
Using Profile Matching and Text Categorization for Answer
Extraction in TREC Genomics

Haiqing Zheng hayden.zheng@gamil.com

Department of Computer Science and Engineering, Fudan Univerisity
220 Handan Road, Shanghai 200433, China

Chen Lin cheyenne.lin@gmail.com

Lishen Huang lishenhuang@gmail.com

Jun Xu xj.manu@gmail.com

Jiaqian Zheng jqzheng@fudan.edu.cn

Qi Sun 052021188@fudan.edu.cn

Junyu Niu jyniu@fudan.edu.cn

Abstract

TREC’06 genomics track was focusing on
text mining and passage retrieval. WIM
lab participated in this year’s TREC ge-
nomics track. Our system consists of five
parts: preprocessing, sentence generation,
document retrieval, answer extraction and
answer fusion. And we developed two differ-
ent method: a automated profile matching-
based method and a text categorization-
based method to do the text mining, we will
compare the performances between those two
methods.

1. Introduction

TREC genomics track is always focusing on the text
processing in biomedical fields. And this year’s task
was mainly trying to find a specific passage for one
query, here, the query was propose in a natural lan-
guage way and the passages were composed by two
or more short sentences which close to each other.
And there is also some measurements about group-
ing the submitted passages into several different as-
pects.(Hersh, 2006)

Appearing in Proceedings of the 2006 Text Retrieval Con-
ference (TREC 2006)

We are going to give an introduction to our genomic
text mining system. Firstly, we will give a brief
overview of our system, and then will give a more de-
tailed description of each part. And the result also be
given in the next part. At last, we do some conclusion
to this year’s track.

2. System Overview

Our system is mainly contains 5 parts: preprocessing,
sentence generation, document retrieval, text mining
and answer fusion. The architecture of our system is
below:

2.1. Preprocessing & Sentence Generation

The corpus of TREC 2006 is the electronic edition pa-
per from Highwire press. And the submitted result
should give the displacement of the start offset and
the length of the relevant passages.

We firstly remove all the structure labels of the html
and the information have nothing to do with the main
part. After this, we convert the html format files into
pure text.

Then we parsed all the text files, for the submitted re-
sults should give out the offsets of the paragraphs. We
simply treated dot as the separates of the sentences.
And for convenience, we also saved the start displace-

Using Profile Matching and Text Categorization for Answer Extraction in TREC Genomics

Figure 1. The architecture of the system

ment information of the sentences and its length.

2.2. Query Expansion

The topics of this year’s TREC genomics is the same
as the last year- generic topic templates (GTTs) which
are derived from an analysis of the topics from the
2004 track and other known biologist information
needs.(Hersh, 2006)

There’re for types of this year’s topics:

(1) Information describing the role(s) of one or more
genes involved in a given disease.

(2)Information describing the role of a gene in a spe-
cific biological process.

(3)Information describing interactions (e.g., promote,
suppress, inhibit, etc.) between two or more genes in
the function of an organ or in a disease.

(4)Information describing one or more mutations of a
given gene and its biological impact.

There’re a lot entity names such as gene names, pro-
tein names, and disease names in the topics. And there
are a lot of synonyms and abbreviations of the entity
names, so for the initial topics query expansion is badly
needed in this task.

Firstly, we picked out all the entity names, and get
the synonyms from the PubMed databases. All the
synonyms and its different abbreviations are expanded
as the new input query for the retrieval system.

Secondly, for some words which seem not belong to
the biology field such as ’effect’, ’migrate’ etc. We
used word-net to find out the synonyms and also put
them into the initial query(Voorhees, 1994).

Based on the two query expansion steps we mentioned
before, the new query was formed which contains more
information which could help the performance of the
document retrieval.

2.3. Document Retrieval

For document retrieval we took the widely used Lemur
toolkits as our search engine. The Indri query lan-
guage, based on the Inquery query language, can han-
dle both simple keyword queries and also complex
queries. Such a query language sets Indri apart from
many other available search engines. It allows com-
plex phrase matching, synonyms, weighted expres-
sions, Boolean filtering, numeric (and dated) fields,
and the extensive use of document structure (fields),
among others.
Taken topic 166: What is the role of Transforming
growth factor-beta1 (TGF-beta1) in cerebral amyloid
angiopathy (CAA) ?

we transformed it into the normalized query form such
as : #weight(2.0#1(Transforming growth factor beta)
#1(TGF beta) Tgfb Tgfb-1 2.0 #1(Cerebral Amyloid
Angiopathy)).

3. Answer Extraction

3.1. Profile-based mining

One of the most popular method using in answer ex-
traction is the profile-based methods. In TREC QA
a lot profiles had been developed either manually or
automatically to find out the most fit sentences to the
profiles for different types of questions.

In this year’s genomics track, we developed a profile
based method to extract the most proper passages
for each topic in automatic way. Firstly, we did a
sentence-level retrieval to find out the most relevant
sentences, and then we used a parsing tools to parse
all the topics and also the submitted rank first N sen-
tences by last step. And we checked the similarity
between the sentences and the topic.

Using Profile Matching and Text Categorization for Answer Extraction in TREC Genomics

3.1.1. Sentence retrieval

After the document retrieval step, we got the ranked
document list. But this year’s task is trying to ex-
tract the most relevant paragraphs, which means that
we should measure the relevance of each single sen-
tences(Stefanie Tellex, 2003).

In this step we calculate the score of each sentence
which indicates if the sentence is tightly related to the
given query. The original algorithm was proposed in
(A Ittycheriah, 2000). The score is composed of four
parts,
(1) match score: The sum of the scores for each
matched word (which means the word appeared in the
query expansions) in the sentence using formula:
Smatch=

∑‖matchwords‖
i=1 tfi × (log10

N
dfi

)

(2) mismatch score: The sum of the scores for each
mismatched word (which means the word misses in
the query expansions)) in the sentence using formula
as:
Smatch=

∑‖mismatchwords‖
i=1 tfi × (log10

N
dfi

)

(3) score for cluster Compute the number of words that
appeared adjacently in both query and sentences.

(4) score for dispersion Compute the number of words
that appear between the match words.

Each score has a weight ((1) and (3) are positive and
(2) and (4) are negative) and we add them together to
get a final score for each sentence.
Scoresen = αSmatch + βSclu − γSmis − δSdipersion

There are several aspects to be considered
(a) When a word repeat several times in one single
sentence, it’s score for match should decline each time
when the score is added.
(b)When the disease name and gene name in the query
expansions appear at the same time in the candidate
sentence, the sentence should have some bonus score,
for it is more likely to indicate the relationships be-
tween the gene and the disease.

3.1.2. Parsing

Mini-par(Lin,) was used as parsing tool in the experi-
ment which was is a broad-coverage efficient parser for
the English language. We here use it to parse all the
topics and the return sentences by sentence retrieval.

3.1.3. Profile matching

In order to find out the most relevant passage to the
query, we should find the most proper sentences which
have the similar grammatical structure to the query
and also using the term relationship information to

extract the exact passage(Hang Cui, 2005). So we de-
cided using a parsing tool to parse all the queries and
find out their grammatical structure. Based on the
query’s structure, we can construct the profile of each
topic.

By using external tools ’minipar’, sentence in English
can be converted into tree-like structure. Compared
with POS tagging, these works go steps forward to
the sentence parsing by approaching semantic level.

On applying tree-like structure to QA system, we have
to find a suitable critical function to evaluate the sim-
ilarity between two English sentences. We construct
this function base on gene-node-relation algorithm, de-
scribed as follow:

A1: parsing the question sentence into POS tree, split-
ting gene1, gene2 into word token.
A2: finding the enclosure of gene1 & gene2 in the POS
tree
A3: if enclosure(gene1) and enclosure(gene2) are con-
nective, return false;
A4: finding the co-parent node of two enclosures,
named as COP
A5:ensuring the dependency relationship;
A6: getting the shortest connectivity path between
two enclosures (crossing COP) named SCP
A7: for each answer-candidate, calculate the COP,
TYPE, SCP, comparing them with that of questions,
then matching the similarity mark.

PS1: matching TYPEs if equals, mark++; else mark–;
PS2: matching COP if equals, mark++; else mark–;
PS3: matching CSP finding the topest prep in the
CSP, and then comparing the prep between them, if
equals or both-NULL, mark++; else mark–;

3.2. Text Categorization-based Extraction

For the returned 1000 documents for each topic, we
implemented a text categorization based method for
each one.

Firstly, we parsed all the the returned relevant docu-
ments, and all those documents are divided into tens
of thousands of sentences. We then using the Lemur
toolkits to index them. Then we input the queries used
the retrieval step, and get to first N sentences as the
relevant ones.

We supposed that the information relevant to the topic
is no only just in the keywords which presented in the
query but also in the context of each related passages.
And a lot text mining methods didn’t consider the
context of the relevant answers.

Then, we use a SVM-light(support vector machine)

Using Profile Matching and Text Categorization for Answer Extraction in TREC Genomics

classifier(Joachims, 1999) to find the relevant answers
to the topic. The methods we took will be in described
details next:

1) we picked up the ranked first np as the positive
samples for a certain topic ti to the classifier; and the
last ranked nn as the negative samples. and the left
N − np − nn are the unlabeled data which should be
classified. And the idea could be very easily under-
stand, for the most relevant sentences to one topic, it
can be regarded as the same class of the topic;
2)the weighting method we used here is a tf*idf based
method: in the jth sentence, term ti has the weight as:
weight(ti,j)=stf(ti,j)*

sidf(ti)
idf(ti)

/(LENGTH(j))
in which stf(ti,j) is the number term ti exits in the jth
sentence,
and sidf(ti) is the number sentences in which term ti

exits in the N sentences,
LENGTH(j) stands for the length of sentence j.

After classifying the unlabeled data, every sentence got
a score, and for each topic tpi, we defined a threshold
THi, for those sentences whose score is greater that
this threshold THi, it will be regarded as a relevant
sentence and would be returned as a relevant answer.

3.3. Answer Fusion

The two text mining systems were returning the sep-
arated sentences each with a score. So, we must com-
bine the sentences in the neighborhood into a single
passage.

Here, for the thousands of sentences returned by min-
ing step, we check each sentence’s SenId which was
assigned in the preprocessing step. If sentence i and
sentence j are closed to each other, and i has the score
Si, and j has the score Sj , the fused passage which con-
sisted of i and j will have the score as S(pasg)= si+sj

2 .
In generally, if a passage pasgi was consist of sentence
from i· · ·j, and which has the score si, · · ·, sj , the score

of the passage is s(pasgi)=
∑j

i
(st)

|pasgi| ,
where |pasgi| stands for the number of sentences in
this passage.

4. Results and Analysis

We have submitted three runs of this years TREC ge-
nomics: trecgen1, trecgen2 and trecgen3. The first two
runs are based on the text categorization method, and
the last one is based on the profile matching method.
The differences between the first two runs are the num-
bers of the positive samples and the negative samples
are not the same, trecgen2 was with fewer samples
used for categorization.

Figure 2. The document-level MAP of TREC 2006 Ge-
nomics

Figure 3. The passage-level MAP of TREC 2006 Genomics

This year’s TREC’s evaluation is based on three differ-
ent levels of retrieval performance: passage retrieval,
aspect retrieval, and document retrieval. And each
of these provides insight into the overall performance
for a user trying to answer the given topic questions.
Based on this year’s protocol, each level would be
measured by some variant of mean average precision
(MAP).

The passage-level retrieval performance was using
character-based MAP, while the aspect-level re-
trieval performance was using aspect-based MAP and
the document-level retrieval performance was using
document-based MAP.

Fig2, fig3 and fig4 are our submitted runs distribution,
from which we can see that the first two runs(trecgen1
and trecgen2) are no performs as good as the trec-

Using Profile Matching and Text Categorization for Answer Extraction in TREC Genomics

Figure 4. The aspect-level MAP of TREC 2006 Genomics

gen3, which seems that the swallow natural language
processing will helps us improve the results. But we
can also see that there’s no relevant topic for few topic,
and we checked out that has lot to do with the initial
document level retrieval. For the first step of docu-
ment level retrieval can not return relevant results, so
the next steps can not get a good result.

5. Further Work

Text mining, especially in the bio-medical field is now
really a new and hot research area(Aaron M. Cohen,
2005). For the fast increasing bio-medical articles, it
will help researchers to find out the useful information
which maybe hide deeply in the literatures, and this
will save a lot of energy and time for them avoiding
to do the same experiments that have had been done.
And this year’s track has provide a good example for
this kind of work. Finding out the most relevant pas-
sages to the query and giving the aspect of this pas-
sage, which seems very closely to the requirement of
real world.

In out experiment, we have done a lot on finding the
most relevant passages, but few work has done about
the aspects. In the next experiments, we are plan-
ning to use some text clustering methods to cluster
the relevant passages in to some smaller sets while the
passages in the same set maybe providing the same
aspect answer to a certain topic.

References

A Ittycheriah, S. R. (2000). Ibm’s statistical ques-
tion answering system-trec 11. Proceedings of the
Eleventh Text Retrieval Conference. Gaitherburg,

MD.

Aaron M. Cohen, W. R. H. (2005). A survey of current
work in biomedical text mining. Briefs in Bioinfo-
matics, 6, 57–71.

Hang Cui, Min-Yen Kan, T.-S. C. (2005). Generic soft
pattern model for definitional question answering.
Proceedings of the 28th Annual International ACM-
SIGIR Conference (pp. 384–391). Salvador, Brazil:
Morgan Kaufmann.

Hersh, B. (2006). Trec 2006 genomics
track protocol (Technical Report).
http://ir.ohsu.edu/genomics/2006protocol.html.

Joachims, T. (1999). Making large-scale svm learn-
ing practical. advances in kernel methods - support
vector learning. Cambridge, USA: MIT-Press.

Lin, D. Dependency-based evaluation of minipar. In
Workshop on the Evaluation of Parsing Systems.
Granada, Spain.

Stefanie Tellex, Boris Katz, J. L. (2003). Quantita-
tive evaluation of passage retrieval algorithms for
question answering. Proceedings of the 26th Annual
International ACM-SIGIR Conference (pp. 41–47).
Toronto, Canada: Morgan Kaufmann.

Voorhees, E. M. (1994). Query expansion using lexical-
semantic relations. Proceedings of the 17th Annual
International ACM-SIGIR Conference on Research
and Development in Information Retrieval (pp. 61
– 69). Dublin, Ireland: ACM/Springer.

