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Introduction 
Qanda is MITRE’s TREC-style question answering 
system.  In recent years, we have been able to apply 
only a small effort to the TREC QA activity, 
approximately six person-weeks this year.  
(Accordingly, much of this discussion is plagiarized 
from prior system descriptions.)  We made a number 
of small improvements to the system this year, 
including expanding our use of Wordnet.  The 
system’s information retrieval wrapper now performs 
iterative query relaxation in order to improve 
document retrieval.  We also experimented with an ad 
hoc means of “boosting” the maximum entropy model 
used to score candidate answers in order to improve its 
ranking ability. 

1. TREC-15 system description 
Underlying architecture 
Qanda uses a general computational infrastructure for 
human language technology called the Annotation 
Management System (AMS).  AMS is a flexible 
library for pairwise interactions between language 
processors, based on the Catalyst infrastructure used in 
previous versions of Qanda (Burger 2004, 
Burger & Mardis 2002, Nyberg et al. 2004). AMS 
provides an extensible wrapper between a consistent 
internal programming model for language processors 
and the wide range of ways the language processor can 
be invoked, as well as the wide range of possible 
annotation formats and storage types.  Philosophically, 
it is similar to IBM’s UIMA infrastructure (Ferrucci & 
Lally 2004), without the benefits and drawbacks 
associated with the strong programming assumptions 
that UIMA makes. 

Major system components 
Qanda has a by now banal QA architecture, which 
proceeds in several phases.  Questions are analyzed for 
expected answer types, documents are retrieved using 
an IR system and are then processed by various 
taggers to find entities of the expected types in 
contexts that match the question.  Qanda is composed 
of several dozen components connected via AMS— 
below we describe each of the major phases in turn. 

• Common question and document processing: This 
consists of several steps: tokenization, sentence 
boundary detection, part of speech tagging 
(Ratnaparkhi 1996), morphological analysis 
(Minnen et al. 2001), fixed phrase tagging (see 
below), and entity tagging.  For the latter, we use 
Phrag (Burger et al. 2002), an HMM-based tagger, 
to identify named persons, locations and 
organizations, as well as temporal expressions. 

• Question analysis: After the common initial phase 
of analysis, questions are chunked and parsed, and 
salient features of the meaning of the question are 
extracted.  See Section 2 below for more detail.  
(Retrieved documents do not have this level of 
analysis applied to them.) 

• Document retrieval: AMS components have been 
written for several IR engines.  These take the 
results of the question analysis and formulate a 
series of queries for each question—Section 3 
explains this in more detail. 

• Passage processing: After the retrieved documents 
pass through the common analysis phase, Qanda 
identifies lexical relations between the words in 
each sentence and those in the question (see 
Section 4).  It also  assigns a preliminary score to 
each sentence by summing the log-IDF (inverse 
document frequency) of words common to the 
sentence and the question.  Those sentences with a 
low score are not processed by most of the system, 
improving the efficiency of more expensive 
downstream components. 

• Fixed repertoire taggers:  In addition to named 
entity tagging, we have a simple facility for 
constructing AMS taggers from fixed word- and 
phrase-lists.  Some of these are used in question 
analysis to help determine the expected answer 
type.  Others re-tag many named locations more 
specifically as cities, states/provinces, and 
countries.  Qanda also identifies various other 
(nearly) closed classes such as precious metals, 
birthstones, several animal categories (e.g., state 
bird), and so on (although these latter are less 
relevant to the more recent TREC QA 
incarnations). 



• Numeric tagging:  A fixed repertoire tagger is run 
on the retrieved passages to identify words and 
phrases denoting units of measure, and then a 
simple pattern-based tagger combines these with 
numeric expressions to identify full-fledged 
measure phrases, as well as currency, percentages 
and other numeric phrases. 

• Overlap: The question is compared to each 
sentence, and a number of overlap features are 
computed, some in terms of). 

• Answer collection and ranking: Candidates are 
identified and merged, a number of features are 
collected, and a score is computed (Section 4). 

• Answer selection: A final component down-selects 
the candidates and generates the actual answer 
strings.  For factoid questions, this is simply the 
highest-scoring phrasal candidate, but definition 
and list questions require other processing, as 
detailed in Section 5. 

All of these components communicate by consuming 
and producing stand-off annotations via AMS.  A 
separate declarative facility is used to indicate which 
components are interested in consuming which 
annotations, and AMS arranges for the components to 
be connected appropriately. 

2. Question analysis 
In previous TREC evaluations, Qanda performed a 
limited analysis of the questions.  We tagged for part-
of-speech and named entities, and also applied a 
simple fixed-repertoire tagger that maps head words to 
answer types in Qanda’s ontology, using a set of 
approximately 6000 words and phrases, some 
extracted heuristically from WordNet, some identified 
by hand.  As of last year, the system includes a 
detailed parsing phase using MITRE’s conditional 
random field chunker Carafe (Wellner, 2005) and the 
Pro3Gres dependency parser from the University of 
Zurich (Schneider et al. 2004). 

Perhaps due to the scarcity of questions in standard 
corpora, many of our corpus-based tools require a 
repair phase to address some of the more egregious 
misinterpretations of questions as declarative 
statements.  For instance, it is not uncommon for a part 
of speech tagger trained on declarative data to attempt 
to tag questions like Who does John love? as if John 
love is a noun-noun compound. We find analogous 
problems in chunking and parsing as well, which we 
are able to correct to some extent using simple 
heuristics. 

Once these tagging phases are complete, Qanda’s 
question analysis component uses a set of structural 
heuristics to identify the following aspects of each 
question: 

• Anchor: the object that the answer refers to. The 
answer may be the anchor, or it may be a property 
(e.g., length, color) or name of the anchor.  The 
anchor will have a type and supertype from 
Qanda’s (rather simple) ontology, e.g., PERSON 
and AGENT.  The supertype is used as a backoff 
for some statistics. 

• Property: the property, if any, of the anchor that is 
the actual answer, e.g., the height of a mountain. 
Properties also have a type and supertype in 
Qanda’s ontology. 

• Name: the name, if any, of the anchor that is the 
actual answer. This case can arise in questions 
which require descriptive answers, as in Who is 
Henry Kissinger? 

• Answer restriction: an open-domain phrase from 
the question that describes the anchor, e.g., first 
woman in space. 

• Superlative: Relevant adjectives from the question 
restriction, e.g., first, or fastest. 

• Event: the main event in the question, if any; 
typically the main verb, unless it is simply be.  

• Salient entity: What the question is “about”.  
Typically a named entity, this corresponds roughly 
to the classical notion of topic, e.g., Matterhorn in 
What is the height of the Matterhorn? 

• Geographical and temporal restriction: Phrases 
that can be interpreted as restricting the question’s 
geophysical domain, or time period, e.g., in 
America, or in the nineteenth century, 
respectively. 

These features are emitted as annotations on the 
question, and are then available for down-stream 
components to consume. 

3. Document retrieval 
The results of question analysis are passed to a 
document retrieval component—for TREC this was an 
AMS wrapper around the Java-based Lucene engine 
(Apache 2002).  This formulates an IR query from the 
question components described above with the goal of 
retrieving documents likely to answer the question.  
An ideal document would contain every term from the 
question, in fact, every question component as a full 
phrase.  This is, of course, usually too much to hope 



for, so Qanda begins with a restrictive query, but then 
relaxes it until a target number of documents is 
retrieved, typically 50.  Question components are 
relaxed in a heuristic order that we arrived at through 
trial and error, and new documents are added to the 
retrieval set until the target number is reached.  This is 
similar to the first “feedback cycle” performed by 
some of LCC’s TREC QA systems (Moldovan et al. 
2002). 

For example, for question 143.4: 

 Who is the senior vice president of the American 
Enterprise Institute ? 

Qanda formulates the following initial query: 

 +”senior vice president”   +”American Enterprise 
Institute” 

In Lucene’s query syntax, the quotes indicate that only 
the complete phrases should match, while the plus 
signs require the phrases to be present.  Such a query 
retrieves only documents containing both exact 
phrases—there are apparently only four such 
documents in the AQUAINT collection, so another 
round of retrieval is attempted, with a weaker query: 

 senior vice president “senior vice president” 
+”American Enterprise Institute” 

This query still requires the topic phrase, as that is 
deemed most important, but has weakened the 
requirements on the other phrase—the words can 
appear individually, and in fact none of the words need 
appear in a retrieved document.  The entire phrase is 
still retained as optional, as Lucene will more highly 
rank documents containing the phrase. 

The second, weakened query retrieves 350 documents, 
and the system greedily adds novel documents to the 
result set from the original query.  When the target 
number of documents is reached, the cycle of query 
relaxation stops, and the documents are passed to the 
rest of the system.  In this case, if  necessary, a fully 
weakened query would have been used: 

 senior vice president “senior vice president” 
American Enterprise Institute ”American 
Enterprise Institute” 

Lucene’s query syntax also allows weighted terms, 
and in actuality, Qanda uses different weights for each 
question component, even when weakened.  Like the 
relaxation order, these weights were arrived at 
heuristically, and only a small portion of the full query 
space is explored by Qanda.  Ideally, we would like to 
automatically acquire the weights, relaxation order, 
etc., so as to optimally traverse this space. 

4. Answer ranking 
The retrieved documents are then examined by a 
number of taggers and other processors.  As indicated 
in the overview, most components of Qanda skip 
sentences that do not sufficiently match the question, 
based on an IDF-weighted overlap threshold.  This 
year we lowered this threshold substantially so that, 
effectively, every sentence containing at least one 
content word from the question is fully processed.  
Qanda collects candidate answers by gathering phrasal 
annotations from all of the semantic taggers, and 
identifies a number of features for each candidate. 
These are combined using a conditional maximum-
entropy model trained from past TREC QA data sets.  
Several TREC participants have used this approach, 
e.g., Ittycheriah et al (2001). 

Answer candidate features 
Many of the features used in the maxent model reflect 
particular kinds of overlap between the question and 
the context in which the candidate answer is found: 

• Context IDF Overlap: Described above. 

• Context Unigram and Bigram Overlaps: Raw 
counts of words/bigrams1 in common with the 
question. 

• Context Question Component Overlaps: Raw 
counts of words from various components of the 
question (see Section 2). 

• Context Wordnet Overlap: Raw counts of words 
that could be synonyms, hypernyms, etc. of 
questions words.  Count features for most Wordnet 
relations (Fellbaum 1998) are used. 

A number of features are computed based on the 
candidate itself, or its location in the context sentence: 

• Candidate Overlap: Raw count of words in 
common between the candidate itself and the 
question, to bias against entities from the question 
being chosen as answers. 

• Candidate Overlap Distance: Number of 
characters between the candidate and the closest 
(content) question word in the context. 

• Candidate Question Component Distances: 
Number of characters between the candidate and 
various components of the question found in the 
candidate context. 

                                                        
1All of the “raw count” features described in this section 
omit stop words. 



Candidates from the same document with the same 
textual realizations are merged, with the combined 
candidate retaining the best value for each feature.  
This is the extent of Qanda’s candidate combination—
no coreference is currently performed.  We use several 
cross-candidate features: 

• Merge Count: (log of) count of identical 
candidates merged together. 

• Answer similarity: Average character-level 
similarity between this candidate and all others. 

The latter feature allows textually similar candidates to 
“vote” for each other, allowing, for example, January, 
1964 and Jan 64 to support each other without 
requiring any explicit coreference.  We have also used 
such an approach to combine answers from multiple 
QA systems (Burger & Henderson, 2003). 

A number of boolean features are also computed that 
compare the question’s expected answer type with the 
semantic type of the candidate: 

• Type Same: True if the candidate and expected 
answer types are identical. 

• Type Consistent: True if the candidate’s type is 
“similar” to the expected answer type. 

• Type-Pair: This is a series of features 
corresponding to selected pairs of consistent types 
(see below). 

For the most part, candidates are only considered for a 
question if their types are consistent.  For example, 
Where questions lead to an expected answer type of 
LOCATION, which is consistent with LOCATION, 
CITY and COUNTRY candidates; How much questions 
lead to QUANTITY, consistent with PERCENTAGE. 

Ideally, Qanda would consider all candidates for all 
questions, but, if nothing else, performance 
considerations justify limiting this.  We do not even 
represent all consistent pairs as explicit features.  
Instead, we use a small set of approximately 20 
combinations chosen by hand, as indicated in Figure 1.  
These represent particular biases or preferences that 
we feel justified in trying to acquire from the training 
data.  In addition, some of these pairwise features 
represent exceptions to the consistency requirement, 
e.g., PERSON is not consistent with COUNTRY, but 
we wish to consider such candidates anyway, as the 
latter can sometimes answer questions such Who 
started the six-day war?  Similarly, we wish to 
consider certain named entity types as candidates, 
even when question analysis was unsuccessful in 
divining an expected answer type (unknown). 

After all of the (merged) candidates have been 
acquired, most of the raw feature values described 
above are normalized with respect to the maximum 
across all candidates for a particular question, resulting 
in values between 0 and 1.  We have previously found 
that features normalized in this way are more 
commensurate across questions (Light et al. 2001).  
This year we also explored unit Gaussian 
normalization, as well as quantile normalization, but 
found results to be inconclusive.  All of our official 
TREC runs simply used max-value-per-question 
normalization. 

Maximum entropy models 
The normalized features are combined using the 
weights assigned by a maxent model during training.  
This year, we trained the model using the question sets 
from TREC 1999 through 2004, including the 2001 list 
questions and the 25 AQUAINT definition evaluation 
questions.  Last year’s questions (TREC 2005) were 
used as a development set, although for our final run 
(MITRE2006D) we included this development data in 
the training.  We used the MegaM package (Daumé 
2004) to train these models. 

In previous years we have struggled with a number of 
issues involving training this part of the system, for 

Question expected 
answer type 

Candidate 
type 

PERSON ORGANIZATION 
PERSON COUNTRY 
NAME PERSON 
NAME ORGANIZATION 
NAME LOCATION 
CITY LOCATION 
DATE YEAR 
DATE YEAR 
ORGANIZATION other 
AMBIGLONG DURATION 
AMBIGLONG LENGTH 
AMBIGBIG LENGTH 
AMBIGFAST SPEED 
MEASURE MASS 
MEASURE MONEY 
MEASURE MISCMEASURE 
MEASURE other 
QUANTITY PERCENT 
unknown LOCATION 
unknown ORGANIZATION 
unknown PERSON 

Figure 1: Type-pair features used in evaluating 
answer candidates 



example, the question of how to normalize feature 
values discussed above.  Other issues arise because we 
are using a fairly small data set—there are arguably 
too few positive instances to acquire adequate feature 
weights, especially if we are interested in feature 
combination (our training data s typically 98–99% 
negative instances).  Last year, we experimented with 
forcing Qanda to consider all correct answers (as 
defined by NIST’s judgment sets) during training, 
even those the system would ordinarily not examine, 
but ultimately found this to produce inferior results. 

This year we spent some time exploring the problems 
involved in using a discriminative model such as 
maxent to rank candidates. We encountered a number 
of cases of feature additions or other modification to 
the system that decreased the maxent model’s 
estimation error, but had negative effects on its 
ranking ability.  This is frustrating, but perhaps 
understandable—MegaM is choosing feature weights 
to maximize the likelihood of all of the data, but we 
are in fact only interested in the candidate that ranks 
highest using the resulting probability estimate. 

For many questions, there are multiple correct answer-
document pairs—some are harder than others for the 
model to “justify”.  In a sense, we would like the 
model to focus on those correct answers that it can 
more easily rank highly, possibly at the expense of 
other correct, but more “difficult” candidates, in the 
context of a particular question.  MegaM in fact has a 
simply facility for weighting some instances more than 
others, and we used this to perform a crude form of 
“answer boosting”.  Our procedure is thus: we first 
train a maxent model from the training data, and then 
use this to rank all of the training answers for each 
question.  Then, within a question, we weight the top n 
instances with a weight w (greater than 1), and retrain 
the model.  This second model is then used at runtime. 

Again, the intuition is to force the model to focus on 
those correct candidates that can already be ranked 
fairly highly.  Similarly, we wish to focus on those 
incorrect candidates that are confusable with the best 
correct candidates.  We are willing to “sacrifice” 
poorly ranked candidates if at least one correct 
candidate per question can be ranked highly.  We 
typically used values of 100 and 2 for n and w, 
respectively, and found that this ad hoc procedure 
could consistently improve our factoid scores by 
roughly ten percent, relative.  Our TREC runs, A and 
C differ only in whether this boosting was performed 
(see Figure 3). 

5. Definition questions 
Qanda has no real facility for processing definition 
(other) questions as such.  Instead, we leverage our 
factoid question processing, which for the most part 
only considers named and other entities as candidate 
answers.  Of course, very few definition answers 
correspond directly to named entities, per se, but we 
have noticed that certain kinds of named entities were 
involved with some definition answers, as indicated in 
the example below: 

 Who is Gunter Blobel? 

 Is at Rockefeller University 
1999 Nobel prize in Medicine 
was born in 1936 
was born in Waltersdorf, Silesia, Germany 

In a sense, while named entities alone might not 
constitute good definition nuggets, they form the 
“kernel” of many nuggets.  Qanda’s question analysis 
component can already identify the semantic type of 
the definition target (e.g., PERSON, above).  Since 
definition answers do not need to be exact, we allow 
Qanda to consider certain entity types as pseudo-
answers to definition questions.  Then, at the end, the 
actual definition text is constructed from the matrix 
sentences in which these pseudo-answers are found 
(see Section 6). 

We used the type-pair features described in Section 4 
to license certain combinations of definition target 
type and candidate type, as shown in Figure 2.  
Additionally, we inject some non-entity candidates 
using crude heuristics for identifying short fragments 
occurring in appositional contexts.  Our hope is that 
the type-pair features, as well as the candidate count 
feature, allow the system to find some definition 
answers.  As training data, we use the explicit other 
questions from recent TRECs, the AQUAINT 

Definition 
target type 

Candidate 
type 

PERSON DATE 
PERSON YEAR 
PERSON PERSON 
PERSON LOCATION 
PERSON COUNTRY 
PERSON fragment 
ORGANIZATION LOCATION 
ORGANIZATION COUNTRY 
ORGANIZATION PERSON 
ORGANIZATION fragment 
unknown fragment 

Figure 2: Type-pair features used in evaluating 
definition pseudo-answers 

 



definition questions, and a number of questions from 
previous years that we determined were essentially 
definition questions. 

6. Final answer generation 
Most of Qanda’s processing is independent of whether 
the question is factoid, list, or other.  One exception is 
the fragment pseudo-answers generated for definition 
questions, another is that the question type is, in fact, 
available as a feature to the maxent scoring model.  
Otherwise, however, the system performs the same 
processing on all questions, until the very last stage, 
actual answer string generation.  Special processing is 
required to generate both definition (other) and list 
answers. 

List questions generate a set of short (factoid) answers, 
while definition questions are a set of full sentences 
containing the candidate pseudo-answers described 
above.  Earlier versions of Qanda simply picked the 
top n candidate answers, with fixed cutoffs for list and 
definitions.  For several years, we have used 
something slightly more sophisticated—the system 
determines this cutoff dynamically so as to maximize 
the expected score for each question. 

The basic idea takes advantage of Qanda’s candidate 
evaluation mechanism—since the maxent model 
produces probability estimates for the correctness of 
each individual answer, we can use these to reason 
about the expected value of the score an entire answer 
set might receive. Our algorithm for generating list and 
definition answers is thus to greedily add each of the 
ranked candidates to an answer set in turn, stopping 
when the expected score appears to decrease. 

The expected score of an answer set of course depends 
on the scoring metric to be used.  Both list and 
definition questions are scored with variants of F-
measure, the weighted harmonic mean of precision 
and recall: 

! 

F =
" 2 +1( )PR
" 2P + R

 

P is precision, the fraction of our generated answers 
that are correct, while R is recall, the fraction of all 
possible correct answers that we generated. 

! 

"  is a 
weight used to place more emphasis on either 
precision or recall.  For list questions, NIST weighted 
P and R evenly, and so the evaluation simply reduces 
to the following: 

! 

F
list

=
2c

n + r
 

For definition questions, 

! 

"  is set to three, and 
precision is approximated with a length penalty: 

! 

Fdef =
10 ˆ P R

9 ˆ P + R

ˆ P = min(1.0, 100c / l)

R = c /r

 

In both Fdef and Flist, c is the number of correct 
answers—either the number of distinct list answers 
judged correct, or the number of correct nuggets found 
in a definition answer.  r is the total number of correct 
answers possible, according to the NIST assessors.  
For list questions, n is the total number of answers 
generated, and for definition questions, l is the total 
length of an answer.2 

Based on these equations, Qanda can estimate the 
expected score of an answer set.  We estimate c as the 
sum of the maxent scores for the answers in the set.  It 
remains to estimate r, the number of correct answers 
possible.  This is, of course, difficult,3 and so we 
simply use a fixed value, in this case the means from 
last year’s data. 

rlist = 12 
rdef = 4 

For list questions, we add each factoid-style answer to 
the answer set in turn, incrementing n by 1 with each, 
as long as Flist increases.  Similarly, for definition 
questions, we add each pseudo-answers matrix 
sentence to the answer set, incrementing the length l 
appropriately, as long as Fdef continues to increase. 

7. Submitted runs and results 
This year we submitted three variant runs (see Figure 
3).  Run A is from a basic system, with the features 
described above.  Run C differs only in that the 
candidate scoring model has been “boosted” as 
described in Section 4—the roughly ten percent 
improvement is similar to what we saw with our 
development data.  It is unclear why the evaluation list 
questions appear to be unaffected by the boosting.  
Run D differs mainly in that our development set has 
been added to the training set, namely, last year’s 
questions.  This did not include, however, the 

                                                        
2Qanda ignores the distinction between inessential and 
essential correct nuggets. 
3David Lewis (personal communication) has suggested 
using the sum of scores over all answer candidates for a 
particular question as an estimate for r, but we have found 
this to worsen our results. 



definition questions, perhaps accounting for run D’s 
loss in this area. 

8. Conclusion 
As well as the usual description of this year’s system 
architecture, we have discussed Qanda’s question 
analysis and our use of maximum entropy models for 
answer selection, in particular a method for boosting 
such models to better support TREC’s winner-take-all 
evaluation.  We believe that this ad hoc method has 
some connections to minimum-risk annealing (Smith 
& Eisner, 2006) and would like to explore this in the 
future.  We described the query relaxation technique 
that Qanda uses in an attempt to improve the document 
retrieval phase of the system—we would like to use a 
more principled exploration of the query space for 
retrieval.  Finally, we presented our approach to 
generating definition and list answer sets by 
maximizing the expected score each set will receive.  
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