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Stefan Büttcher and Charles L. A. Clarke

School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

{sbuettch,claclark}@plg.uwaterloo.ca

Abstract

We describe indexing and retrieval techniques that
are suited to perform terabyte-scale information
retrieval tasks on a standard desktop PC. Start-
ing from an Okapi-BM25-based default baseline re-
trieval function, we explore both sides of the effec-
tiveness spectrum. On one side, we show how term
proximity can be integrated into the scoring function
in order to improve the search results. On the other
side, we show how index pruning can be employed to
increase retrieval efficiency – at the cost of reduced
retrieval effectiveness.

We show that, although index pruning can harm
the quality of the search results considerably, ac-
cording to standard evaluation measures, the actual
loss of precision, according to other measures that
are more realistic for the given task, is rather small
and is in most cases outweighed by the immense ef-
ficiency gains that come along with it.

1 Introduction

This paper describes experiments conducted for this
year’s TREC Terabyte track by members of the in-
formation retrieval group at the University of Wa-
terloo. This year, the Terabyte track had 3 different
subtasks: ad-hoc retrieval, efficiency, and named-
page finding. We participated in all 3 tasks. In
this paper, however, we focus exclusively on ad-hoc
retrieval and efficiency, as we did not develop any
special techniques for named-page finding, but only
took our existing ad-hoc retrieval methods and ap-
plied them to the named-page finding task.

The ad-hoc and efficiency tasks of the Terabyte
track were not really independent tasks, but rather
two different aspects of the same ad-hoc retrieval

task, measuring both efficiency and effectiveness of
the participating search engines. Our goal for this
task was to adjust our existing search system so that
it was able to

• index half a terabyte of text in less than 10
hours and

• use the resulting index to search the collection
with sub-second response times

on a standard desktop PC. We were able to meet
both goals.

This paper describes the techniques we employed
to achieve these goals. All experiments presented
here were conducted using the Wumpus1 informa-
tion retrieval system developed at the University of
Waterloo. Except where stated otherwise, the sys-
tem was run on a single PC based on an AMD
Athlon64 3500+ processor (2.2 GHz) with 2 GB
of RAM and 7,200-rpm SATA harddrives. All effi-
ciency figures are given with respect to the 50 topics
from the ad-hoc retrieval task, not the 50,000 top-
ics used in the efficiency task. For all experiments,
we used stemmed title-only queries with an average
length of 2.9 terms (after stopword removal).

Since the experiments we describe in this paper
were conducted after the official runs had been sub-
mitted, and our retrieval system experienced major
changes after the submission, the experimental re-
sults reported here only partially correspond to the
official runs. For the exact performance and preci-
sion of our official runs, see section 7.

1http://www.wumpus-search.org/
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2 The Indexing Subsystem

For all experiments, the index was constructed using
a single-pass procedure with dynamic corpus parti-
tioning. The general strategy is to accumulate post-
ings in an in-memory index until the available main
memory is exhausted. At that point, an on-disk in-
dex is created from the data in memory, a fresh in-
memory index is created, and the system continues
to index the text collection. This process is repeated
until the whole collection has been indexed. Even-
tually, all on-disk sub-indices that have been created
during this process, are brought together through a
multiway merge process, resulting in the final index.
The sub-indices are then deleted.

The inversion strategy we employed for creat-
ing the individual sub-indices can be described as
hash-based in-memory inversion: For every input to-
ken (<term, position> pair) that is read from the
text collection, the corresponding term descriptor is
looked up in a hash table (inserted if it is not present
yet), and the position is added to the term’s list
of postings. Term descriptors inside the hash table
are organized in linked lists, using a move-to-front
heuristic [ZHW01].

Because the total number of occurrences of a term
within the text corpus is not known beforehand, an
efficient, dynamic data structure is needed to main-
tain the postings for a term. Usually, linked lists are
used for this purpose. The disadvantage of linked
lists is that a large amount of space is wasted by
pointers in the list. Another approach is to use re-
locatable bit vectors. This avoids the space over-
head introduced by the next pointers in the linked
lists, but necessitates frequent reallocations, which
can become a performance problem.

Our approach is to use linked lists, but to link
groups of postings instead of individual postings.
This strategy does not only improve memory effi-
ciency by reducing the relative number of pointers
needed, but it also increases locality by keeping post-
ings for the same term together. This drastically
decreases the number of CPU cache misses. In ad-
dition, all postings are stored in compressed form in
the in-memory index, allowing for even better mem-
ory efficiency and thus for a smaller number of sub-
indices that have to be combined in the final merge
process.

A detailed description of our indexing strategy is
given by Büttcher and Clarke [BC05]. Compared
to the relocatable-bitvector approach, indexing can
be performed about 10% faster, since no relocations
are necessary. Using this method, our system is able
to create an index of the 426-GB GOV2 collection,

P@10 P@20 MAP bpref MRR
0.6100 0.5460 0.3227 0.3390 0.7764

Table 1: Effectiveness of the baseline retrieval method,
Okapi BM25 (k1 = 1.2, b = 0.5).

containing full positional information for all index
terms, in 356 minutes on a standard desktop PC.
This represents an indexing throughput of 72 GB
per hour. At this speed, transferring data from/to
hard disk is becoming a major bottleneck.

3 Baseline Retrieval Method

The baseline retrieval method for all our experiments
is the Okapi BM25 formula [RWJ+94] [RWB98].
Given a query Q = {T1, . . . , Tn}, BM25 assigns to a
document D the relevance score

S
(D)
BM25 =

n
∑

i=1

wTi
·

(k1 + 1) · fD,Ti

fD,Ti
+ k1 · ((1 − b) + b · |D|

avgdl
)
,

(1)
where fD,Ti

is the number of occurrences of Ti within
D, |D| is the length of the document D (number of
tokens), and avgdl is the average document length
in the text collection. wTi

is Ti’s inverse document
frequency:

wTi
= log

(

#documents

#documents containing Ti

)

. (2)

k1 and b are free parameters and were chosen to be
k1 = 1.2 and b = 0.5. These values are the results
of preliminary experiments using the 50 ad-hoc top-
ics from the 2004 TREC Terabyte track. They are
in line with results reported by Plachouras et al.
[PHO04] for the same collection.

Even though all of our runs differ from this ver-
sion of the BM25 formula, the differences are not
material, and the retrieval methods used in our ex-
periments can be thought of as minor modifications
to the original BM25 algorithm.

Query processing is performed following a
document-at-a time approach that arranges the
posting lists for all terms in a priority queue and
traverses the merged list of postings in ascending or-
der, computing document scores on-the-fly. A prun-
ing strategy similar to Turtle and Flood’s MaxScore

optimization [TF95] is employed to reduce the com-
putational cost by allowing partial document score
evaluations when searching for the top-k documents
to be returned.

2



HTML Field(s) Boosting factor

<title> 6
<h1> 4
<h2>, <b>, <strong>, and <u> 3
<i> and <em> 2

Table 2: Exploiting document structure – boosting fac-
tors for terms appearing in certain HTML fields.

Run description P@10 P@20 MAP

Pure BM25 0.6100 0.5460 0.3227
BM25+doc.structure 0.5880 0.5480 0.3117

Table 3: Impact of using document structure on search
precision. No improvements are achieved by giving spe-
cial treatment to certain HTML fields.

4 Exploiting the Structure of

Documents

Many documents, such as HTML documents, pro-
vide a rich structure that can be exploited in order to
obtain better search results. Cutler et al. [CSM97]
showed that using the document structure in order
to assign higher weights to terms that appear in the
document title, for example, increases the effective-
ness of the search system. We followed their ap-
proach and boosted all terms that appeared within
certain fields by pretending there were n occurrences
instead of the one that actually was there. This is es-
sentially BM25 extension proposed by Robertson et
al. [RZT04] (without their adjustment of the k1 pa-
rameter). The exact values of n, for different HTML
fields, are shown in Table 2.

The evaluation, in terms of P@10, P@20, and
MAP, shows that in our experiments the use of doc-
ument structure did not improve the search results
at all (cf. Table 3). This is somewhat surprising,
since the boosting values were determined through
a training process using the 50 ad-hoc topics from
the 2004 Terabyte track and produced a 5-10% im-
provement on the 2004 data.

5 Document Retrieval Using

Term Proximity

Rasolofo and Savoy [RS03] showed that integrating
term proximity into the BM25 scoring function can
improve overall retrieval effectiveness of the search
system. Our implementation of term proximity scor-
ing is similar to that proposed in their paper.

Suppose a user submits a query Q = {T1, . . . , Tn}

Method P@20 MAP Avg. query time

BM25 0.5460 0.3227 2.133 sec
BM25TP 0.5730 0.3377 2.137 sec

Table 4: Search performance and retrieval effectiveness
for pure BM25 and the proximity-enhanced BM25TP al-
gorithm.

to the search engine. Then our implementation of
BM25 fetches the posting lists for all query terms
from the index and arranges them in a priority
queue. It then starts consuming postings from all
posting lists, one posting at a time, in ascending or-
der, to find matching documents and simultaneously
compute the relevance scores of all matching docu-
ments found.

If the underlying index contains full positional in-
formation, term proximity can be integrated into
this process without much effort. With every query
term, we associate an accumulator that contains
that term’s proximity score within the current doc-
ument. Whenever the search system encounters a
posting that belongs to the query term Tj , it looks
at the previous posting, belonging to the query term
Tk, and determines the distance (number of post-
ings) between the current posting and the previous
one. If Tj 6= Tk, then both terms’ accumulators are
incremented:

acc(Tj) := acc(Tj) + wTk
·

1

(dist(Tj + Tk))2
,

acc(Tk) := acc(Tk) + wTj
·

1

(dist(Tj + Tk))2
,

where wTi
is Ti’s IDF weight (cf. equation 1).

For Tj = Tk, the accumulator contents remain un-
changed. When the end of the current document is
reached, the document’s score is computed, and all
proximity accumulators are reset to zero. The score
of a document D is:

S
(D)
BM25TP = S

(D)
BM25 +

∑

T∈Q

min{1, wT } ·
acc(T ) · (k1 + 1)

acc(T ) + K
,

where k1 and K are the usual BM25 parameters.
The main difference to the strategy followed by Ra-
solofo and Savoy is that in our approach only neigh-
boring query terms can affect each other’s accumula-
tor, which allows for slightly faster query processing.

Query processing performance and average preci-
sion for both BM25 and BM25TP are given by Ta-
ble 4. Since, during query processing, most time is
spent examining documents that contain only a sin-
gle query term, the slowdown caused by taking term
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Indexing method Index size Total indexing time Indexing throughput Time per query

Positional indexing 59.7 GB 356 minutes 72 GB/h 2.133 seconds
Document-level indexing 19.3 GB 245 minutes 104 GB/h 0.326 seconds

Table 5: Performance comparison: Positional indexing vs. document-level indexing.

proximity into account is negligible. On the other
hand, by integrating term proximity, both P@20 and
MAP can be increased by about 5% over an already
very high baseline.

6 Document-Level Indexing &

Static Index Pruning

In its standard configuration, the Wumpus search
engine creates an index containing full positional
information. This is necessary to support certain
query types, such as phrase queries or the proximity-
based retrieval method described in the previous sec-
tion. For document retrieval tasks like the ad-hoc re-
trieval task of this year’s Terabyte TREC, however,
positional information is not absolutely necessary.
In fact, the BM25 retrieval function in its pure form
does not even make use of positional information.
All the information needed to rank documents ac-
cording to their BM25 score is the number of times
each query term appears in each document. By re-
stricting the index so that it only contains this infor-
mation, a great improvement in terms of both space
and time complexity can be achieved.

Since our whole retrieval system is built around
term positions, and documents are represented by
their start and end position in the text collection,
changing the system towards a document-based re-
trieval paradigm would have been too much work
and would have been difficult to integrate into the
existing framework. Instead, we chose to encode
the number of times a term appears in a document
in its position within that document. The within-
document term frequency of a term is encoded in
the 6 least significant bits of each posting. This
caused some problems for documents shorter than
64 tokens. However, these documents tended to be
framesets or redirections, and there were only 6,055
such documents in the collection anyway.

Whenever a term appeared less than 32 times in
a document, the exact number of occurrences was
encoded in that term’s posting for the document in
question. When it had more than 32 occurrences,
the within-document frequency of the term was en-
coded approximately using a logarithmic encoding
scheme (with base 1.1). Thus, the maximal TF value

encodable by our system was 32 · 1.131 = 614, which
was sufficient for most documents.

The effects of document-level indexing on index-
ing performance, index size, and query processing
performance are shown in Table 5. The total size
of the on-disk data structures drops by 68%, the
time needed to build the index decreases by 33%,
and the average time per query is reduced by 85%.
The gains achieved by omitting positional informa-
tion come along with a small loss of precision, caused
by the slight inaccuracies introduced by our term fre-
quency encoding method and the inability to index
certain short documents.

Index Pruning

In addition to using a document-level index instead
of full positional information, we modified the final
merge process that brings together all sub-indices
created during index construction and joins them
into one big index. Instead of creating one single in-
dex, two indices were created – a small one, holding
postings for the most frequent terms in the collec-
tion, and a bigger one, containing the postings for all
other terms. Furthermore, the small index, contain-
ing the n most frequent terms, was pruned in such a
way that, for every term T , the index only contained
postings for the k documents in which T ’s impact on
the BM25 score of that document was greatest.

In other words, for each term T among the n most
frequent terms in the collection and each document
D it appeared in, D’s score for the query Q = {T}
was computed:

S
(D)
BM25 = wT ·

(k1 + 1) · fD,T

fD,T + k1 · ((1 − b) + b · |D|
avgdl

)
(3)

(cf. equation 1). For each term T , only the k doc-
uments with highest score SD were kept in the in-
dex. The values of n and k were chosen in such a
way that the size of the pruned index was about 1.2
GB (n · k ≈ 5 · 108). This way, it was possible to
keep the small index in memory and to use both
the in-memory index and the bigger on-disk index
in parallel during query processing.

This procedure is similar to the static index prun-
ing method described by Carmel et al. [CCF+01]
[CAH+01], but in contrast to their approach, it cre-
ates a pruned index that is much smaller than the
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Figure 1: Impact of static index pruning on retrieval efficiency and effectiveness. The figures represent pruned in-
memory indices containing 500,000,000 postings (roughly 1.2 GB). The number of distinct terms in the in-memory
index is varied between 0 and 20,000. The performance gains that can be achieved are likely to outweigh the loss of
precision they entail.

original index (≈ 6%) and uses both indices in par-
allel when processing a search query.

Figure 1 presents the impact that different values
for n and k have on query processing performance
and retrieval effectiveness. It shows that tremen-
dous performance gains can be achieved by prun-
ing the index in the way described above. On the
other hand, retrieval effectiveness drops as the num-
ber of terms n in the pruned in-memory index is in-
creased. However, for early precision measures, such
as P@10, the effect is not as strong as for other mea-
sures (e.g., MAP). For instance, using a pruned in-
memory index with 2,000 terms, containing the top
250,000 documents for each term, decreases MAP
by 8.6% (from 0.3213 to 0.2937), but P@10 only by
4.3% (from 0.6040 to 0.5780). At the same time,
the average search time per query drops by 67.5% –
from 326 ms down to 106 ms. This suggests the use
of different retrieval methods, depending on whether
the user only requested the top 10 or 20 documents
or a deeper result set. For example, a pruned index
could be used to produce the first page of search
results, while the full index is used to generate all
subsequent result pages.

7 Official Runs

We submitted 4 runs for the ad-hoc retrieval task
of the Terabyte track and 4 runs for the efficiency
task. In contrast to the experiments described in
the previous sections, which were conducted on a
single PC, all our official runs were performed on
two PCs with AMD Athlon64 3500+ processors (2.2
GHz) running in parallel, with each machine having
an index covering 50% of the whole collection. The
subcollections were big enough to make term weight

propagation between the two indices unnecessary.
For the ad-hoc retrieval tasks, we submitted:

uwmtEwtaPt Title-only run using a full positional
index and term proximity scoring.

uwmtEwtaPtdn Title+description+narrative run
using a full positional index and term proximity
scoring. Relative term weights were 0.7 (title),
0.2 (description), and 0.1 (narrative).

uwmtEwtaD00t Title-only run using a document-
level index without index pruning.

uwmtEwtaD02t Title-only run using a document-
level index with index pruning. The pruned
in-memory index contained the 2,000 most fre-
quent terms (n = 2000, k = 250000).

For the efficiency task, we submitted:

uwmtEwtePTP Title-only run using a full posi-
tional index and term proximity scoring.

uwmtEwteD00 Title-only run using a document-
level index without index pruning.

uwmtEwteD02 Title-only run using a document-
level index with index pruning. The pruned
in-memory index contained the 2,000 most fre-
quent terms (n = 2000, k = 250000).

uwmtEwteD10 Title-only run using a document-
level index with index pruning. The pruned in-
memory index contained the 10,000 most fre-
quent terms (n = 10000, k = 50000).

All 8 runs submitted are summarized in tables 6
and 7. The precision differences between the runs
shown in the tables and the experiments described in
the previous sections of this paper are due to changes
made to our search engine:
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Name Total indexing time Average time per query P@10 P@20 MAP

uwmtEwtaPt 208 minutes 1.264 seconds 0.6320 0.5760 0.3451
uwmtEwtaPtdn 208 minutes 29.464 seconds 0.6900 0.6160 0.3480
uwmtEwtaD00t 132 minutes 0.194 seconds 0.6040 0.5650 0.3173
uwmtEwtaD02t 147 minutes 0.059 seconds 0.5060 0.4490 0.2173

Table 6: Runs submitted for the TREC Terabyte ad-hoc retrieval task. For all runs shown in this table, both indexing
and query processing was performed on two PCs running in parallel.

Name Total indexing time Average time per query P@5 P@10 P@20

uwmtEwtePTP 208 minutes 1.094 seconds 0.6760 0.6380 0.5780
uwmtEwteD00 132 minutes 0.137 seconds 0.6000 0.6040 0.5570
uwmtEwteD02 144 minutes 0.049 seconds 0.4960 0.4980 0.4450
uwmtEwteD10 147 minutes 0.027 seconds 0.4920 0.4380 0.3900

Table 7: Runs submitted for the TREC Terabyte efficiency task. For all runs shown in this table, both indexing and
query processing was performed on two PCs running in parallel.

• We changed the document tokenizer. Apart
from a few exceptions (e.g., <meta> tags), our
new tokenizer ignores all attribute values in-
side HTML tags. While this improves indexing
performance, it decreases retrieval effectiveness.
We did not perform any additional experiments
in order to find out the exact reason for this
behavior, but we surmise that omitting alt at-
tributes of <img> is not a good idea.

• Following the TREC tradition, we found a bug
in our index pruning implementation the day
after we had submitted the official runs. Fixing
this bug increased the precision numbers for our
pruned runs substantially and significantly.

References
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