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1. Introduction 

In this year’s QA Track, we participant in the main task and do not take part in the ciQA 
task. The main task is essentially the same as the single task from 2004, in that the test set 

consists of a set of question series where each series asks for information regarding a 
particular target. In order to better answer the questions in the series, we try to improve our 
anaphora resolution within question series. 

For factoid questions, we use the system that submits the RUN-A in TREC 2005[Wu et al. 
2005]. Therefore we won’t describe the factoid system in this paper. 

For list questions, we get a lot of improvements, the most important of which are answer 

type classification, document searching, answer ranking and answer filtering.  
For definition question, we still focus on utilizing the existing definitions in the Web 

knowledge bases. And also applied the method of relative terms extraction to extract reliable 
information associated with target for getting web definition directly by question target is 
becoming a bottleneck. 

In the following, Section 2 will describe question series anaphora resolution. Section 

3,and 4 will describe our algorithms for list and definition questions separately. Section 5 will 
present our results in TREC 2006. 

2. Question Series Anaphora Resolution 

Because the test set consists of a set of question series where each series asks for 
information regarding a particular target, it is necessary to do anaphora resolution. 

There are three kinds of anaphora in the question series: coreference, bridging and zero 
anaphora. In our system we only resolve the coreference. And considering target as 
additional information when the question sentence has the other two kinds of anaphora.. 

In order to resolve coreference, we need to find anaphor and antecedent at first. There 
are three types of anaphors: the pronouns, the dBNP (Definite Base Noun Phrases) and the 
abbreviations. But not all the dBNP are anaphors, there are some exceptions: the answer of 
the question (e.g. the name in “What were the names of the victims?”), some special words 
(e.g. earth, sky, etc.). The candidate antecedent may be in the target, in previous questions, 
or in the answer of the previous questions. 

We find that the syntax relation between anaphor and antecedent is not very close. It is 
difficult to resolve coreference according to the syntax restriction. Therefore we resolve 
coreference according to the coherent of type, gender and number between the anaphor and 
the candidate antecedent. We divide the type of anaphors and antecedents into six categories: 



person, organization, location, event, time and other.  
During the resolution, we first classify the anaphor. Then the candidate antecedent has 

the same type is selected as the anaphor. The priority of selecting candidate antecedent is 
according to their position: 

target >answer of previous question (nearer question>further question)> the noun phrase 
in previous question (nearer question>further question). 

If the type, gender and number are all matched, the resolution is finished. If the 
antecedent of some anaphora has appeared in the current questions, the resolution will not 
be done, or the result of resolution will be not in the habit. If there are not any coherent 
candidate antecedents, the resolution will not be done. 

3. List Question 

Our list question answering system adopts the general factoid question answering 
framework and composes of three modules, answer type classification module, passage 
retrieval module, and answer generation module.  

The answer type classification module considers the character of list questions. The 
passage retrieval module focuses on the recall of the passage returned, which is more 
important in list questions. And the answer generation module gives a strategy of how to 
extract and select multiple answers from different documents. 

3.1 Answer Type Classification 

We first create a two -level ontology to define the answer type. It has six coarse-grained 
answer types and ninety-seven fine-grained answer types. And each fine-grained answer 

type is mapped to a coarse-grained answer type. Then, we classify the question into one of 
the fine-grained answer type based on WordNet. We start from the informer of the question, 
then use following algorithm to find its answer type: 

Find the informer IM of the question in WordNet 
For each sense S of the IM 
Do  

WßS 
While(W is not NIL) 
Do 

If (W is in any of the fine answer types) 
  Output W 
  Exit; 

End if 
Else 

 Wßthe Hypernym of W 
End else 

   End while 

  End for 



Output NIL  
 After we get the output of the fine-grained answer type, we can immediately get the 
coarse-grained answer type from a type mapping. 

Testing on the 93 questions of TREC 2005, the above simple algorithm can get a 
satisfying precision 87% on the fine-grained answer type classification. 

The informer of a question is a word or a phrase that helps to classify the type of the 

answer. For example, given a question “What book did he wrote?” the informer of the question 
is the word “book”. It is very useful for the classification of the answer type of a given question. 
[Krishnan et al, 2005] also find out the informer is a key element for classifying a question’s 
answer type.  

Compared with [Krishnan et al, 2005] , we use a more semantic and easier way which also 

has a high precision in the list questions to extract the informers in a question. Due to the 
specialty of the List questions which usually start with some definite words such as what, list, 
name, etc., we use a relation parser Minipar to extract the informers which are related to 

these specific words of list questions. Minipar can extract such a triple: (K R S), where K 
represents the informers we need, S is the specific word in the question, and R is the relation 
between the informers and the specific words. As of the example above, Minipar will output 

such a triple: (book det what), thus the word “book” is extracted as the informers of the 
question, what is used here as the specific words and their relation is det. We use some 
heuristic rules to choose the specific words from the question and the relations from the 

minipar. And the precision of extracting informers of the 93 TREC 2005 list questions is 95% 
(5 are wrong).  

3.2 Passage Retrieval 

3.2.1 Document Retrieval 

We discover that the document searching strategy in list question answering is quite 
different from that of the factoid. And some effective document searching methods of factoid 

question answering are not suitable for list question answering. There are two main elements 
in the searching phase of the list question answering, the first factor is the relevance of the 

target and the question, and the second one is the number of the documents returned. For 
factoid question, the answer is unique, so we only want the most relevant documents, and the 
number of documents returned is usually less than 10. While for list question, the number of 

answers is unknown, so any document that is related to the target or the question may contain 
the answer, and we should not risk missing any of them in the document searching phase. 
The number of documents returned is usually more than 50. In a word, list question answering 

emphasis more on recall than precision. We use a framework, Lucene, as our document 
search engine. And the result shows our document searching strategy raised the performance 
by 8% in TREC 2005 list question set and 15% in TREC 2004 list question set (Top 10 
document recall). Our list document searching strategy is presented in the following respects: 
Indexing, query generation and document scoring. 

Since we only use the TREC Aquaint as the searching corpus, and no other external 



documents, the index process is necessary and important for our system. The main difference 
between the index for list question and the index for factoid question is that the index is based 
on the morphed Aquaint corpus. Every word except the proper nouns is morphed into its 
original form before it is indexed. This index strategy can avoid missing some important 
documents in some degree. 

To match the indexed word, the query words are also morphed. The query is composed 

of two parts: the target part and the question part. The weight rate of the target and question is 
6:4. Also there are two fields in each part: the text field and the headline field. The weight rate 
of the two fields is 50:1 

Lucene is a VSM model based search engine framework, thus the document ranking is 
based on the basic tf idf score of each dimension of the vector.  

3.2.2  Sentence Scoring 

Although we get the ranked documents, they may be too long for processing. We wish to 
find the most important and relevant part of the document. This helps to locate the answer in a 
more precise range (a sentence). Also the sentence score can compensate for the 

shortcoming of the tf idf ranking strategy. The very heuristic rules of the sentence scoring 
process are that the more words of the sentence appear in the target or the question, the 
higher its score, and that the more important the words of the sentence, the higher its score. 

According to these two rules, each sentence of each document is given a sentence score 
ranged from 0 to 1. 

3.2.3 Document Re-ranking 

 In order to get a better ranking result of the documents, we combine the Lucene 

document ranking score and the best sentence score in a document. Let S be the score of the 
sentence factor and D represent the score of the document. Our task is to find a function φ (S, 
D) which is the combination of the two scores. 
 First, we should determine the value of S and D. The score D is simply the similarity 
returned by the search engine Lucene. While to get the S score, we have several options. 
Suppose there are N sentences in the document, and each sentence score is Si (0<i<N). 

Then ( )S sθ=
v

is a vector to value function. We’ve tried the following θ functions: Max, Min, 

Average and Median. Our experiment results show that the Max function is better than any 

other functions. So let ( )S Max s=
v

 in our system. 

 Second, we will try to find the functionφ. Only the linear combinations of the two 
parameters of φ are considered. So φ is a linear function and has the formφ =α*S+β*D. α, β 
are the parameters to be determined. Our experiments show that when α =0.7, β =0.3, the 

ranking is most improved.  



3.3 Answer Generation 

3.3.1 Answer Extracting 

 Although the document is re-ranked, we still need a more precise and small range to 
extract answer, for the extracting process is time consuming. We extract answer from 

sentences ranked from 1 to N in the previous stage. Since the context information of each 
sentence may also contain the right answer, we also extract answers from the next K 
sentences and previous K sentences of the top ranked sentences. Here, the N is supposed to 

be 200 and K is 2.  
 The extraction is based on the Named Entities and some chunked phrases in the 
sentence. According to the answer type that has been classified, we extract relevant named 
entities. The answer types used here is the coarse one because our named entities classifier 
can only classify the coarse types.    
 During the extraction, a distance score which is associated with each answer is also 

calculated. This score is used to indicate how far it is from the answer to the important words 
of target and question. Assuming that there are d words between the candidate answer c and 

the important word k, the distance score is calculated by
1 1

( , ) 1
0.5

f c k
d w
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where w is the weight of the key word k in the question or target. ,α β is the parameter of 

the function and 1α β+ = . 
1
0.5d
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the importance measure of k. In our experiment we set 0.5, 0.5α β= = . The final maximum 

distance score max ( )S c is the maximum ( , )f c k  of all k, and the final average distance 

score ( )avgS c  is the average ( , )f c k of all k. Each extracted candidate answer has a 

maximum distance score and an average distance score together stored with it. 

3.3.2 Answer Ranking 

 Since for each candidate answer, we’ve already calculated several scores, the ranking 
procedure is to sort the candidates according to a combination of the scores. We use the 
simplest linear combination of three scores; they are the Lucene similarity score, sentence 

score, and the maximum distance score. So, the final score of a candidate answer 

is tanLucene sentence dis ceS S S Sα β γ= ⋅ + ⋅ + ⋅ . Our experiment is to determine all the 

parameters , ,α β γ . The result indicate that when 0.3, 0.5, 0.2α β γ= = = , the final F score is 

best. 



3.3.3 Answer Filtering 

 Although the answers are ranked, there may be some redundancy and noise in the 
ranked answer list. The answer filtering module is to reduce the redundancy and eliminate as 

much noise as possible. 
 To reduce redundancy, we keep the longer answer and delete the shorter one. 
 Eliminating noise is a difficult job, for we don’t know what kind of answer is noise. Thus, 

we did it only in few cases where the answer type has a finite answer collection (such as 
country, city, river and etc.). In such cases, a potential answer list for each of these answer 
types is used to validate the extracted answer, and the answers that do not appear in the list 
are eliminated. Thus, we partially eliminate the noise, resulting in a high precision. 

4. Definition Question 

In order to automatically identify definition sentences from a large collection of documents, 

we first extract related knowledge as much as possible by question target, and then apply the 
knowledge to pick out the question answers. The knowledge includes online definitions and 
relative terms. In our system,  the extraction of relative terms differs from traditional methods 

based on calculating the co-occurred frequency of the target words by using the scores of 
candidate answer sentences for integrative selection. 

4.1 System Overview 

We design a general architecture for definition QA. The system consists of four modules: 

document processing, web knowledge acquisition, relative terms extraction and definition 
generation. The flow chart for definition question of FDUQA is in figure 1. 

First, the document processing module generates the candidate sentence set according 

to the target term. This module has three steps: document retrieval, candidate sentence 
extraction and initial score calculation.  

Second, the Web knowledge acquisition module acquires the definitions of the target 
term from the Web knowledge base (KB). We search the definitions about the target from a 
number of online knowledge bases. These knowledge bases are the WordNet glosses and 
other online dictionaries such as the biography dictionary at www.encyclopedia.com. The 

definitions from them often supply knowledge that can be exploited directly and they are quite 
helpful to answering definition questions. We choose several authoritative KBs that cover 
different kinds of concept to achieve our goal. If we can find the definitions of question target 
from these sources, we use them to score the candidate sentences. (More detail please refer 
to [Wu et al, 2004])  

Third, we automatically extract relative terms based on the candidate sentences, and 
then we score the candidate sentences using these relative terms. The extraction of relative 
terms will be described in Section 4.3.  

At last, the definition generation module ranks the candidate sentences, based on target 
term, relative terms and web knowledge, and determines the question answers. We will 



describe the detail of the definition generation module in Section 4.4. 

 

4.2 Document Processing 

The document processing module has three steps: document retrieval, candidate 
sentence extraction and initial score calculation. In this section we will describe the initial 

score calculation.  
Suppose the candidate answer sentences set is S= { s1 , s2 , … , sn }, the initial score of 

sentence si can be calculated by its target score and document score. The calculation of initial 

score is as follow,  

)(csc*)1()(arg)( iii soredosetscoretsinitscore θθ −+∗=  

Where we use initscore(si) for sentence si‘s initial score, targetscore(si) for sentence si‘s 
target score, docscore(si) for sentence si‘s document score and θ for weight .  

Target score is the corresponding score based on the words, phrases and entities, which 
occurred in the question target. It can be calculated as follow: 
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where nw, np, ne respectively represent the number of words, phrases and Name Entities 
contained in Si, and c(w), c(p), c(e) denotes the number of the words, phrases and Name 

Entities that in both Si and the target. In our system, α, β and γ are allotted to 0.3, 0.3 and 0.4 
respectively. 

The document score docscore(si) of the sentence si can be calculated as follow: 
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Where docn(si) is the number of returned document including the sentence si, and  
Maxdocw(si) is the max score of these documents. The document score increases apparently 
with Maxdocw(si) and docn(si).  

Both target score and document score are normalized and set their weights empirically 
as 0.8 and 0.2 respectively, because the target information is more important than document 
information.  

4.3 Relative Terms Extraction 

Because getting web definition directly by question target is becoming a bottleneck, the 
system has to try other approaches to extract reliable information associated with target. Key 
phrase extraction and expansion are widely used in the text summarization. We utilized the 

technique for question target expansion. This process, called relative terms extraction, tried to 
obtain the words, phrases and entities that related with the target closely. 

Given that T={ t1 , t2 , … , tn } are the all words, phrases and entities in candidate sentence 

set S={ s1 , s2 , … , sn }, calculate the relativity r(ti) between ti and target as follow formula: 
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Rank T by r(ti), and select appropriate number of ti as relative terms. In our system, we 

extracted top 15 relative words, phrases and entities which achieved the better performance. 
Given that candidate sentence si has nw words, np phrases and ne entities. And these 

words, phrases and entities contained rw relative words, rp relative phrases and re relative 

related entities. The similarity between target and relative words, phrases and entities are 
denoted by r(wi), r(pi) and r(ei) respectively. Then the relative terms score rwscore(si) of 
candidate sentence si can be calculated as below:  
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Because the entities are more important than general words and phrases, we assigned 
higher weight to entities. In our system, the weights, α, β and γ are set as 0.3, 0.3 and 0.4 
respectively by empirical.  

4.4 Answer Ranking and Generation 

Generally, candidate answers are excessive. Therefore these sentences could not be 

selected as answers directly. Synthetic method is used to rank and select these candidate 
sentences as question answers. In our system, every candidate answers are evaluated by the 
linear combination of three scores: initial score, web score [Zhang et al, 2005] and relative 
terms score. 



In candidate answer ranking, we set these score weights dynamically with our evaluation 
system. After ranking these candidate sentences, redundancy removal will be done. And we 
choose the top 20 candidate sentences as the final question answers. 

5. Results 

We submitted three runs for the main task of TREC15 QA Track: FDUQA15A, 

FDUQA15B and FDUQA15C. In the three runs, the algorithms used to answer factoid 
questions are same; the only difference is we use different question series anaphora 
resolution results.  The difference between the three runs of list questions described as 

follow: In FDUQA15C, we tried new method of answer type classification and new answer 
ranking metrics. In FDUQA15B, besides the new methods for answer type classification and 
answer ranking, we optimize the document searching strategies for list question answering. In 

FDUQA15A, we put all these new methods in FDUQA15C and FDUQA15B together and filter 
the redundant answers in the final answer list. Also we tune the parameters in each step to 
get its best performance in the test set of TREC 2005 93 list questions. As to definition 

questions, difference between the three runs is FDUQA15C use the last year’s system, 
FDUQA15B is this year’s system and FDUQA15A combines the results of FDUQA15C and 
FDUQA15B. 
 

 FDUQA15A FDUQA15B FDUQA15C 

Final Score 0.192 0.185 0.163 

#globally right 80 81 80 

#locally correct 3 4 3 
#unsupported 27 26 27 

#inexact 16 16 16 
#wrong 277 276 277 

Factoid 

Question 

Accuracy 0.199 0.201 0.199 

List Question Average F score 0.165 0.145 0.144 
Definition 
Question 

Average F score 0.223 0.222 0.159 

Table 1 Performance of FDUQA Runs in TREC 2005 

 
From Table 3, we can see that we get a lot of improvements of our list question 

answering system. That owes to the improvement of answer type classification, document 
searching, answer ranking and answer filtering. The algorithm we use to answer definition 
questions is quite promising.  

There’re still a lot of things to be improved in our list question answering system. The 
linear combination is too simple; some more sophistic methods can be used to improve the 
performance. The number of the answers for each question should have differed; however, 

we only simply pick out the equally top 15 answers for each question. The final score should 



be more precise to divide the answers into two parts, one for the final answer, and the other 
for elimination. Some answer clustering methods also should be considered to improve the 
ranking performance. 
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