
FDUQA on TREC2006 QA Track
Yaqian Zhou, Xiaofeng Yuan, Junkuo Cao, Xuanjing Huang, Lide Wu

Fudan University, Shanghai, China, 200433
{zhouyaqian,xfyuan, jkcao, xjhuang, ldwu }@fudan.edu.cn

1. Introduction

In this year’s QA Track, we participant in the main task and do not take part in the ciQA
task. The main task is essentially the same as the single task from 2004, in that the test set

consists of a set of question series where each series asks for information regarding a
particular target. In order to better answer the questions in the series, we try to improve our
anaphora resolution within question series.

For factoid questions, we use the system that submits the RUN-A in TREC 2005[Wu et al.
2005]. Therefore we won’t describe the factoid system in this paper.

For list questions, we get a lot of improvements, the most important of which are answer

type classification, document searching, answer ranking and answer filtering.
For definition question, we still focus on utilizing the existing definitions in the Web

knowledge bases. And also applied the method of relative terms extraction to extract reliable
information associated with target for getting web definition directly by question target is
becoming a bottleneck.

In the following, Section 2 will describe question series anaphora resolution. Section

3,and 4 will describe our algorithms for list and definition questions separately. Section 5 will
present our results in TREC 2006.

2. Question Series Anaphora Resolution

Because the test set consists of a set of question series where each series asks for
information regarding a particular target, it is necessary to do anaphora resolution.

There are three kinds of anaphora in the question series: coreference, bridging and zero
anaphora. In our system we only resolve the coreference. And considering target as
additional information when the question sentence has the other two kinds of anaphora..

In order to resolve coreference, we need to find anaphor and antecedent at first. There
are three types of anaphors: the pronouns, the dBNP (Definite Base Noun Phrases) and the
abbreviations. But not all the dBNP are anaphors, there are some exceptions: the answer of
the question (e.g. the name in “What were the names of the victims?”), some special words
(e.g. earth, sky, etc.). The candidate antecedent may be in the target, in previous questions,
or in the answer of the previous questions.

We find that the syntax relation between anaphor and antecedent is not very close. It is
difficult to resolve coreference according to the syntax restriction. Therefore we resolve
coreference according to the coherent of type, gender and number between the anaphor and
the candidate antecedent. We divide the type of anaphors and antecedents into six categories:

person, organization, location, event, time and other.
During the resolution, we first classify the anaphor. Then the candidate antecedent has

the same type is selected as the anaphor. The priority of selecting candidate antecedent is
according to their position:

target >answer of previous question (nearer question>further question)> the noun phrase
in previous question (nearer question>further question).

If the type, gender and number are all matched, the resolution is finished. If the
antecedent of some anaphora has appeared in the current questions, the resolution will not
be done, or the result of resolution will be not in the habit. If there are not any coherent
candidate antecedents, the resolution will not be done.

3. List Question

Our list question answering system adopts the general factoid question answering
framework and composes of three modules, answer type classification module, passage
retrieval module, and answer generation module.

The answer type classification module considers the character of list questions. The
passage retrieval module focuses on the recall of the passage returned, which is more
important in list questions. And the answer generation module gives a strategy of how to
extract and select multiple answers from different documents.

3.1 Answer Type Classification

We first create a two -level ontology to define the answer type. It has six coarse-grained
answer types and ninety-seven fine-grained answer types. And each fine-grained answer

type is mapped to a coarse-grained answer type. Then, we classify the question into one of
the fine-grained answer type based on WordNet. We start from the informer of the question,
then use following algorithm to find its answer type:

Find the informer IM of the question in WordNet
For each sense S of the IM
Do

WßS
While(W is not NIL)
Do

If (W is in any of the fine answer types)
 Output W
 Exit;

End if
Else

 Wßthe Hypernym of W
End else

 End while

 End for

Output NIL
 After we get the output of the fine-grained answer type, we can immediately get the
coarse-grained answer type from a type mapping.

Testing on the 93 questions of TREC 2005, the above simple algorithm can get a
satisfying precision 87% on the fine-grained answer type classification.

The informer of a question is a word or a phrase that helps to classify the type of the

answer. For example, given a question “What book did he wrote?” the informer of the question
is the word “book”. It is very useful for the classification of the answer type of a given question.
[Krishnan et al, 2005] also find out the informer is a key element for classifying a question’s
answer type.

Compared with [Krishnan et al, 2005] , we use a more semantic and easier way which also

has a high precision in the list questions to extract the informers in a question. Due to the
specialty of the List questions which usually start with some definite words such as what, list,
name, etc., we use a relation parser Minipar to extract the informers which are related to

these specific words of list questions. Minipar can extract such a triple: (K R S), where K
represents the informers we need, S is the specific word in the question, and R is the relation
between the informers and the specific words. As of the example above, Minipar will output

such a triple: (book det what), thus the word “book” is extracted as the informers of the
question, what is used here as the specific words and their relation is det. We use some
heuristic rules to choose the specific words from the question and the relations from the

minipar. And the precision of extracting informers of the 93 TREC 2005 list questions is 95%
(5 are wrong).

3.2 Passage Retrieval

3.2.1 Document Retrieval

We discover that the document searching strategy in list question answering is quite
different from that of the factoid. And some effective document searching methods of factoid

question answering are not suitable for list question answering. There are two main elements
in the searching phase of the list question answering, the first factor is the relevance of the

target and the question, and the second one is the number of the documents returned. For
factoid question, the answer is unique, so we only want the most relevant documents, and the
number of documents returned is usually less than 10. While for list question, the number of

answers is unknown, so any document that is related to the target or the question may contain
the answer, and we should not risk missing any of them in the document searching phase.
The number of documents returned is usually more than 50. In a word, list question answering

emphasis more on recall than precision. We use a framework, Lucene, as our document
search engine. And the result shows our document searching strategy raised the performance
by 8% in TREC 2005 list question set and 15% in TREC 2004 list question set (Top 10
document recall). Our list document searching strategy is presented in the following respects:
Indexing, query generation and document scoring.

Since we only use the TREC Aquaint as the searching corpus, and no other external

documents, the index process is necessary and important for our system. The main difference
between the index for list question and the index for factoid question is that the index is based
on the morphed Aquaint corpus. Every word except the proper nouns is morphed into its
original form before it is indexed. This index strategy can avoid missing some important
documents in some degree.

To match the indexed word, the query words are also morphed. The query is composed

of two parts: the target part and the question part. The weight rate of the target and question is
6:4. Also there are two fields in each part: the text field and the headline field. The weight rate
of the two fields is 50:1

Lucene is a VSM model based search engine framework, thus the document ranking is
based on the basic tf idf score of each dimension of the vector.

3.2.2 Sentence Scoring

Although we get the ranked documents, they may be too long for processing. We wish to
find the most important and relevant part of the document. This helps to locate the answer in a
more precise range (a sentence). Also the sentence score can compensate for the

shortcoming of the tf idf ranking strategy. The very heuristic rules of the sentence scoring
process are that the more words of the sentence appear in the target or the question, the
higher its score, and that the more important the words of the sentence, the higher its score.

According to these two rules, each sentence of each document is given a sentence score
ranged from 0 to 1.

3.2.3 Document Re-ranking

 In order to get a better ranking result of the documents, we combine the Lucene

document ranking score and the best sentence score in a document. Let S be the score of the
sentence factor and D represent the score of the document. Our task is to find a function φ (S,
D) which is the combination of the two scores.
 First, we should determine the value of S and D. The score D is simply the similarity
returned by the search engine Lucene. While to get the S score, we have several options.
Suppose there are N sentences in the document, and each sentence score is Si (0<i<N).

Then ()S sθ=
v

is a vector to value function. We’ve tried the following θ functions: Max, Min,

Average and Median. Our experiment results show that the Max function is better than any

other functions. So let ()S Max s=
v

 in our system.

 Second, we will try to find the functionφ. Only the linear combinations of the two
parameters of φ are considered. So φ is a linear function and has the formφ =α*S+β*D. α, β
are the parameters to be determined. Our experiments show that when α =0.7, β =0.3, the

ranking is most improved.

3.3 Answer Generation

3.3.1 Answer Extracting

 Although the document is re-ranked, we still need a more precise and small range to
extract answer, for the extracting process is time consuming. We extract answer from

sentences ranked from 1 to N in the previous stage. Since the context information of each
sentence may also contain the right answer, we also extract answers from the next K
sentences and previous K sentences of the top ranked sentences. Here, the N is supposed to

be 200 and K is 2.
 The extraction is based on the Named Entities and some chunked phrases in the
sentence. According to the answer type that has been classified, we extract relevant named
entities. The answer types used here is the coarse one because our named entities classifier
can only classify the coarse types.
 During the extraction, a distance score which is associated with each answer is also

calculated. This score is used to indicate how far it is from the answer to the important words
of target and question. Assuming that there are d words between the candidate answer c and

the important word k, the distance score is calculated by
1 1

(,) 1
0.5

f c k
d w

α β   = ⋅ + ⋅ −   +   
,

where w is the weight of the key word k in the question or target. ,α β is the parameter of

the function and 1α β+ = .
1
0.5d

α  ⋅ + 
is the distance measure of c and k,

1
1

w
β  ⋅ − 

 
is

the importance measure of k. In our experiment we set 0.5, 0.5α β= = . The final maximum

distance score max ()S c is the maximum (,)f c k of all k, and the final average distance

score ()avgS c is the average (,)f c k of all k. Each extracted candidate answer has a

maximum distance score and an average distance score together stored with it.

3.3.2 Answer Ranking

 Since for each candidate answer, we’ve already calculated several scores, the ranking
procedure is to sort the candidates according to a combination of the scores. We use the
simplest linear combination of three scores; they are the Lucene similarity score, sentence

score, and the maximum distance score. So, the final score of a candidate answer

is tanLucene sentence dis ceS S S Sα β γ= ⋅ + ⋅ + ⋅ . Our experiment is to determine all the

parameters , ,α β γ . The result indicate that when 0.3, 0.5, 0.2α β γ= = = , the final F score is

best.

3.3.3 Answer Filtering

 Although the answers are ranked, there may be some redundancy and noise in the
ranked answer list. The answer filtering module is to reduce the redundancy and eliminate as

much noise as possible.
 To reduce redundancy, we keep the longer answer and delete the shorter one.
 Eliminating noise is a difficult job, for we don’t know what kind of answer is noise. Thus,

we did it only in few cases where the answer type has a finite answer collection (such as
country, city, river and etc.). In such cases, a potential answer list for each of these answer
types is used to validate the extracted answer, and the answers that do not appear in the list
are eliminated. Thus, we partially eliminate the noise, resulting in a high precision.

4. Definition Question

In order to automatically identify definition sentences from a large collection of documents,

we first extract related knowledge as much as possible by question target, and then apply the
knowledge to pick out the question answers. The knowledge includes online definitions and
relative terms. In our system, the extraction of relative terms differs from traditional methods

based on calculating the co-occurred frequency of the target words by using the scores of
candidate answer sentences for integrative selection.

4.1 System Overview

We design a general architecture for definition QA. The system consists of four modules:

document processing, web knowledge acquisition, relative terms extraction and definition
generation. The flow chart for definition question of FDUQA is in figure 1.

First, the document processing module generates the candidate sentence set according

to the target term. This module has three steps: document retrieval, candidate sentence
extraction and initial score calculation.

Second, the Web knowledge acquisition module acquires the definitions of the target
term from the Web knowledge base (KB). We search the definitions about the target from a
number of online knowledge bases. These knowledge bases are the WordNet glosses and
other online dictionaries such as the biography dictionary at www.encyclopedia.com. The

definitions from them often supply knowledge that can be exploited directly and they are quite
helpful to answering definition questions. We choose several authoritative KBs that cover
different kinds of concept to achieve our goal. If we can find the definitions of question target
from these sources, we use them to score the candidate sentences. (More detail please refer
to [Wu et al, 2004])

Third, we automatically extract relative terms based on the candidate sentences, and
then we score the candidate sentences using these relative terms. The extraction of relative
terms will be described in Section 4.3.

At last, the definition generation module ranks the candidate sentences, based on target
term, relative terms and web knowledge, and determines the question answers. We will

describe the detail of the definition generation module in Section 4.4.

4.2 Document Processing

The document processing module has three steps: document retrieval, candidate
sentence extraction and initial score calculation. In this section we will describe the initial

score calculation.
Suppose the candidate answer sentences set is S= { s1 , s2 , … , sn }, the initial score of

sentence si can be calculated by its target score and document score. The calculation of initial

score is as follow,

)(csc*)1()(arg)(iii soredosetscoretsinitscore θθ −+∗=

Where we use initscore(si) for sentence si‘s initial score, targetscore(si) for sentence si‘s
target score, docscore(si) for sentence si‘s document score and θ for weight .

Target score is the corresponding score based on the words, phrases and entities, which
occurred in the question target. It can be calculated as follow:

epw
i n

ec
n

pc
n
wcsetscoret)()()()(arg γβα ++=

where nw, np, ne respectively represent the number of words, phrases and Name Entities
contained in Si, and c(w), c(p), c(e) denotes the number of the words, phrases and Name

Entities that in both Si and the target. In our system, α, β and γ are allotted to 0.3, 0.3 and 0.4
respectively.

The document score docscore(si) of the sentence si can be calculated as follow:

Relative Score

Web Score

Related Terms
Extraction

Web Knowledge
Acquisition

Question
Target

Answer

Answer Ranking
and Generation

Figure 1: System Architecture

WEB

AQUAINT

Document
Processing

Candidate Sentences
Initial Score

)
1)(

)(2
2()()(csc 2 +

−∗=
i

i
ii sdocn

sdocn
sMaxdocwsoredo

Where docn(si) is the number of returned document including the sentence si, and
Maxdocw(si) is the max score of these documents. The document score increases apparently
with Maxdocw(si) and docn(si).

Both target score and document score are normalized and set their weights empirically
as 0.8 and 0.2 respectively, because the target information is more important than document
information.

4.3 Relative Terms Extraction

Because getting web definition directly by question target is becoming a bottleneck, the
system has to try other approaches to extract reliable information associated with target. Key
phrase extraction and expansion are widely used in the text summarization. We utilized the

technique for question target expansion. This process, called relative terms extraction, tried to
obtain the words, phrases and entities that related with the target closely.

Given that T={ t1 , t2 , … , tn } are the all words, phrases and entities in candidate sentence

set S={ s1 , s2 , … , sn }, calculate the relativity r(ti) between ti and target as follow formula:

∑
=

∗=
n

j
jii sinitscorestEtr

1
j)(),()(, Where







∉

∈
=

j

j
j 0

1
),(

st

st
stE

i

i
i

Rank T by r(ti), and select appropriate number of ti as relative terms. In our system, we

extracted top 15 relative words, phrases and entities which achieved the better performance.
Given that candidate sentence si has nw words, np phrases and ne entities. And these

words, phrases and entities contained rw relative words, rp relative phrases and re relative

related entities. The similarity between target and relative words, phrases and entities are
denoted by r(wi), r(pi) and r(ei) respectively. Then the relative terms score rwscore(si) of
candidate sentence si can be calculated as below:

)/)((*)/)((*)/)((*)(
111

e

r

k
k

r

j
pjw

r

i
ii nernprnwrsrwscore

epw

∑∑∑
===

++= γβα

Because the entities are more important than general words and phrases, we assigned
higher weight to entities. In our system, the weights, α, β and γ are set as 0.3, 0.3 and 0.4
respectively by empirical.

4.4 Answer Ranking and Generation

Generally, candidate answers are excessive. Therefore these sentences could not be

selected as answers directly. Synthetic method is used to rank and select these candidate
sentences as question answers. In our system, every candidate answers are evaluated by the
linear combination of three scores: initial score, web score [Zhang et al, 2005] and relative
terms score.

In candidate answer ranking, we set these score weights dynamically with our evaluation
system. After ranking these candidate sentences, redundancy removal will be done. And we
choose the top 20 candidate sentences as the final question answers.

5. Results

We submitted three runs for the main task of TREC15 QA Track: FDUQA15A,

FDUQA15B and FDUQA15C. In the three runs, the algorithms used to answer factoid
questions are same; the only difference is we use different question series anaphora
resolution results. The difference between the three runs of list questions described as

follow: In FDUQA15C, we tried new method of answer type classification and new answer
ranking metrics. In FDUQA15B, besides the new methods for answer type classification and
answer ranking, we optimize the document searching strategies for list question answering. In

FDUQA15A, we put all these new methods in FDUQA15C and FDUQA15B together and filter
the redundant answers in the final answer list. Also we tune the parameters in each step to
get its best performance in the test set of TREC 2005 93 list questions. As to definition

questions, difference between the three runs is FDUQA15C use the last year’s system,
FDUQA15B is this year’s system and FDUQA15A combines the results of FDUQA15C and
FDUQA15B.

 FDUQA15A FDUQA15B FDUQA15C

Final Score 0.192 0.185 0.163

#globally right 80 81 80

#locally correct 3 4 3
#unsupported 27 26 27

#inexact 16 16 16
#wrong 277 276 277

Factoid

Question

Accuracy 0.199 0.201 0.199

List Question Average F score 0.165 0.145 0.144
Definition
Question

Average F score 0.223 0.222 0.159

Table 1 Performance of FDUQA Runs in TREC 2005

From Table 3, we can see that we get a lot of improvements of our list question

answering system. That owes to the improvement of answer type classification, document
searching, answer ranking and answer filtering. The algorithm we use to answer definition
questions is quite promising.

There’re still a lot of things to be improved in our list question answering system. The
linear combination is too simple; some more sophistic methods can be used to improve the
performance. The number of the answers for each question should have differed; however,

we only simply pick out the equally top 15 answers for each question. The final score should

be more precise to divide the answers into two parts, one for the final answer, and the other
for elimination. Some answer clustering methods also should be considered to improve the
ranking performance.

Acknowledgements

This research was supported by the National Natural Science Foundation of China under

Grant No. 60435020 and No. 60503070. We are very thankful to Zhongchao Fei, Feng Ji, Bo
li, Yindong Chen and Chao Shen for their contributions in our work.

Reference

Lide Wu, Xuanjing Huang, Lan You, Zhushuo Zhang, Xin Li, Yaqian Zhou. FDUQA on

TREC2004 QA Track. In: Proceedings of the Thirteenth Text REtreival Conference,

Gaithersburg, Maryland, 2004

Lide Wu, Xuanjing Huang, Yaqian Zhou, Yongping Du, Lan You.2003. FDUQA on TREC2003

QA Task. Proceedings of the TREC-12, Gaithersburg, Maryland, 2003

Lide Wu, Xuanjing Huang, Junyu Niu, Yingju Xia, Zhe Feng, Yaqian Zhou.2002. FDU at

TREC2002: Filtering, QA, Web and Video Tasks. Proceedings of the TREC-11,

Gaithersburg, Maryland, 2002.

Lide Wu, Xuanjing Huang, Yaqian Zhou, Zhushuo Zhang, Feng Lin.2005. FDUQA on TREC

2005 QA Track. Proceedings of the TREC-14, Gaithersburg, Maryland, 2005.

Zhushuo Zhang, Yaqian Zhou, Xuanjing Huang, Lide Wu. Answering Definition Questions

using web knowledge base. In: Proceedings of the 2nd International Joint Conference

on Natural Language Processing, 2005

Hang Cui, Min-Yen Kan, Tat-Seng Chua, Jing Xiao. A comparative Study o Sentence

Retrieval for Definitional Question Answering. In Proceedings of the 27th Annual

International ACM SIGIR Conference, 2004

Vijay Krishnan, Sujatha Das, Soumen Chakrabarti. Enhanced Answer Type Inference from

Questions using Sequential Models. In Proceedings of the Empirical Methods in Natural

Language Processing 2005

