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Abstract 
This paper describes our experiments in the TREC 2006 Genomics track submitted by the ASU BioAI 
group, as well as experiments based on the improvements made after our submission. Some of the major 
issues we tried to address in our experiments are how to (1) extract keywords from natural language 
questions in the biomedical domain and (2) determine the relevancy of passages. 

1. Introduction 

The task for the TREC 2006 Genomics track is quite different from last year in the sense that the goal is to 
develop a system that can provide answers with enough context and supporting information to the questions. 
Another noticeable difference is that HTML full-text articles are provided rather than abstracts of the 
articles. The system we developed is fully automated: from processing natural language questions to 
presenting answers in the form of passages. Our main design principle of the system is to answer questions 
that are not limited to the questions provided by TREC. To achieve this goal, we experimented our system 
with some innovative approaches, such as taking advantages of the WordNet [1] resource to recognize 
keywords from natural language questions. Another highlight of our system is the use of subject-verb-
object triplets to realize the relevancy of passages. 
The paper is organized as follows. Section 2 provides a system overview, with details of some of the major 
components of the system discussed in the subsections. Section 3 describes our runs submitted to TREC 
2006 Genomics track and our revised run after improvement of some of the components. Section 4 
describes our revised run and section 5 provides analysis of how each of the major components affects the 
performance of the overall system. Finally, we summarize the new components we improved for our 
revised run, and discuss some of the issues and challenges we face in developing our system in section 6. 

2. System Overview 

Our system for TREC 2006 Genomics track can be divided into three major components: preprocessing, 
document retrieval and passage retrieval. We first provide an overview of these three major components 
and describe some of the innovative features of our system in details. The role of the preprocessing 
component is to convert HTML full-text articles provided by TREC into structured XML format of the 
articles, as shown in figure 1. Acronyms are resolved in the course of preprocessing the full-text articles. 
The details of the preprocessing component are described in subsection 2.1. The document retrieval 
component, as illustrated in figure 2, involves the processing of natural language questions to form queries 
(subsection 2.2) and expansion of biological entities identified by the question processor (subsection 2.3). 
Articles are retrieved using variants of queries generated from the original queries (subsection 2.4). 
Passages are retrieved by the passage retrieval component, which utilizes the subject-verb-object (SVO) 
triplets of the questions to determine the relevancy of the passages (subsection 2.5). Passages that are 
determined to be not relevant to the question are filtered out from the final results. The passage retrieval 
component is illustrated in figure 3. 

2.1. Preprocessing 

One of the major obstacles is to process the full-text articles provided by TREC, which are in HTML 
format. Our goal is to translate the HTML articles into XML format so that it can capture information such 
as which section a paragraph of text is originated from and the byte start and byte offset for each sentences. 



A naïve algorithm is used to do such conversion based on section indicators. Section indicators are defined 
as a list of words such as “abstract”, “introduction” that indicate the beginning of sections in full-text 
articles. We outline the algorithm in this subsection. 
 

  
Figure 1 – An overview of the preprocessing component 

 

 
Figure 2 – An overview of the document retrieval component 

 

 
Figure 3 – An overview of the passage retrieval component 

 
For each HTML full-text article, the content of the HTML file is extracted by a tool called HTMLParser1. If 
the article being converted does not have a table of contents, then the article is read line by line to find 
section indicators. When no such section indicators are found, the first paragraph of the full-text article is 
considered to be originated from the abstract and the rest of the text is considered as part of the introduction. 
Since figure captions usually contain rich and concise information, text from figure captions are included 
into the XML files. The XML files also include byte start and offset for each of the sentences that 

                                                 
1 http://htmlparser.sourceforge.net/ 



correspond to the original HTML files. As acronyms are frequently used in the biomedical literature, 
resolving acronyms is essential to the task of retrieving articles and passages. The acronym resolution 
algorithm in [2] is used to resolve acronyms in the full-text articles, and the occurrences of the acronyms 
are stored in the XML files. The corresponding MeSH terms for each article are obtained from PubMed as 
well. These XML files are then indexed using Lucene [3]. 

2.2. Keyword extraction 

One of the important aspects of our system is to process the given TREC Genomics questions which are in 
the form of natural language, so that keywords can be extracted from the questions to construct the 
corresponding queries. It is clear that extracting the right keywords from natural language questions is 
critical to the task of retrieval of documents and the resulting passages. The queries we are interested in 
generating are in the form of Lucene queries, which are boolean keyword queries. 
Our approach of question processing incorporates the WordNet [1] dictionary together with the part-of-
speech and biological entity taggers to extract keywords. WordNet is an extensive lexical dictionary for 
English that provides different meanings of words, commonly referred to as senses, as well as relationships 
between words. It is a common resource for QA systems, as the WordNet dictionary aims at non-
specialized English words. It is suitable to our task of extracting keywords out of biological questions, as 
the goal here is to disallow common words in the questions from being selected as keywords. Our 
assumption behind the idea is that common English words usually have multiple senses. With this 
assumption, nouns that are not recognized as biological entities are examined using the WordNet dictionary. 
If an unrecognized noun has none or fewer than k different senses, our question processor considers the 
noun as a keyword. Using the question for topic 177 “How does Sec61-mediated CFTR degradation 
contribute to cystic fibrosis?”, the tagger recognized “cystic fibrosis” as a disease, but missed Sec61 as a 
gene. Using our WordNet-based algorithm, “Sec61-mediated CFTR” and “CFTR degradation” are picked 
up as keywords. Further processing (breaking hyphenated words) resulted in recognition of Sec61. In our 
experiments using the TREC Genomics questions, we found that the threshold k=3 achieves the best 
performance for this purpose based on. 

2.3. Expansion of biological entities 

Variation of naming convention for biological entities is one of the challenges in text retrieval and mining 
of biomedical literature, in particular gene names. Even resources such as Entrez Gene provide 
comprehensive lists of synonyms of gene names, slight variation of the official gene names can commonly 
be found in the biomedical literature. To automatically recognize biological entities, we utilize a gene name 
tagger called Abner [4] and an efficient exact match of disease names and biological processes utilizing 
MeSH terms disease category and the Gene Ontology [5] biological process ontology. 
Once a word is recognized as a biological entity such as a gene name, it is vital to be able to identify the 
actual gene name intended in order to find the corresponding synonyms. This is commonly known as gene 
normalization. Our approach of normalization of gene names is to utilize the fuzzy and proximity queries 
provided by Lucene. A fuzzy query allows matching words that are within certain edit distance between 
them. This is useful, for instance, to match the keyword “HNF4” to “HNF-4”, in which their edit distance is 
1. A proximity query is capable of matching words that are within a specific distance of each other. The 
gene name “hyprocretin receptor” can be matched to “hyprocretin (orexin) receptor” with 1 extra word in 
between the words of the gene name. All fields of the human gene names (i.e. genes with taxonomy id of 
9606) in the Entrez gene dictionary are first indexed by Lucene. A simple algorithm is then used to find the 
intended gene name, as follows: 
 
1. If the given gene name is single-word (we assume this is a gene symbol), then 

1.1. form a Lucene query that allows exact matching of the gene name. 
1.2. form a Lucene fuzzy query by adding "*~0.6" at the end of the given gene name. 



1.3. form a Lucene fuzzy query by adding "~0.6" at the end of the given gene name. 
2. If the given gene name is multi-word (we assume this is a gene name), then 

2.1. form a Lucene proximity query with distance of 3 based on the given gene name. 
Steps 1.2 and 1.3 differ in the sense that the query formed in step 1.2 gives preference to matching gene 
names that are from the same gene family. For instance, BOP is matched to BOP1 using the query formed 
in step 1.2, but the query formed in step 1.3 allows to match BOP to BEP. 
 
However, simply adding synonyms from a gene name dictionary such as Entrez Gene is not enough, as 
variations of gene names might be used in the literature. For example, Nur77 can be used in an article 
instead of Nur-77, but this is not listed as a synonym of Nur77. As a result, potentially important abstracts 
can be missed if variants of gene symbols are not considered in the formation of queries. It is important to 
notice that gene symbol variants are names that do not appear in the gene name dictionary as official names 
or synonyms. We utilized an algorithm adapted from [6, 7] to generate gene symbol variants for a given 
gene identified as a keyword. 

2.4. Article retrieval and ranking 

Once the keywords are identified and expanded as described in the previous sections, Lucene queries are 
formed based on the keywords. To increase the precision of the queries, predefined lists of MeSH terms for 
different kinds of biological entities [8] are utilized in the formation of query variants. Multiple query 
variants are generated from the keywords of the original query, which are described as follows: 

� Query variant 1: keywords with their synonyms and variants 
� Query variant 2: keywords and their synonyms together with a predefined list of MeSH terms 

There are cases when there are none or very few (less than 10) articles are retrieved for a topic. When this 
happens, the retrieval component switches to the “risky” mode automatically, in which we are willing to 
give up some precision in favor of higher recall by relaxing the queries. The revised queries allow, for 
example, fuzzy and proximity matches, so that biological process such as “cell growth” can be matched to 
“growth of cell”. For words that are extracted by the question processor but their types are not identified, 
such as mutation, we relax the query so that a retrieved article may contain the word mutation. The relaxed 
query enables us to retrieve articles that must contain biological keywords and may contain the non-
biological keywords. To unify and rank the hits retrieved by all query variants, the rank of an article is 
computed by adding the normalized ranking scores computed by Lucene from each query variants. This 
allows an article retrieved by multiple query variants to achieve a high rank. 

2.5. Passage retrieval and ranking 

A passage is defined as a contiguous list of sentences from a paragraph. In our case, we limit the maximum 
number of sentences in a passage to be 3. Our passage retrieval component takes top-n ranked articles 
relevant to the question, and finds sentences that have at least half of the keywords in the article. We call 
such sentences as important sentences. Neighboring sentences of the important sentences with at least one 
keyword are merged to form a passage. To avoid having too many passages, we set the limitation of a 
maximum number of 5 passages from each paragraph of the article. 
An essential part of our system is the extraction of subject-verb-object (SVO) triplets from sentences of 
passages as well as questions. The idea of SVO triplets is commonly used in typical QA systems [9] to deal 
with the problem of semantic symmetry. The questions “What is the role of X in Y?” and “What is the role 
of Y in X?” are similar at the word level, where X and Y are some keywords. However, the answers we 
expect from these two questions can be quite different. Our current method of extracting SVO triplets 
utilizes constituent trees (also referred to as parse trees) produced by the Link Grammar parser [10], which 
describe the syntactic structure of a sentence. However, generating the constituent trees of the sentences is 
computationally expensive. We relax the constraint of determining the validity of passages by finding the 
occurrences of subject and object extracted from the corresponding question. Passages that do not have 



sentences containing the subject or object of the question are filtered out from being considered as a 
passage related to the question. With this relaxed constraint, we only require passages that contain subjects 
and objects of the questions to be valid passages, while keywords such as “mutation” that are neither the 
subjects nor the objects of the question are not required to be in the valid passages. 
Once passages are retrieved, we used two approaches for ranking passages. Approach 1 is based on the idea 
of [11] that takes into account of the keyword density and distance between keywords. To give preference 
to longer passages, we extended the approach to take into account of the number of words and sentences in 
each passage. Approach 2 utilizes the rank of an article to determine relevancy of a passage retrieved from 
the article. The assumption is that a passage retrieved from a highly ranked article is likely to be a relevant 
passage. So approach 2 is computed using the reciprocal of the rank of the article in which the passage is 
retrieved from. The scores of passages computed by the above two approaches are normalized so that the 
scores can be combined for different runs. The choices of the passage ranking approaches for each run are 
described in the next section. 

3. Runs 

We submitted 3 runs for our TREC 2006 Genomics track submission. Our baseline run (run 1) involved 
retrieving passages from the top 100 relevant articles and filtering out passages that do not have all 
keywords mentioned in the passages. Our second run includes natural language processing techniques to 
rank passages and determine the relevancy of the passages by using the SVO triplets of passages. Due to 
the length of processing SVO triplets from passages, only the top 25 retrieved relevant articles are used to 
retrieve passages. Our third run only filters out passages that do not have the subject mentioned in the 
sentences of the passages, and passages are retrieved from the top 100 retrieved relevant articles. 
In this paper, we emphasize on all new results following the improvements of some of the components in 
our system. Some of the improved components involve the conversion of HTML to XML, gene synonym 
finding, filtering of passages, formation of query variants and variants of keywords from the index. We 
used these improved components to perform evaluation of various aspects. We called this as our revised 
run, with the results described in section 4. 

4. Results 

In this section, we describe the performance of our revised run for the 26 topics instead of the original 8 
topics, as there are no passages for topics 173 and 180 in the gold standard provided by TREC. The 
document average precision (denoted as Doc AP), passage average precision (denoted as Psg AP) and 
aspect average precision (denoted as Asp AP) for each of the 26 topics are described in Table 1. We 
noticed that there is an improvement of our results by using our new components, and we further 
investigated the effects of the performance for each of the major component on the overall performance of 
our system. 

5. Analysis 

In this section, we analyzed how the performance of the major components of our system affects the overall 
performance of our system. These components include the recognition and expansion of biological entities, 
HTML to XML conversion, retrieval of articles and extraction of passages. 

5.1. Recognition of biological entities 

Finding and recognizing, also known as normalizing, the extracted keywords from natural language 
questions to the intended biological entities are essential to the formation of queries, which are used to 
retrieve articles. In this subsection, we evaluated the correctness of the normalization of gene names, 



disease names and biological processes based on the reference file containing normalized biological entities 
for each of the questions2. 
Among the 33 genes in the 28 questions, we noticed that 19 of the genes were normalized to the correct 
gene. In the case of disease names, 10 out of 12 disease names in the 28 questions are normalized correctly. 
For biological processes, only 4 out of 17 of them were normalized to the correct biological process. 
Analysis of the normalization of the three types of biological entities indicates that exact matching on 
biological processes with standardized vocabulary is not an ideal solution to normalize biological entities. 
On the other hand, exact matching of disease names with MeSH disease terms is adequate, due to the fewer 
variation of naming conventions for diseases. Normalizing gene names with fuzzy and proximity queries 
result in a fair performance. 
 

Topic 
ID 

Doc AP Psg AP Asp AP 

160 0.4594 0.0102 0.0789 
161 0.4693 0.0053 0.0294 
162 0.2000 0.0000 0.0000 
163 0.2987 0.0039 0.0299 
164 0.2857 0.0000 0.0000 
165 0.0500 0.0000 0.0000 
166 0.0000 0.0000 0.0000 
167 0.5150 0.0301 0.1023 
168 0.5007 0.0867 0.0289 
169 0.1343 0.0011 0.0043 
170 0.5000 0.0021 0.0242 
171 0.0000 0.0000 0.0000 
172 0.2102 0.0009 0.0075 
174 0.0402 0.0010 0.0051 
175 0.0526 0.0000 0.0000 
176 0.0000 0.0000 0.0000 
177 0.0000 0.0000 0.0000 
178 0.0000 0.0000 0.0000 
179 0.0000 0.0000 0.0000 
181 0.4224 0.0282 0.0167 
182 0.0000 0.0000 0.0000 
183 0.0000 0.0000 0.0000 
184 0.0000 0.0000 0.0000 
185 0.0000 0.0000 0.0000 
186 0.3922 0.0097 0.1200 
187 0.0000 0.0000 0.0000 
    
Mean 0.1743 0.0069 0.0172 

Table 1 – The document average precision (Doc AP), passage average precision (Psg AP) and aspect 
average precision (Asp AP) for each of the 26 topics for our revised run 

5.2. HTML to XML conversion 

The variety of the HTML formats for different journals in the TREC 2006 Genomics corpus is an obstacle 
for our HTML to XML conversion program. Out of the 162,259 articles in the corpus, only 147,723 articles 

                                                 
2 Normalized representation of the TREC questions - Alex Morgan, Stanford and MITRE 
http://www.stanford.edu/~alexmo/slides/NormalizedTRECGen2006Questions.xls 



were stored in our Lucene index, i.e. 8.96% of the articles were not utilized by our system. The number of 
articles stored in our Lucene index indicates that some of the converted XML articles are not in valid XML 
format, such as articles containing special characters and missing certain XML tags in the course of the 
conversion. With respect to the topics, there is an average of 16.30% or (a median of 14.29%) of the gold 
standard articles not being in our index. 
To investigate on how the articles not indexed by our system affects our retrieval performance, we 
performed an experiment on evaluating our retrieval performance based on the gold standard articles that 
were indexed by our system. In Figure 4, the document average precision for each topic using all 162K 
articles (denoted as Doc AP) is compared with using the 147K articles that our system indexed (denoted as 
Doc AP Mod_GS). We noticed that there was a gain in the retrieval performance in each of the topic for 
Doc AP Mod_GS. In fact, the document MAP for Doc AP Mod_GS went up to 0.2142, as compared to 
0.1743 for Doc AP. We can conclude from this experiment that the failure in indexing all articles due to the 
issues in converting HTML to XML format has an impact on our performance. 
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Figure 4 – The document average precision of all topics with respect to the gold standard based on all 
articles (denoted as Doc AP) and the gold standard based on only the articles our system indexed 
(denoted as Doc AP Mod_GS) 

5.3. Retrieval of articles 

In TREC Genomics 2006, precision of document retrieval is dependent on the submitted passages. As 
described in section 2.5, extraction of passages involves a process filtering out passages that are not 
determined as relevant with respect to the questions. This implies some of the documents can be filtered 
due to the absence of passages extracted from them, which can possibly be correct documents. We 
performed an experiment to evaluate the correctness of document retrieval without the passage filtering 
process. In Figure 5, we compare the document average precision for each topic without using the passage 
filtering process (denoted as Bef_Psg), i.e. retain all retrieved documents, and using the passage filtering 
process (denoted as Aft_Psg). We can see that there is an increase in document average precision for 6 of 
the 26 topics when the passage filtering process is used, while the document average precision decreases 
for another 16 topics. The performance remains unchanged for the remaining 4 topics. The document MAP 



for Bef_Psg is 0.2537, a huge increase from 0.1743 for Aft_Psg. The results of this experiment show that 
the passage extraction process can be too restricted so that documents that are in fact correct are filtered out 
as well. 
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Figure 5 - The document average precision of all topics with passage filtering (denoted as Aft_Psg) 
and without passage filtering (denoted as Bef_Psg). 

5.4. Extraction of passages 

We performed analysis of our extraction performance, and we realized there is an issue with the correctness 
of byte start and offset for the passages. This issue is rooted from the conversion of HTML to XML format 
of the articles. It is unfortunate that we could not do a thorough analysis of this component, but we believe 
the issue of byte start and offset for the passages contribute to the poor passage average precision. 

6. Discussion 

From the analysis of our experiments, we realized that the component that performs the conversion of 
TREC Genomics articles from HTML to XML format is the major source of errors, thus reducing the 
performance of our system. Due to errors encountered in the course of the conversion, we noticed that 
almost 9% of the HTML articles were not indexed by our indexer, which expects to take valid XML files as 
input for indexing. A more serious flaw of the component was that there were cases when the byte start and 
offset of the sentences could not be computed correctly.  
Other than the programming issues, the methodology of expansion of biological entities needs to be 
improved. Though there are cases when using the biological entities extracted from the natural language 
questions to form keywords is enough to form the correct queries, we realized that we performed poorly in 
questions that involve biological processes. This can imply our current way of expansion of biological 
processes is insufficient. On the other hand, we recognized from the experiments that some of the correct 
documents were dropped from the final results due to the absence of passages. That could mean there are 
issues in the process of filtering passages. Another issue with our system is that our current method of 
extracting passages tends to extract lengthy passages, which hurts our extraction performance when the 
gold standard passages tend to be concise. 
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