boosting
such models to better support TREC’s winner-take-all
evaluation. We believe that this ad hoc method has
some connections to minimum-risk annealing (Smith
& Eisner, 2006) and would like to explore this in the
future. We described the query relaxation technique
that Qanda uses in an attempt to improve the document
retrieval phase of the system—we would like to use a
more principled exploration of the query space for
retrieval. Finally, we presented our approach to
generating definition and list answer sets by
maximizing the expected score each set will receive.

References
Apache Software Foundation, 2002. “Jakarta
Lucene—Overview”. http://jakarta.apache.org/lucene/.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
Andrew Ng, 2001. “Data-intensive question
answering”. in Proceedings of the Tenth Text
REtrieval Conference (TREC-10). NIST Special
Publication 500-250

John D. Burger, John C. Henderson, William T.
Morgan, 2002. “Statistical named entity recognizer
adaptation”, in Proceedings of the Conference on
Natural Language Learning. Taipei.

John Burger, John Henderson, 2003. “Exploiting
diversity for answering questions”, in Proceedings of
the Human Language Technology Conference of the
North American Chapter of the Association for
Computational Linguistics.

John D. Burger, Scott Mardis, 2002. “Qanda and the
Catalyst architecture”, in AAAI Spring Symposium on
Mining Answers from Texts and Knowledge Bases.

Hal Daumé III, 2004. “Notes on CG and LM-BFGS
optimization of logistic regression”. Unpublished.
http://www.isi.edu/~hdaume/megam/

Christiane Fellbaum, ed., 1998. WordNet: An
Electronic Lexical Database. MIT Press.

Smith, David A. and Jason Eisner (2006). “Minimum-
risk annealing for training log-linear models”, in
Proceedings of the International Conference on
Computational Linguistics and the Association for
Computational Linguistics (COLING-ACL)

D. Ferrucci and A. Lally, 2004. “Building an example
application with the Unstructured Information
Management Architecture.” IBM Systems Journal
43:3.

Abraham Ittycheriah, Martin Franz, Salim Roukos,
2001. “IBM's statistical question answering system”,
in Proceedings of the Tenth Text REtrieval Conference
(TREC-10). NIST Special Publication 500-250.

Marc Light, Gideon S. Mann, Ellen Riloff, Eric Breck,
2001. “Analyses for elucidating current question
answering technology”, in Natural Language
Engineering 7(4).

Guido Minnen, John Carroll and Darren Pearce, 2001.
“Applied morphological processing of English”.
Natural Language Engineering, 7(3).

Dan Moldovan, Marius Paca, Sanda Harabagiu, Mihai
Surdeanu, 2002. “Performance issues and error
analysis in an open-domain question answering
system”, in Proceedings of the 40th Annual Meeting of
ACL.

Eric Nyberg, John D. Burger, Scott Mardis, David
Ferrucci, 2004. “Software Architectures for Advanced
Question Answering”, in New Directions in Question
Answering, ed. Mark Maybury. AAAI Press.

Adwait Ratnaparkhi, 1996. “A maximum entropy
part-of-speech tagger,” in Proceedings of the
Empirical Methods in Natural Language Processing
Conference.

Gerold Schneider, Fabio Rinaldi, James Dowdall,
2004. “Fast, deep-linguistic statistical dependency
parsing”. Workshop on Recent Advances in
Dependency Grammar, COLING 2004, Geneva.

Ben Wellner and Marc Vilain, 2006. “Leveraging
machine readable dictionaries in discriminative
sequence models”, in Proceedings of Language
Resources and Evaluation Conference (LREC).

Run Factoid List Other Overall
A 0.181 0.083 0.136 0.130
C 0.208 0.083 0.156 0.149
D 0.208 0.087 0.131 0.139

Median 0.186 0.027 0.125 0.134
Best 0.578 0.433 0.250 0.394

Figure 3: Results for three MITRE runs, as well
as median and best across all 2006 submissions

