
MonetDB/X100 at the 2006 TREC TeraByte Track

Sándor Héman, Marcin Zukowski, Arjen de Vries, Peter Boncz

CWI
Kruislaan 413

Amsterdam, The Netherlands
{Firstname.Lastname}@cwi.nl

1. INTRODUCTION
Requirements of database management (DB) and informa-
tion retrieval (IR) systems overlap more and more. Database
systems are being applied to scenarios where features such as
text search and similarity scoring on multiple attributes be-
come crucial. Many information retrieval systems are being
extended beyond plain text, to rank semi-structured docu-
ments marked up in XML, or maintain ontologies or the-
sauri. In both areas, these new features are usually imple-
mented using specialized solutions limited in their features
and performance.

Full integration of DB and IR has been considered highly
desirable, see e.g. [5, 1] for some recent advocates. Yet,
none of the attempts into this direction has been very suc-
cessful. The explanation can be sought in what has been
termed the ‘structure chasm’ [8]: database research builds
upon the idea that all data should satisfy a pre-defined
schema, and the natural language text documents of concern
to information retrieval do not match this database appli-
cation scenario. Still, the structure chasm does not explain
why IR systems do not use database technology to alleviate
their data management tasks during index construction and
document ranking. In practice however, custom-built infor-
mation retrieval engines have always outperformed generic
database technology, especially when also taking into ac-
count the trade-off between run-time performance and re-
sources needed.

To investigate the feasibility of running terabyte scale in-
formation retrieval tasks on top of a relational engine, our
team from CWI participated in the 2006 TREC Terabyte
Track, using its experimental MonetDB/X100 database sys-
tem [3, 11]. This system, is designed for high performance
on data-intensive workloads, whereof TREC-TB is an excel-
lent example. Furthermore, we believe that standard rela-
tional algebra provides enough flexibility to express most IR
retrieval models, and show that, by employing a hardware-
conscious DBMS architecture, it is possible to achieve per-

Text Retrieval Conference (TREC) November 2006, Gaithersburg, Mary-
land, USA.

formance, both in terms of efficiency and effectiveness, that
is competitive with leading, customized IR systems.

This notebook is organized as follows. Section 2 describes
the distinguishing features of MonetDB/X100 that allow it
to run large-scale data processing tasks efficiently. Section 3
then explains the process of indexing the TREC-TB collec-
tion, and the resulting relational schema. This is followed by
a description of the TREC-TB runs we submitted, together
with the hardware platforms used to run them. Effective-
ness and efficiency results for these runs are then presented
in Sections 6 and Section 7, respectively, before concluding
in Section 8.

2. MonetDB/X100 OVERVIEW
MonetDB/X100 is an experimental relational database ker-
nel, optimized for high performance on data- and query-
intensive workloads. It relies on the concept of vectorized in-
cache query execution to achieve good CPU utilization [3],
and a column-oriented storage manager that provides trans-
parent light-weight data compression [11] to improve I/O-
bandwidth utilization. An overview of the system architec-
ture is presented in Figure 1.

Figure 1 shows an operator tree, being evaluated within
MonetDB/X100 in a pipelined fashion, using the traditional
open(), next(), close() interface. However, each next() call
within MonetDB/X100 does not return a single tuple, as is
the case in most traditional DBMSs, but a vector of tuples.
A vector is a unary array, containing a small slice of a single
column. Vectorization of the iterator pipeline allows Mon-
etDB/X100 primitives, which are responsible for computing
core functionality such as addition and multiplication, to be
implemented as simple loops over vectors. This results in
function call overheads being amortized over a full vector of
values instead of single tuple, and allows the compiler to pro-
duce data-parallel code that can be executed efficiently on
modern CPUs. Furthermore, the size of a vector is chosen in
such a way, that all vectors needed by a query fit the CPU
cache. This way, we avoid materialization of tuples that
are being passed from one operator to the next, minimizing
main memory access overheads. Such a vectorized in-cache
architecture allows MonetDB/X100 query evaluation to be
orders of magnitude faster than existing technology on data-
and query-intensive workloads.

The processing power of MonetDB/X100 can make the sys-
tem extremely I/O-hungry on certain queries. If the database

Figure 1: MonetDB/X100 architecture

does not fit main memory, the only solution to this prob-
lem is to increase the available I/O bandwidth. This can
be done by adding more hardware, or by optimizing the
DBMSs buffer manager for bandwidth utilization. With re-
spect to the latter, MonetDB/X100 employs a buffer man-
ager, called ColumnBM, that relies on a column-oriented
storage scheme to avoid reading unnecessary columns from
disk. Further, the granularity of disk accesses is in blocks of
several megabytes, to optimize for fast sequential I/O.

In MonetDB/X100 we take the point of I/O-bandwidth uti-
lization even further, by integrating ultra light-weight RAM-
CPU cache compression into our system. The idea is, that
by reading compressed blocks from disk, we can increase
the perceived I/O bandwidth, as the actual data size of a
block after decompression is assumed to be larger than the
compressed block read from disk. For such an approach
to be applicable even in the context of RAID storage sys-
tems that are capable of delivering data at several hundreds
of megabytes per second, it should be clear that we need
decompression routines that are capable of producing un-
compressed data at speeds in the order of several gigabytes
per second. To reach such speeds, we recently introduced
three novel compression algorithms, PFOR, PFOR-DELTA
and PDICT [11], that are designed to sacrifice some perfor-
mance in terms of compression ratio, in exchange for fast
decompressibility. Furthermore, these compression schemes

are integrated into the DBMS in such a way, that data blocks
are stored in compressed form in RAM, and data is only de-
compressed on-demand, at vector granularity, directly into
the CPU cache, where it is fed directly into the operator
pipeline, without writing the uncompressed data back to
main memory, as can be seen in Figure 1.

3. INDEXING
Indexing the 426GB TREC-TB document collection, con-
sisting of roughly 25 million web documents, entails three
main phases: parsing, constructing an inverted index struc-
ture using relational tables, and index compression. Parsing
is done using an external program, that scans the collec-
tion and filters out markup and stopwords. For the remain-
ing text, the parser returns (docid, term) pairs (DT) for
each term it encounters, with terms being stemmed using
a Porter stemmer [9], converted to lowercase, and scram-
bled into 64bit integers. Our scrambling function produces
a one-to-one mapping from its input string to its integer rep-
resentation, as long as no other input string has the same
thirteen character long prefix. This is achieved by iterat-
ing over the input string, and on each iteration multiplying
the current integer result by twenty-seven and adding the
i’th characters offset from the character ’a’ + 1. Further-
more, the parser generates a unique docid identifier for each
document encountered, and outputs it, together with the
documents name and length (in number of terms).

To index the data, we used the inverted list data-structure,
which can be easily represented as a relational table. To
build this index from the DT output of the parser, the fol-
lowing relational query, which sorts and then aggregates on
(term, docid) pairs, was used:

TD computation using DT
Aggr(

Sort(
Scan(DT, [docid, term]),
[term, docid]),

[term, docid],
[tf = count()])

The [term,docid,tf] (TD) table, holds for each term, the
IDs of the documents the term appears in (docid), and the
number of times the term occurs within a given document
(tf). The table is ordered on (term,docid), which allows the
term column to be replaced by a range index onto [docid,tf],
and allows the occurrence lists of two arbitrary terms to
be combined efficiently using merge-join. Additionally, per-
document information is kept in a separate [docid, name,
length] document table D, and per term information [term,
ftd] in table T . The relational table layout, together with
the amount of storage each field occupies, is summarized in
table 1.

3.1 Compression
As Table 1 shows, the full index (the D, T and TD tables),
occupies approximately 29 GB uncompressed when we ig-
nore the term column in TD, and replace it with a range in-
dex of negligible size. We applied MonetDB/X100’s PFOR
and PFOR-DELTA light-weight column compression algo-
rithms [11] to reduce the total size of this index to roughly
9GB. The benefit of this is twofold. First of all, due to the

Table 1: Database tables and constants used
symbol column semantic sorted compression

name type scheme bits

DT – 12.3 Gtuples, output of parsing

D docid document id int Y none 32
T term term code long N none 64

TD – 3.5 Gtuples, document-level index

T term term code long Y PFDb=1 2.13
D docid document id int Y PFDb=8 11.98
fD,T tf frequency of T in D int N PFb=5 5.91
ωD,T score score of T in D float N none 32

ω
′
D,T scoreQ quantized score int N PFb=8 8.00

D – 25 Mtuples, output of parsing, per-document information

D docid document id int Y none 32
docname document name str Y none 88

|D| doclen document length int N none 32

T – 12 Mtuples, per-term information

T term term code long Y none 64
fT,D ftd #documents with T int N none 32

Global constants

k1 k1 BM25 parameter (0.8)
b b BM25 parameter (0.3)
fD numdocs number of documents (25M)
avgdl avgdoclen average document length (491)

compression: PF=PFOR, PFD=PFOR-DELTA, all with base=0

minimal decompression overhead of the compression algo-
rithms, I/O bandwidth utilization is improved, as the data
gets decompressed only when it is used, upon crossing the
RAM-CPU Cache boundary. Second, the compressed index
requires less memory to make it fully main-memory resident.
Even if it does not fit fully, more data can be cached in RAM
in compressed form, improving overall performance.

In short, Patched Frame of Reference (PFOR) compression
stores a column of n-bit integer values as a b-bit integer off-
set from an arbitrary base value, with b < n. All values
in the range [base, base + 2b − 1] are stored in b bits, with
b being minimized. Values outside this range, are stored
in uncompressed form, to make PFOR robust against out-
liers that would unnecessarily increase b. PFOR-DELTA is
similar to PFOR, with the difference that PFOR-DELTA
operates on the differences (deltas) between subsequent val-
ues in a column. This makes PFOR-DELTA well-suited for
clustered or (partially) sorted columns. The rightmost col-
umn of Table 1 shows the reduction in storage requirements
after applying compression.

Both PFOR and PFOR-DELTA are relatively generic database
compression mechanisms; neither has been optimized for IR
needs. Furthermore, a single column is always fully com-
pressed with a fixed set of compression parameters, often
resulting in suboptimal compression ratios. We are looking
into ways of making compression more adaptive, and better
suited for the IR domain, without loosing too much of our
decompression efficiency.

3.2 BM25 Score Materialization
The [term,docid,tf] (TD) structure presented in Section 3,
together with per-document and per-term information, is
in itself sufficient to compute a ranked document list for a

given query. In our experiments, we use the Okapi BM25
formula for document ranking:

S
(D)
BM25 =

X
T∈Q

ωD,T (1)

ωD,T = log(
fD

fT,D
) · (k1 + 1) · fD,T

fD,T + k1 · ((1 − b) + b · |D|
avgdl

)
(2)

Evaluation of this formula is rather expensive in terms of
CPU time, and can be avoided. The score for each (term,
docid) pair is independent of a query, and can thus be pre-
computed. This means, that we can extend the TD ta-
ble with a score column, which contains the precomputed
scores. MonetDB/X100 uses column-wise storage, and only
reads those columns from disk that are actually needed for
a query. So, in case the score column is used, the tf column
is left untouched. However, as the BM25 scores are 32 bit
floating point numbers, as opposed to the 5.91 bit tf values,
the storage requirements for our index increase from 18 bits
to 44 bits per tuple. To avoid such an increase in index size,
we decided to replace the floating point scores by so-called
score ranks [2], which quantize the range of floating point
numbers into small, compressed integer numbers. We used
the following linear Global-By-Value quantization:

ω
′
D,T =

—
q · ωD,T − L

U − L + ε

�
+ 1,

where L and U are the minimum and maximum values of
ωD,T in the entire collection. The formula produces integer
numbers between 1 and q. We chose q to be equal to 256,
resulting in 8-bit integer scores, as this provided the best
trade-off in precision, and run-time efficiency. This resulted
in our final index occupying roughly 10GB, as the quantized
scores occupy somewhat more space than the compressed tf
values. We aim to investigate possibilities to generalize float-
ing point quantization into a dictionary based compression
scheme that provides bounds on the error introduced when
mapping floating point ranges to integer numbers.

4. QUERYING
4.1 Relational Query Plan
Keyword search in a DBMS boils down to retrieving all the
documents in which some or all of the query terms occur,
and then ranking this list of documents. Given that we have
our pre-computed, materialized and quantized BM25 scores,
the ranking is simply a summation of these scores for each
(queryterm, docid) pair. In relational algebra, this could
look as follows for a two term query:

TopN(
Project(

MergeOuterJoin(
RangeSelect(TD1=TD, TD1.termid=10),
RangeSelect(TD2=TD, TD2.termid=42),
TD1.docid = TD2.docid),

[S.docid = MAX(TD1.docid,TD2.docid),
score = TD1.scoreQ + TD2.scoreQ]),

[score DESC], 20)

First, for each query term, a RangeSelect is used on the
TD table, to retrieve the list of documents the query term
appears in, together with its score on each document. These
lists of (docid, scoreQ) pairs are then joined, producing the
relation [TD1.docid, TD1.scoreQ, TD2.docid, TD2.scoreQ].

One should note that, in case a document contains only one
of the query terms, MergeOuterJoin pads the other side of
the join result with NULL values, thereby producing a dis-
junctive boolean restriction on query term presence, i.e. a
document should contain one or more of the query terms to
propagate into the join result. On the other hand, a regu-
lar MergeJoin would only propagate those documents that
contain all query terms, thereby producing a boolean con-
junctive evaluation. The output of the join is then fed into
the Project operator, which sums the scores for both query
terms, on a per document basis. Finally, TopN filters out the
N documents with the highest overall score, in descending
order.

4.2 Two-Pass Evaluation
By default, The BM25 retrieval model scores each docu-
ment, regardless the number of matching query terms. This
coincides with the query plan that uses MergeOuterJoin, in-
troduced in Section 4.1. Given the observation that we are
only interested in the top-N most relevant documents, we
can refrain from computing the score for documents that
are highly unlikely to make it into the top-N. Relying on
a heuristic that those documents that contain more query
terms are likely to obtain a better score [4], we can obtain a
significant performance improvement by following a two-pass
strategy. In the first pass, we retrieve only the documents
that contain all query terms, using a conventional MergeJoin
instead of a MergeOuterJoin. Only if the first pass does not
return N results, we execute a second pass using the less
restrictive MergeOuterJoin. On the full efficiency run, such
a second pass was required in only 15.5% of the queries.

5. EXPERIMENTAL SETUP
We evaluated the performance of our DBMS driven IR en-
gine on top of three different hardware architectures, result-
ing in the following four configurations:

DISK1 A mid-end server architecture, consisting of a sin-
gle 3.0GHz Intel Xeon CPU, 4GB RAM, and a 10 disk
RAID0 I/O subsystem, capable of storing 1TB of data.
This configuration is intended to evaluate I/O domi-
nated performance, as the whole index does not fit
main memory.

MEM1 A main-memory oriented high-end (but relatively
old, 2003) server architecture, containing four 1.4GHz
AMD Opteron CPUs and 16GB of RAM. For experi-
ments on this machine, data was first loaded into RAM
over the network from the raid connected to the DISK1
system. In this setup, only a single query stream was
used.

MEM4 Exactly the same setup as MEM1, with the only dif-
ference that this configuration always uses four query
streams instead of one. This configuration was added
to evaluate scalability of our system, by utilizing all
four CPUs, without network interference.

DIST8 A cluster of eight modern desktop machines, built
from off-the-shelf hardware components. Each node
contains a 2GHz AMD64 X2 dual-core 3800+ CPU,
has 2GB RAM, and 2 disks configured for RAID0. The
document collection is partitioned over all 8 nodes,

Table 2: Effectiveness Results
Label P@10 P@20 MAP InfAP

DISK1ah-50 0.5340 0.4780 0.2770 0.2299
DISK1ah-150 0.5591 0.5171 0.2952 NA
DIST8ah-50 0.5380 0.4750 0.2766 0.2308
DIST8ah-150 0.5577 0.5138 0.02952 NA

DISK1ah*-50 0.5440 0.4690 0.2677 0.2183

Table 3: Efficiency Results, with indexing time in
minutes, and query times in seconds
Label Index Query

Size Time Streams Avg. Time Total Time
DISK1 10GB 1000 1 0.1971 19708
MEM1 10GB 1000 1 0.0790 7914
MEM4 10GB 1000 4 0.0805 2052
DIST8 10GB 185 4 0.0132 539

with each node indexing its own partition, in paral-
lel. Queries are submitted to a broker program, which
broadcasts each query to all eight nodes, and merges
the local document rankings returned by each node
into a global ranking. As the partial indices of each
node fit into main-memory, these experiments don’t
involve any I/O. In this setting, we used four query
streams to hide network latencies induced by commu-
nication with the broker.

All listed systems run the Linux operating system (Fedora
Core 4).

We participated in both the ad-hoc task, measuring effec-
tiveness, and in the efficiency task.

6. EFFECTIVENESS RESULTS
We submitted two different runs for the ad-hoc task. One
to evaluate single node effectiveness, and one to investigate
any differences in a distributed setting. If some documents
outside the TopN obtain the same score as the TopN docu-
ment, there can be slight variations in the results returned
by these configurations, since the distributed run relies on
the broker to merge the per-node local TopN’s into a global
TopN. As Table 2 shows, the differences between the DISK1
and DIST8 runs are minor. The table furthermore distin-
guishes between efficiency results obtained on both the 50
2006 topics and on the 150 combined topics of 2004, 2005
and 2006.

The final run in Table 2, labeled DISK1ah*, was not sub-
mitted officially. This run was conducted after the relevance
judgments were released. As can be seen in table 1, our offi-
cially submitted runs used BM25 parameters different from
the commonly used k1 = 1.2 and b = 0.5, as these turned out
to work better on the 2004 and 2005 topics. The DISK1ah*
run uses these more common parameters. As the results
show, our modified parameters performed worse on P@10.
However, P@20 and MAP scores are better using the mod-
ified parameters.

7. EFFICIENCY RESULTS

For the efficiency runs, we measured both index creation
time and index size. Furthermore, we evaluated average
query response time (latency) for returning the top-20 re-
sults on all 100.000 efficiency topics and the total time needed
to execute all queries (reflecting query throughput). Results
are summarized in Table 3.

The comparison between MEM1 and MEM4 shows good
system scalability. The fact that MEM4 uses four query
streams, keeps all four CPUs in the system busy. Average
query response time hardly suffers, and total query execu-
tion time is roughly divided by four, as we hoped. This also
means, that using four CPUs, the system does not suffer
from any contention of the memory bus, which can become
an issue when increasing SMP parallelism. Note that our
use of database tables that are kept compressed in RAM
and are only decompressed in a small vector-granularity (in
the CPU cache), helps keep to the memory bandwidth us-
age down (and increases the amount of inverted list data
that can be cached). In the DIST8 configurations, we used
four parallel query streams to hide any network latencies,
thereby increasing query throughput significantly.

To have a point of reference, we also participated in the com-
parative TREC-TB task. We chose to do this on the Zettair
system [10], as we expected this system to be the most com-
petitive in terms of efficiency, which was our main focus. On
our DISK1 architecture, Zettair achieved an indexing time
of 460 minutes, which beats us by more than a factor two.
However, it has to be mentioned that our indexing times
include generation of many optional index structures that
are not needed for the runs submitted to TREC, and should
therefore be lower if this is cleaned out. We plan to do this
for the final version of this notebook. In terms of query
processing speed, Zettair required 9304 seconds to execute
the 10.000 comparative queries. Of this total, 8094 seconds
was CPU time. This means that the system was almost
CPU bound, and therefore almost at its peak performance
on our 3.0GHz Intel Xeon CPU. Comparing our 0.1971s av-
erage query execution time against Zettairs 0.9304s, we beat
them by a factor 4.7.

7.1 Precision of Efficiency Runs
After submission of our final efficiency results, we noticed a
slight deviation with respect to the official rules. The rules
state, that the top-20 as returned by the efficiency runs,
should be the same as the twenty topmost results in the
top-10000 submitted for the ad-hoc runs. Due to our two-
pass policy (see section 4.2), this is not the case though.
For the ad-hoc runs, we executed a second (disjunctive) pass
only if the first (conjunctive) pass did not fill the full top-
10000. For the efficiency runs, the second pass was triggered
in case of less than 20 results. This means, that the ad-hoc
results are more often based on the disjunctive query plan,
as the second pass is triggered more often. The effect of
this is, that the top-20s of the ad-hoc and the efficiency
runs can show slight differences. For the 150 combined ad-
hoc topics, a second pass was needed 100 times, while for
efficiency runs on the same 150 topics, it has been triggered
only three times. Overall, for the full efficiency run with
100,000 topics, a second pass was needed in 15.5% of the
cases, with the conjunctive plan returning 86838 documents
on average.

Table 4: Precision of efficiency runs
Label P@10 P@20

MEM1-50 0.5360 0.4720
MEM1-150 0.5651 0.5168

We believe, that in a real-world system, execution of only
the conjuctive plan is sufficient to satisfy an end-user’s need.
The system can first present the conjunctive results to the
end-user, and only execute the disjunctive plan in case the
user desires to see more results than the amount returned
by the conjunctive plan. One should note that in a database
system like X100 it easy to write a query that complies with
the rules, namely, one can return C ∪ (D \C), where C and
D are the results of the conjunctive and disjunctive runs,
respectively. To confirm that our efficiency runs did not
compromise precision, we present precision scores in table 4.
These numbers are very similar to the ad-hoc effectiveness
scores in Table 2, confirming that the efficiency runs we
submitted are capable to satisfy the end-users need.

8. CONCLUSION
By participating in the 2006 TREC TeraByte Track, we have
shown that it is possible to run terabyte scale information
retrieval tasks on top of a relational database engine, and
that such an approach can rival customized IR systems in
terms of performance. This work presents a step towards
the integration of DB and IR systems, identifying some of
the key ingredients needed to achieve this result being: Mon-
etDB/X100’s raw speed, light-weight data compression, and
distributed execution. In the future, we plan to investi-
gate the effect of light-weight compression schemes that are
better suited for IR tasks, such as improved inverted list
compression and generalized floating point quantization. A
closely related research direction investigates how an array
database system with an IR-researcher friendly query lan-
guage [6] can generate these highly efficient MonetDB/X100
query plans automatically from a declarative specification of
the retrieval model[7].

9. REFERENCES
[1] S. Amer-Yahia. Report on the DB/IR Panel at

Sigmod 2005. SIGMOD Record, 34(4):71–74, 2005.

[2] V. N. Anh and A. Moffat. Simplified Similarity
Scoring Using Term Ranks. In Proceedings of the
International Conference on Information Retrieval
(ACM SIGIR), pages 226–233, Salvador, Brazil, 2005.

[3] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proceedings of
the Conference of Innovative Database Research
(CIDR), pages 225–237, Asilomar, CA, USA, 2005.

[4] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level
retrieval process. In Proceedings of the Conference of
Information and Knowledge Management (CIKM),
pages 426–434, New Orleans, LA, USA, 2003.

[5] S. Chaudhuri, R. Ramakrishnan, and G. Weikum.
Integrating DB and IR Technologies: What is the
Sound of One Hand Clapping? In Proceedings of the

Conference of Innovative Database Research (CIDR),
pages 1–12, Asilomar, CA, USA, 2005.

[6] R. Cornacchia and A. P. de Vries. A declarative
DB-powered approach to IR. In Proceedings of the
European Conference on IR Research (ECIR), 2006.

[7] R. Cornacchia, S. Héman, M. Zukowski, A. P.
de Vries, and P. A. Boncz. Flexible and efficient IR
using Array Databases. Submitted for publication,
2006.

[8] A. Y. Halevy, O. Etzioni, A. Doan, Z. G. Ives,
J. Madhavan, L. McDowell, and I. Tatarinov. Crossing
the structure chasm. In Proceedings of the Conference
of Innovative Database Research (CIDR), 2003.

[9] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[10] Y. Bernstein et al. RMIT University at TREC 2005:
Terabyte and Robust Track. 2005.

[11] M. Zukowski, S. Héman, N. Nes, and P. Boncz.
Super-Scalar RAM-CPU Cache Compression. In
Proceedings of the International Conference of Data
Engineering (IEEE ICDE), Atlanta, GA, USA, 2006.

