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Abstract: We describe our participation in the
TREC 2005 Enterprise track. We provide a de-
tailed account of the ideas underlying our lan-
guage modeling approaches to these tasks, report
on our results, and give a summary of our findings
so far.

1 Introduction

Our aim for the TREC 2005 Enterprise track was to adapt
our existing language modeling framework to the specific
needs of each task. A key goal was to incorporate, and make
use of, the structure and structured content housed within the
W3C data used in the track.

Using generative language models, we tailored the frame-
work to address the particular needs of the three sub tasks:
Email Discussion Search, Known Email Search, and Expert
Finding. These tasks were executed on the enterprise collec-
tion which contained six different types of web pages created
from a crawl of the W3C website. These were lists (email
forum), dev, www, esw, other, and people. The former two
tasks used only the email forum where structure was a main
theme of our research. Here, we examined the link struc-
ture generated by replies for the discussion search (Section
2), whilst we considered the internal structure of an email
for known item searching (Section 3). For the expert finding
task our focus was on associating a document with a candi-
date expert to build candidate models (Section 4).

2 Email Discussion Search

The goal of this task was to retrieve emails which contained
a discussion about the query topic, where highly relevant
documents would introduce a new point to the discussion
(such as pro or con given the topic). Consequently, for this
task only the email forum (lists) documents were considered.
This subset contains pages which are not only emails, but
pages for the navigation of the forums as well. The col-
lection comprised of 198,275 documents of which approxi-

∗Current affiliation: Department of Computer and Information Sciences,
University of Strathclyde.

mately 174,413 were emails to the forum lists.1 Each email
page contains links to the other emails that are related to
it (i.e., the response(s) an email attracts, the email that was
responded to, and next/previous emails in the listing). Of
these emails only 75,422 emails had attracted a response.2

This left 99,991 emails without any replies.

2.1 Discussions

We assumed a ‘discussion thread’ consisted of a set of
emails, linked by replies, which formed a graph of emails.
The number of discussion threads within the 75,422 emails
was approximately 19,917, where the average number of
emails in a discussion thread was 3.8.

Within a discussion thread, there were two main quantita-
tive characteristics of interest: breadth, indicating the num-
ber of replies an email has directly received, and depth, in-
dicating the number of consecutive replies. We conducted
informal interviews with two email forum users, who regu-
larly use technical forums, and asked them about how they
used the email forums and about the shape of the discus-
sion threads. The main points ascertained were as follows.
They rarely ever searched for discussions, when they did,
they would favor the use of navigational methods as op-
posed to search facilities. When replying to an email, it was
important to respond to a point in that email, and that the
email should only respond to that point. Further, a separate
email should be sent in response to the different points in
that email. Hence, an email attracting multiple replies would
probably discuss multiple points, whilst consecutive replies
would probably discuss one point in detail.

To follow up this intuition, we examined ten discussion
graphs (about 50 emails in total), five of which contained a
breadth of at least three and five with a depth of at least three.
From this set of graphs, consecutive replies tended to dis-
cuss a point in detail, whilst multiple replies would usually
present different points, but would sometimes include emails
referring to other replies. This suggested that long chains of
emails would be indicative of arguments for and against the
topic of discussion, and may have been useful for retrieval.
We endeavored to encode some of these findings within our

1This is an estimate of the number of emails in the collection and maybe
slightly inaccurate due to parsing errors.

2Note that “maybe replies” were treated as replies.
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retrieval strategy, the language modeling framework.

2.2 Language Model
The standard language modeling approach computes the
probability of a query q being generated from a document
model θd on behalf of the document d as follows:

p(q|θd) =
∏
t∈q

{
(1− λ)p(t|d) + λp(t)

}n(t,q)
,(1)

where p(t|d) is the maximum likelihood estimate of term
t in document d, p(t) is the unconditional probability of t
(also determined using the maximum likelihood estimate),
n(t, q) is the number of times term t occurs in query q, and
λ is the smoothing parameter. If λ is set to β

n(d)+β , where
n(d) is the size of the document, Bayes Smoothing with a
Dirichlet prior of the document model is obtained (instead
of Jelinek-Mercer Smoothing) [3]. Ranking according to the
joint probability of a query and document p(q, d), involves
the multiplication of the document prior p(d) to both sides
of the equation such that p(q, d) = p(q|θd)p(d). This rep-
resents a natural extension to the framework for encoding
external evidence.

2.3 Discussion Runs
For our discussion run submissions, we applied two priors;
one to filter our non-discussion emails, the other to bias to-
wards larger/longer threads of discussion. For this, the lists
collection was indexed using LEMUR. No stemming was
applied but standard stop words were removed. We devel-
oped a set of five training discussion topics with 54 highly
relevant emails and 29 relevant documents, after assessing a
total of 169 documents. These topics were used to select our
baseline run, to which we applied two different document
priors that adjusted the scores according to our intuitions.
For our baseline, we examined a host of different parame-
ter settings with both Jelinek Mercer Smoothing and Bayes
Smoothing, but Bayes smoothing was found to perform the
best when β = 350. The two priors were then applied:

Document Type Filter. We removed all messages which
were not identified as an email in the collection. This
can be considered as a document prior where p(d) =
k > 0 if the document is an email, else p(d) = 0.
If the document contained the structured fields subject,
author and date then it was considered an email.

Thread Size Prior. The probability of a document, p(d),
was proportional to the size of the graph from which
that email came. Such that:

p(d) =
g(d) + α∑

d′(g(d′) + α)
,(2)

where g(d) is the size of the graph given d and α is a
smoothing parameter to adjust the influence of the prior

(known as Laplace smoothing). This encoded our intu-
ition that discussions are a group of messages, and that
an email in a discussion is more likely to be relevant
than a email that is not. This prior was applied to the
top 1000 documents retrieved documents to re-rank the
result set.

We also considered augmentation of the ranked list, instead
of re-ranking. This approach re-structured the results such
that if an email appeared in the ranked list, then all related
emails in its graph were given the same rank. This was to
provide the user with a coherent view of the result list (i.e.,
grouped by discussion thread). Unfortunately, this run was
not successfully submitted due to time constraints. How-
ever, given the evaluation scheme used, we would not have
expected the results to fare significantly better, because the
evaluation is based on a ranked list, and not the representa-
tion presented to the user (i.e., a graph).

2.4 Summary of Runs and Results

The following runs were submitted and the results are dis-
played in Table 1. All submitted runs were automatic and
only the query field of the topic was used.

ToNsBs350 Baseline run using Bayes Smoothing (β =
350).

ToNsBs350F Same as ToNsBs350, but with Document
Type Filter.

ToNsBs350FT Same as ToNsBs350F, but with the Thread
Size Prior (α = 1).

ToNsBs350FT5 Same as ToNsBs350F, but with the
Thread Size Prior (α = 5).

Run identifier MAP p@10 p@20 p@100
ToNsBs350 0.2907 0.4441 0.4034 0.2047
ToNsBs350F 0.3518 0.5407 0.4449 0.2147
ToNsBs350FT 0.1947 0.3559 0.2873 0.1442
ToNsBs350FT5 0.1988 0.3610 0.2975 0.1480

Table 1: Results for Discussion Search

In Table 1, the first column displays the run identifier, the
second reports the mean average precision (MAP), then the
following three columns display the precision at 10, 20 and
100. From these results, we can see that the influence of
the filter increased the MAP by about 6% over the baseline
run. However, applying the filter resulted in a loss of 21 rele-
vant documents. This was due to either non-emails judged as
relevant or documents not being parsed correctly. The appli-
cation of the thread size prior introduced too much bias and
resulted in a massive loss of MAP. Further work is required
to examine the influence of the prior on performance.



3 Email Known-Item Search
The goal of this task was to find the known (relevant) email
given the query topic. The intuition that motivated our re-
search was that users would pose queries for these known
emails, based on what they remembered about the known
email. We assumed that such query terms would invariably
be the most salient features of the email. Our retrieval strat-
egy for the known-item email search used these features and
consisted of two components. First, we automatically in-
ferred the structure of a query (with respect to the email’s
structure) similar to [1]. Then, we execute the structured
query on a fielded language model to utilize this structure
in the retrieval process. So, instead of treating each email
as a whole document, we broken the email into four struc-
tured fields. These were: author, date, subject and body of
the email. All other text was disregarded. These fields were
chosen because they represented the key fields from which
query terms appeared to be generated (or, recalled).

3.1 Automatic Querying Structuring
The query was structured by classifying each query term
t according to the probability of the field x given t (i.e.,
p(t|x)). This was evaluated by applying Bayes theorem and
then using a generative model, such that

p(x|t) =
p(t|x)p(x)∑
x′ p(t|x′)p(x′)

,(3)

where p(t|x) is the probability of t given x, which was esti-
mated with Laplace estimator and proportional to the count
of the number of times t occurred in x plus the Laplace con-
stant (α = 0.00001). Query terms were assigned to the field
x, if p(x|t) > δ, where δ was a tuning parameter of the sys-
tem. This was set to δ = 0.1 after training the system on the
25 known-item training topics and selecting δ with respect
to the mean reciprocal rank of the fielded language model
(Section 3.2). Each automatically structured query consisted
of the set of fields, represented by qx, which contained the
assigned terms.

3.2 Fielded Language Model
The fielded language model is a simple extension of the stan-
dard language modeling approach described in Section 2.2.
It treats each field of an email document as an independent
source of evidence, from which each of the fields in the
query are generated. Formally, this can be represented as

p(q|d) =
∏
x

p(qx|θx
d),(4)

where p(qx|θx
d) is the probability of the query field qx being

generated from the model of the document field θx
d . This

probability is computed as above for standard documents,
but for each of the four fields instead.

We also considered an alternative approach, where we as-
sumed that the sources of evidence were linearly indepen-
dent and weighted by p(x), such that by marginalizing over
x the query likelihood could be expressed as:

p(q|d) =
∑

x

p(x)p(qx|θx
d),(5)

where p(x) denotes the importance of the query field in the
document.

3.3 Known-Item Runs

Our experiments examined the hypothesis that automatically
inferred queries could be used to improve retrieval perfor-
mance over unstructured queries (as in [1]).

The email fields selected were indexed separately in
LEMUR, with Porter stemming applied and standard stop
words removed. The 125 known-item queries were pro-
cessed in a similar fashion. Our first submission was a base-
line run, that used the standard language modeling approach
on the entire email document using the original unstructured
query and then we submitted four further runs using the
field language model. Two runs used the query likelihood
as shown in Eq. 4 and Eq. 5. However, we were concerned
that the differences in length between query fields affected
retrieval performance, and thus tried two runs where the nor-
malized query likelihood was used [2]. This is equivalent to
computing the odds ratio of the query being generated by the
document versus the query being generated from the collec-
tion). For the model defined in Eq. 5, the prior p(x) was set
on a query by query basis. p(x) was proportional to the num-
ber of query terms that were assigned to that field x, which
we assumed would correlate to its importance.

The 25 training topics were used to tune the free model
parameters and compare smoothing methods. We found Je-
linek Mercer smoothing tended to give the best performance
and subsequently used this form of smoothing for all runs
and models.

3.4 Summary of Runs and Results

The following runs were submitted:

qdFlat Baseline run using language modeling approach
with Jelinek Mercer smoothing (λ = 0.1).

qdC Automatically structured queries (δ = 0.1), using the
model in Eq. 4 with Jelinek Mercer smoothing (λ = 0.5
for all fields).

qdWcEst Same as qdC, but using the model in Eq. 5.

OddsC Same as qdC, but normalized.

OddsWcEst Same as qdWcEst, but normalized.



Run identifier MRR S@10 S@100 F@100
qdFlat 0.494 75.2% 91.2% 8.8%
qdC 0.423 56.8% 78.4% 21.6%
qdWcEst 0.579 79.2% 92.0% 8.0%
OddsC 0.423 56.8% 78.4% 21.6%
OddsWcEst 0.547 56.8% 89.6% 10.4%

Table 2: Results for Known-Item Finding

The results for the known-item finding subtask are shown
in Table 2. The second column gives the mean reciprocal
rank (MRR) score. The third and fourth columns report the
percentage of topics for which the known-item was found in
the top 10 and 100 documents, respectively. The last column
reports the percentage of topics where no known-item was
found in top 100 documents (F@100).

From the result table we see that, using the model in Eq.
5 (runs qdWcEst and OddsWcEst), we were able to obtain
an improvement over our baseline run, with a sizeable in-
crease in the MRR. Once we obtained the corresponding
set of known-items, we tagged the query terms according
to the fields in the known emails. We found that the accu-
racy of our automatic query structuring procedure was just
over 50%, whilst if we had simply assumed all terms were
from the subject accuracy would have been just under 50%.
During the training phase, better classification accuracy led
to substantially improvements over the baseline regardless
of the type of fielded model. However, here the ambiguous
nature of the queries seriously degraded the performance of
our retrieval models, as the structure could not be reliably
inferred.

4 Expert Search

The Expert Search task presents the following scenario:
Given the document repositories of the organization, find the
experts in a particular topic, field or area. Our approach em-
ploys language modeling, information retrieval, and name
entity recognition techniques. Our results indicate that the
latter is especially important for the task.

Our approach focuses on building representations of can-
didate experts from the corpus, and then identifying the set
of actual experts for a given topic. To achieve this we apply
the language modeling approach to the expert search prob-
lem. Each candidate is represented by the documents that are
found to be the most relevant given the topic and the candi-
date is associated with. When a query is issued, we select
the subset of the collection, containing documents, found to
be the most relevant given the query. To obtain these cut-offs
we apply information retrieval techniques over the document
set and against the topic as a query. Then, the candidates are
ranked according to the probability of the query being gen-
erated by the candidate model.

The main research problem within this work is to find the

associations between documents and candidates.

4.1 Modeling
Our method is a direct application of standard language
modeling techniques, where we infer a candidate model θca

for each candidate ca, such that the probability of a term
given the candidate model is p(t|θca). Using this model, we
can then estimate the probability of a query by taking the
product across terms in the query.

p(q|θca) =
∏

t∈q p(t|θca)n(t,q).(6)

Here, the standard term independence assumption is made.
The candidate model is constructed by using a mixture
model:

p(t|θca) = (1− λ)
∑

d p(t|d)p(d|ca) + λp(t),(7)

where p(t) is the maximum likelihood estimate of the un-
conditional probability of the term occurring in the collec-
tion. The final estimation of the probability of a query given
the candidate model is:

p(q|θca) =(8)∏
t∈q

{
(1− λ)(

∑
d∈S p(t|d)p(d|ca)) + λp(t)

}n(t,q)
,

where S is a subset of documents that are found to be the
most relevant given the query q.

4.2 Candidate Document Associations
As pointed out before, the W3C corpus is a heterogeneous
document repository containing a mixture of different doc-
ument types (technical reports, emails, web pages, etc).
A document d in this collection, is assumed to be associ-
ated with a candidate ca, if there is a non-zero association
a(d, ca) > 0. The forming of these associations is vital to
the performance of our methods and overall performance.
Here we introduce four different methods that we used for
associating documents with candidates.

Extracting candidates is a special named entity recogni-
tion task where the list of possible candidates—with names
and e-mail addresses—are given.

Extract Candidates by Name. Identification based on the
candidates’ name might be the most natural approach. In
spite of the apparent simplicity, one has to face different
challenges when solving this task. Some cases when a sim-
ple exact-matching test on the candidate’s name may fail:

• different name length: middle name(s),

• accentuated letters,

• dash in the name,

• only initials of one or more names.



We experimented with different name matching methods,
each addressing only some of the key issues. The can-
didate’s name and the documents are represented as a se-
quence of terms, lowercased, accents on letters are re-
placed, and names with dashes are considered as two
different terms (e.g., Hazael-Massieux ⇒ hazael
massieux). The following matching methods were con-
sidered for our TREC 2005 experiments:

• M0 EXACT MATCH: returns true if the name appears
in the document exactly as it is written.

• M1 NAME MATCH: returns true if the last name and at
least the initial of the first name appears in the docu-
ment.

• M2 LAST NAME MATCH: returns true if the last
name appears in the document.

Note that each method Mi (i = 1, 2) keeps, and improves
upon, the results achieved by the preceding Mi−1.

Extract Candidates by Email Address. This method
(EMAIL MATCH) simply extracts all email addresses ap-
pearing in a document. Email addresses were identified us-
ing a regular expression. According to our experiments this
technique is less effective in terms of the number of identi-
fied candidates while the associations found by this method
look like stronger relationships. See Table 3 for detailed re-
sults.

method #candidates #assoc #docs
EXACT MATCH 696 324,258 136,627
NAME MATCH 757 354,315 139,801
LAST NAME MATCH 924 945,518 212,425
EMAIL MATCH 456 73,747 59,355

Table 3: Results of Name Extraction Methods.

4.3 Runs
We submitted the following 5 runs:

uams05run0 m = 500, EXACTMATCH

uams05run1 m = 200, EXACTMATCH

uams05run2 m = 200, EMAILMATCH

uams05run3 m = 200, 0.5 · EXACTMATCH + 0.5 ·
EMAILMATCH

uams05run4 m = 200, 0.375 · EXACTMATCH + 0.208 ·
NAMEMATCH + 0.416 · EMAILMATCH,

where m = |S| is the number of documents retrieved as most
relevant given a topic. In the last two runs we experimented
with a linear combination of different candidate-document
association methods.

4.4 Results

uams05 #rel map R-prec P@10 P@20 RR1
...run0 477 0.1225 0.1802 0.240 0.202 0.3942
...run1 472 0.1277 0.1811 0.222 0.200 0.4380
...run2 284 0.0918 0.1288 0.194 0.139 0.4975
...run3 479 0.1158 0.1489 0.194 0.138 0.4891
...run4 478 0.1177 0.1444 0.192 0.141 0.5062

Table 4: Results for the Expert Search task, where #rel is the
number of relevant experts retrieved, and RR1 is the recip-
rocal rank of the first expert found.

Table 4 gives our overall results for the Expert Search task,
using the various evaluation measures proposed by the task
organizers; the best score per measure is indicated in bold
face.

The results of uams05run0 and uams05run1 show no
significant difference. We conclude that using different m
values for cut-offs does not really affect overall performance.

At the same time, the association methods show interest-
ing results; EXACTMATCH (uams05run0, uams05run1)
retrieves more relevant hits while the reciprocal rank of
the top relevant document (RR1) is much higher for
EMAILMATCH (uams05run2). This underlines our expec-
tations that the use of EMAILMATCH results in fewer but
stronger associations. Combining different matching meth-
ods (uamsrun3, uamsrun4) shows promising results and
suggests experimenting with more sophisticated estimation
of candidate-document associations.

5 Conclusions

In this paper we described our participation in the TREC
2005 Enterprise track. We found that structured information
was not particularly useful for either email search task. In
the case of the discussion search, this was because too much
bias was introduced by the thread size prior, whilst in the
known-item task the ambiguity of the queries meant that the
classification accuracy was mediocre, which influenced the
quality of retrieval.

As to the expert search task, we found that the perfor-
mance depends crucially on the ability to recognize names of
experts. A textual representation of candidates’ knowledge
has been created according to the documents with which
they are associated. In follow-up work we are exploring a
second approach which does not create a candidate model
directly, but assumes conditional independence between the
query and the candidate and builds a so-called aspect model.
Initial results from experiments aimed at comparing the two
approaches seem to favor the this second, and they confirm,
yet again, that the quality of document-candidate associa-
tions has great influence on the performance in case of both
models.
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