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Abstract

This paper discusses several lessons learned from the SpamTREC 2006 challenge. We

discuss issues related to decoding, preprocessing, and tokenization of email messages. Using

the Winnow algorithm with orthogonal sparse bigram features, we construct an efficient,

highly scalable incremental classifier, trained to maximize a discriminative optimization

criterion. The algorithm easily scales to millions of training messages and millions of

features. We address the composition of training corpora and discuss experiments that

guide the construction of our SpamTREC entry. We describe our submission for the filtering

tasks with periodical re-training and active learning strategies, and report on the evaluation

on the publicly available corpora.

1 Introduction

Spam filtering remains a technological challenge; the commercial incentive for spam senders
results in an arms race between filtering methods and spam obfuscation techniques. Naive
Bayes [5, 7] and rule based learners [2] have been very popular; discriminative approaches
like Support Vector Machines, Logistic Regression as well as Maximum Entropy have also been
studied for spam filtering. Most discriminatively trained methods are non-incremental and often
scale poorly to large training samples. Regular updates of the classifier which are necessary due
to topic drift and the adversarial nature of spam, are consequently costly or even infeasible.

P-norm algorithms such as Winnow [9, 10] are incremental and can be implemented to scale
to large amounts of training data. These methods have proven to be very robust [4] and highly
scalable in practice. A number of alternative approaches such as network-based spam detection,
collaborative filtering strategies, or email batch detection using graph theoretical methods have
been studied but cannot be applied to the SpamTREC challenge because of the nature of the
data that is provided.

In this paper, we address challenging issues for the construction of practical filtering sys-
tems. We discuss how a large-scale filter can be trained using a discriminative optimization
criterion. We address preprocessing, decoding, and tokenization issues, and questions regarding
the assembly of training corpora. We report on experiments that guide the construction of our
filtering system. We discuss the evaluation of this system on the public SpamTREC corpora
and conclude with a number of lessons learned.

The rest of this paper is structured as follows. We address challenges for practical spam
filters in Section 2 and report on our experiments. Section 3 describes the system that we used
in the competition; Section 4 concludes.
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2 Challenges in Email Classification

In this section, we address design issues for practical spam filtering systems and report on
experiments that guide the construction of a system that performs well for the SpamTREC
challenge.

2.1 Scalable Discriminative Training

Text classification requires highly scalable methods as it involves large amounts of high dimen-
sional data. Winnow, a perceptron-like algorithm with multiplicative updates [9], can handle a
huge amount of data very efficiently, outperforming other well-established filters such as Naive
Bayes at the same time [10]. However, practical difficulties and implementation issues still
remain.

Beyond preprocessing and tokenization, an efficient implementation has to compute the
features – hash values of the parsed tokens or N-grams – and spam scores on the fly. Computation
of the score involves huge hash structures with several million buckets. Our implementation is
an efficient version of Winnow which scales to large corpora and feature vectors. A related
version of our filtering system is used by a commercial webspace and email service provider and
filters about 35 million email messages per day.

2.2 Preprocessing and Tokenization

Encoding schemes provide spam senders with a rich set of tools to obfuscate tokens. For example,
the word “café” would be HTML-encoded as “caf&eacute;”, URL-encoded as “caf=E9”, or
base64-encoded as “Y2Fm6Q==”. In order to avoid an inflation of the attribute space, it is
highly desirable to map all these representations to the same token. This can be achieved by
transforming tokens into a canonical encoding scheme, such as UTF-8.

Our spam filtering system includes modules for a variety of different preprocessing measures.
They incorporate procedures to analyze the structure, and conformity to several standards, of
each email and its parts. They include procedures that transform the email contents into the
canonical UTF-8 encoding scheme. These transformation steps result in a representation of the
message text that is independent of the particular encapsulation method used.

The conformity checks and the attachment dissection provide additional features that can
be used for classification. For example, spammers often forge the date of the email, such that
the message appears user as the most recent item the user’s inbox for a long time.

In detail, prior to tokenization each email is subjected to the following actions:

• parsing structure of MIME-parts;

• decoding MIME-part contents (e.g., base64 or “quoted/printable” decoding);

• transforming the character set into the UTF-8 encoding scheme;

• decoding the subject-string according to RFC2947 and RFC2231;

• transforming HTML- or URL-encoded characters into UTF-8;

• plausibility checks of the “received” time according to RFC2822;

• extraction of language information based on used character sets;

• extraction of information about attachment types;
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• checking of standard conformity of MIME structure and attached files.

We conduct a set of experiments in order to study the benefit of these pre-processing and
feature extraction steps. First, we study the effectiveness of pre-processing and its contribu-
tion to the classification results. Therefore we train two classifiers using identical training sets
containing 100,000 randomly selected emails from our English corpus (Table 1). For the first
classifier, the itemized preprocessing steps are carried out, whereas they are disabled for the
second classifier. We use an evaluation set of again 100,000 emails from the same corpus. We
observe an AUC performance of 0.999477 when preprocessing is employed and 0.999380 when it
is disabled. That is, the preprocessing step decreases the risk (1 − AUC) by 16% from 0.00062
to 0.000523. In this experiment, clearly the accuracy is high for both classifiers. Neverthe-
less, a 16% reduction of the risk is a significant finding that emphasizes the importance of the
preprocessing step.

Preprocessing has a noticeable effect on the subsequent feature generation step. Without
preprocessing, trained on 100,000 English documents, the filter has 6 million features with
nonzero weights. When preprocessing is employed, only 3 million features are used.

The stream of preprocessed characters has to be tokenized in a way that facilitates the extrac-
tion of discriminative attributes. Whereas tokenization can be based on whitespace characters
and punctuation symbols for European languages, such whitespace characters are absent for
many Asian languages such as Chinese, Japanese and Korean languages. For Asian languages,
we treat each character as an individual token, resulting in syllabic tokens. The resulting loss of
inter-syllabic context is compensated for by the use of N-gram features in the following feature
extraction step.

Table 1: Data used for experiments
Source English docs Chinese docs

CCERT Data Set (www.ccert.edu.cn/spam) 10125 64015
Disclosed Enron emails [6] 20556 0
Guenter spam trap (untroubled.org/spam) 142887 0
IMC mailing lists (www.imc.org) 20154 15075
Various newsletters 9861 0
SpamArchive.org 65541 0
SpamAssassin collection 8270 0
TREC 2005 corpus 91146 0
Various moderated Usenet groups 39655 32021
Wouters archive (www.xtdnet.nl/paul/spam) 0 24278
Own collection 91805 64611

2.3 Text Feature Extraction

From the stream of preprocessed tokens, features have to be extracted that provide the classifica-
tion method with sufficiently discriminative information to allow for a highly accurate decision.
In many cases, contextual information that spans across multiple tokens hints at the semantics
of sentences. This is particularly true for Asian languages for which words span across multiple
tokens. In addition, it has become popular among spam senders to blur the bag-of-word-view
of the messages by appending random sets of good words, individually drawn for each message.

Orthogonal sparse bigrams provide a mechanism for obtaining discriminative features [10].
Empirically, they have shown to be an effective and scalable mechanism to represent information
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Table 2: Dimensionality of the filter, based on training corpus
Corpus number of documents features

English & Chinese 200,000 3,737,556
English 400,000 6,264,128
English 200,000 4,477,527
English 50,000 2,246,516
English 100,000 3,207,268
English, no preprocessing 100,000 6,064,259
Chinese 100,000 656,150
TREC fully trained classifier 530,000 8,626,863
TREC weakly trained classifier 530,000 4,092,195

contained in N adjacent tokens. A window of fixed width, in our case N = 5, slides over the
sequence of tokens. For each window position, the set of all two-elementary combinations of the
N tokens is generated. Each combination is constrained to always include the left-most token
and zero or one other token; the remaining tokens in the window are replaced by a special skip

symbol “◦”. The resulting N orthogonal sparse bigram combinations uniquely represent the
content of the current window position.

For example, the window containing the sequence “All medications at low price”, is repre-
sented by the orthogonal sparse bigram features 〈All〉, 〈All medications〉, 〈All ◦ at〉, 〈All ◦◦ low〉,
and 〈All ◦ ◦ ◦ price〉. The combination of these five features represents the entire content of the
window. Information is lost, however, when the orthogonal sparse bigram features of the entire
message are pooled into a single feature vector. Thus, orthogonal sparse bigrams implement
an appealing and empirically proven trade-off between scalability and representational richness.
Table 2 displays the number of features that the filter employs, based on the training corpus.
Between 600,000 and 8.6 million orthogonal sparse bigram features have nonzero weights.

2.4 Large Training Corpora

The high dimensionality of the feature representation and the required high accuracy of the
resulting classifier call for an extremely large training corpus. In this section, we want to clarify
to which extent the winnow algorithm can benefit from additional training data and which
amount of data is tractable. Therefore we trained four classifiers on between 50,000 and 400,000
emails of the English corpus (Table 1). Another 100,000 emails were kept for testing. Table 3
and Figure 1 show the results of the experiments. They confirm the linear runtime behavior
of Winnow as well as a significant improvement of accuracy when using larger training sets. It
can be seen that the number of training examples has a much greater impact on classification
performance than preprocessing.

Table 3: Impact of training set size on classifier performance and training time
Training set size AUC Max Spam precision at Training

f-measure 0.1% non-spam error time in s

50,000 emails 0.981703 0.925522 73.26 % 2,269
100,000 emails 0.987880 0.927897 82.17 % 4,658
200,000 emails 0.991310 0.932474 78.53 % 8,233
400,000 emails 0.994391 0.937107 84.25 % 19,284

4



Accuracy Execution time

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 50000  150000  250000  350000

A
U

C

Training set size

AUC

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 50000  150000  250000  350000

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

Training set size

Execution time

Figure 1: Plot of classifier quality (left) and training time (right) depending on the size of the
training set

2.5 Differences in Distributions Underlying Training and Test Data

Most machine learning methods assume that training data be governed by the exact same
distribution that the classifier is exposed to at application time. In the spam filtering application,
control over the data generation process is less perfect. A number of public sources of spam
messages and a much more limited number of sources of non-spam emails are available. On the
other hand, American, Chinese, professional, recreational and many other groups of email users
receive emails from a range of diverging distributions. Questions arise about the effect of such
divergence between training and testing data on the classifier, and about the optimal way of
dealing with this divergence. For a discussion of these generally under-studied questions, see
[1].

It is relatively easy to identify the language used in a message. We study the impact that
training a classifier on an English, Chinese, or mixed corpus will have on its performance on
English, Chinese, or mixed testing data. Our goal is to obtain guidance on the optimal training
corpus for a classifier that may be exposed to additional, unforeseen languages. We would also
like to know whether it is advisable to use a joint classifier, or separate classifiers that perform
well for only one language.

We perform several experiments using a Chinese and an English email corpus containing
200,000 emails each. After splitting the data in 50% training and 50% test data we train three
classifiers using both data sets and a mixed corpus. The experimental results, given in Table
4, indicate that a classifier trained on emails of both languages performs very similar to the
monolingually trained classifiers on each individual language.

Recently, the compensation of sample selection bias is being studied (e.g., [1]). In order to
explicitly account for a divergence between training and testing data, the (unlabeled) testing
data has to be available at training time. Unfortunately, this is not the case in the SpamTREC
challenge.

From our experiments, we conclude that in the absence of unlabeled testing data, a classifier
trained on a heterogeneously mixed corpus is generally preferable, because it does not lose
accuracy on the individual languages while gaining additional robustness. We therefore compile
a training corpus from maximally heterogeneous sources. It includes mailing lists, newsletters,
several distinct spam traps, personal emails, moderated usenet groups, public email corpora
such as the Enron dataset, and many more. For details, see Section 3.1.
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Table 4: Performance of classifier depending on language
Chinese test data English test data

Training data AUC Max f-measure AUC Max f-measure

Chinese 0.999880 0.999314 0.852904 0.831978
English 0.986990 0.957835 0.999477 0.996775
Both 0.999884 0.998543 0.999464 0.996166

3 TREC 2006 Spam Track Tasks

The TREC 2006 Spam Track consists of two different tasks. In the online filtering task, the spam
filter classifies each message from the test corpus, and subsequently receives the true label of
each message for training. There are two sub-tasks, the first with immediate feedback, and the
second with delayed feedback; for the second sub-task, training is carried out after a randomly
sized chunk of messages has been processed. In the active filtering task, the spam filter gets to
choose a number of emails for which the label is then disclosed.

All tasks are carried out on four distinct evaluation corpora. There are two private corpora,
tagged B2 and X2, one public corpus with English emails and one public corpus with Chinese
messages. A summary of the corpus sizes is shown in Table 5.

Table 5: Evaluation corpora
Dataset #Non-spams #Spams

B2 (private) 9274 2751
X2 (private) 9039 40135
English (public) 12910 24912
Chinese (public) 21766 42854

The rules of the Spam Track allow each contestant to submit four different filter configu-
rations for each of the two main tasks. In the following, we describe the configurations of our
entries, and the results on the different evaluation corpora.

3.1 Pre-Training

To take advantage of the capability of the winnow algorithm to handle large sets of known
features and large training corpora, we assemble a corpus of emails to pre-train our filter prior
to submission. Table 6 gives an overview of the sources of our training emails and their numbers
of spam and non-spam emails.

Extensive pre-training imposes a risk if the chosen training data only poorly reflects the
distribution at application time. Therefore we submit one weakly trained filter configuration for
each task. For this, only a single iteration of the Winnow algorithm over the data is exercised,
instead of re-iteration until convergence.

3.2 Online Classification with Periodical Re-Training

The winnow algorithm performs best when the model is trained by iterating several times over
all training emails. However, all TREC tasks are designed to expose the filter to each training
email only once. To overcome this discrepancy, we experiment with several strategies to cache
all seen training emails and re-train the classifier on them periodically. Our experiments on
different corpora show a notable influence of the re-training strategy on overall accuracy, but
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Table 6: Training corpus composition
Source #Non-spams #Spams

CCERT Data Set (www.ccert.edu.cn/spam) 9272 30390
Disclosed Enron mails [6] 14000 0
Guenter spam trap (untroubled.org/spam) 187 49983
IMC mailing lists (www.imc.org) 14000 0
Various newsletters 18000 0
Nazario corpus (monkey.org/∼jose/phishing) 0 1000
SpamArchive.org 671 29938
SpamAssassin collection 1994 6
TREC 2005 corpus 30000 0
Various moderated Usenet groups 80000 0
Wouters archive (www.xtdnet.nl/paul/spam) 23 5000
Own collection 35682 209854

no single strategy can outperform the others consistently. Therefore, we choose to vary the
strategies over the four allowed submissions. We include two submissions where a re-training
is executed after each misclassified email, one configuration with re-training after every 500th
email, and one submission with no re-training at all.

The results on the four evaluation datasets in Table 7 show that the periodical re-training
is indeed successful in improving the performance in the online setting. On all but one dataset
the configuration without re-training performs worst.

The private B2 corpus seems to be the most difficult dataset with the most mistakes made.
Presumably this is due to the corpus differing strongly from our training data. This assumption
is also consistent with the second configuration performing best on this dataset. The weak
pre-training allows it to faster adapt to the different evaluation set.

Table 7: AUC results for the online filter tasks, on the two private corpora (B2, X2), the public
English (E), and the public Chinese (C) corpus

Number 1 2 3 4
Pre-Training Full Weak Full Full
Re-train after Mistakes Mistakes Never Every 500th
B2 immediate 0.994705 0.995724 0.993775 0.994223
B2 delayed 0.994221 0.994694 0.991896 0.993216
X2 immediate 0.998820 0.998550 0.997898 0.998615
X2 delayed 0.998641 0.998173 0.997706 0.998237
E immediate 0.998690 0.998306 0.998436 0.998671
E delayed 0.998582 0.997048 0.998042 0.997994
C immediate 0.999762 0.999727 0.999646 0.999767

C delayed 0.999681 0.999631 0.999505 0.999670

Figures 2 (for immediate feedback) and 3 (for delayed feedback) show learning curves for all
participants of SpamTREC, aggregated over all (public and private) evaluation corpora. The
data has kindly been provided Godon Cormak. For all participants, the best of all submitted
filters was used. When few or no training examples have been provided, the AUC mesaure
of our filter exceeds the AUC of other submitted systems in both cases. For larger training
samples, the filter falls back behind other submissions. We believe that this behavior is at
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Figure 2: Results of the evaluation aggregated over all corpora for immediate feedback.
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Figure 3: Results of the evaluation aggregated over all corpora for delayed feedback.

least partly explained by the large-scale pre-training that we used for all of our submissions—
even the weakly trained filter was pre-trained with many emails. Pre-training leads to a better
performance from the start but slows down the adaptation to the evaluation corpora. A careful
comparative evaluation of all submitted filter is provided by [3].

3.3 Active Learning Task

In the Active Learning task, the spam filtering system has to decide which emails from a given
set are to be labeled for training. There are various possible methods to select the next email.
The idea behind most of them is to select those training emails which are expected to provide the
most knowledge about the class labels of the test emails. One standard approach is uncertainty
sampling [8], where one selects the training item which lies closest to the current decision
boundary. This captures the intuition that an update of the decision boundary with this item
has the largest effect on the shape of the decision regions, and therefore the greatest knowledge
gain.

Besides uncertainty sampling, we evaluate several ad-hoc strategies, such as selecting the
email with the highest number of unknown features, or selecting the email with the best feature
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coverage over all available training mails. But our experiments show that none of them can
outperform uncertainty sampling. Therefore, three of our four submissions for Task 2 use this
standard method. The remaining, weakly trained configuration uses random sampling, because
uncertainty sampling is unlikely to yield good results if the distance to the decision boundary
depends only on very few update steps.

In contrast to our preliminary experiments, uncertainty sampling does not consistently out-
perform random sampling on the evaluation data of the competition. In combination with the
periodical re-training strategy, the spam classifier tends to degrade to a highly imbalanced state,
yielding almost useless spam scores. Apparently the selection of some disadvantageous training
emails shifted the score of a large portion of spam emails after re-training far below the decision
threshold.
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Figure 4: Results on the active learning task

This problem does not occur with our two submitted configurations without pre-training,
one with uncertainty sampling and the other with random sampling. In Figure 4 one can again
see that the B2 corpus has different characteristics than the others. As one would expect on an
evaluation corpus which is highly different from the training corpus, the uncertainty sampling
strategy performs worse than random sampling due to strong initial fluctuations of the decision
boundary.

4 Conclusion

The winnow classifier in conjunction with orthogonal sparse bigram features proves to be highly
scalable and capable of efficiently handling, and benefiting from, hundreds of thousands of
training messages and millions of features. Our experiments emphasize the importance of large,
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diverse training sets; accuracy and robustness still improve when the training data is already
very large. The accuracy of the classifier is further improved, and the resulting dimensionality
of the classifier reduced, by character set decoding and normalization.

For the incremental SpamTREC tasks, using the cache of all previously seen messages in
each model update step outperforms an update based on just the newly seen mail. In both
tasks, the weakly trained classifier managed to adapt faster to the apparently most difficult
evaluation corpus, as we expected. We make an interesting observation with respect to the
benefit of uncertainty sampling versus random sampling. Uncertainty sampling is beneficial for
the public, but detrimental for the private corpora that apparently deviate from the training
data more strongly. Negative results for uncertainty sampling are rare in the literature, possibly
because usually the case of identically distributed training and testing data is studied.

Recently, image spam is challenging spam filters. Even state-of-the-art filters are nearly
helpless as the number of image spam messages explodes. Visual data requires different feature
extraction procedures; the efficiency of the processing steps is crucial.

It would be interesting for future SpamTREC competitions to include evaluation corpora
with emails from many different users with complete, unmodified headers. This would permit
non-text based approaches to spam filtering, such as classification based on social networks
or information about the sending servers. To explore the benefits of collective classification
approaches, an additional task could expose the spam filters to more than one email at once
instead of one at a time, and thus allow the incorporation of relationships between each other.
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