
RMIT University at TREC 2005: Terabyte and Robust Track
Yaniv Bernstein Bodo Billerbeck Steven Garcia

Nicholas Lester Falk Scholer Justin Zobel
School of Computer Science and Information Technology

RMIT University, GPO Box 2476V, Melbourne 3001, Australia

William Webber
Department of Computer Science and Software Engineering

The University of Melbourne, Melbourne 3010, Australia

1 Introduction

RMIT University participated in the terabyte and robust tracks in TREC 2005.
The terabyte track consists of the three tasks: adhoc retrieval, efficient retrieval, and named page finding.

For the adhoc retrieval task we used a language modelling approach based on query likelihood, as well as a
new technique aimed at reducing the amount of memory used for ranking documents. For the efficiency task,
we submitted results from both a single-machine system and one that was distrubuted among a number of
machines, with promising results. The named page task was organised by RMIT University and as a result
we repeated last year’s experiments, slightly modified, with this year’s data.

The robust track has two subtasks: adhoc retrieval, and query difficulty prediction. For adhoc retrieval,
we employed a standard local analysis query expansion method, sourcing expansion terms for different runs
from the collection supplied, from a side corpus, or a combination of both. In one run, we also tested
removing duplicate documents from the list of results; in order to predict topic difficulty, we evaluated
different document priors of the documents in the result set, in the hope of supplying a more robust set of
answers at the cost of returning a potentially smaller number of relevant documents. The second task was to
predict query difficulty. To this end, we compared the order of the documents in the result sets to the ordering
as determined by document priors. A high similarity in orderings indicated that the query was poor. Two
different priors were used. The first was based on document access counts, where each document is given
a score that is derived from how likely it is to be ranked by a randomly generated query. The second was
directly related to the document size.

In this paper we outline our approaches and experiments in both tracks, and discuss our results.

2 The Zettair Search Engine

We used zettair for all experiments outlined in this paper. Zettair is a publicly available retrieval en-
gine developed by the Search Engine Group at RMIT University. It is available under a BSD license from
http://www.seg.rmit.edu.au/zettair and was described in more detail in our submission to TREC
last year (Billerbeck et al., 2004).

3 Terabyte Track

We participated in all three tasks: adhoc, efficiency and named page finding. The description of the runs and
the results are given in the following for each of the three tasks.

3.1 Adhoc Task

Unlike last year, where we used Okapi BM25, both adhoc runs we submitted this year are based on language
modelling, using a query likelihood approach with Dirichlet smoothing.

Dirichlet-smoothed Language Modelling

The query likelihood can be formulated as follows:

P (q|d) =
∏

t∈q

P (t|d)

where q is the user query, while document d is one of N documents in the collection, ft of which contain
term t. The Dirichlet-smoothed term probability (Zhai and Lafferty, 2004) is:

P (t|d) =
|d|

µ + |d|
×

ft,d

|d|
+

µ

µ + |d|
×

ft

N

where |d| is the length of document d, ft,d is the number of occurrences of term t in document d, and µ
is a smoothing parameter. Through a series of rank-equivalent transformations, the query likelihood can be
efficiently computed by:

log P (q|d)
rank
= |q| × log λd +

∑

t∈q∩d

log

(

N × ft,d

µ × ft

+ 1

)

where λd = µ/ (µ + |d|). We trained µ on last year’s terabyte topics, and set µ to a value of 1,500. No
stopping was used for this task and – due to an oversight – neither was stemming. Using this approach to the
query likelihood model we obtained the run ZETDIRHOC. This run was used as a baseline to compare against
the following run.

Effective Accumulator Limiting

For the ZETDIRA run made use of a new accumulator scheme, which limits accumulators for greater memory
efficiency during query evaluation.

This scheme is employed for query evaluation using document-ordered inverted lists processed in a term-
wise fashion. It keeps accumulators in a linked list for ease of insertion and removal. Unlike previous
schemes (Moffat and Zobel, 1996), once an accumulator is added for a particular document, it can be re-
moved, depending on a partial similarity threshold that is varied in order to control the number of accumu-
lators used to evaluate the query. For each term, the floating point partial similarity threshold corresponds
to an fd,t occurrence threshold, which postings potentially creating new accumulators must exceed before
being inserted into the accumulator list. However, existing accumulators are removed if they fall below the
partial similarity threshold as they are examined. The partial similarity threshold is set to the minimum
partial similarity value while there is no possibility of the accumulator limit being exceeded. Once a suffi-
ciently frequent term is processed that limiting must be employed, an initial partial similarity threshold is
estimated from the first few postings. This threshold is re-evaluated periodically, with the period between
re-evaluations doubling each time. A simple statistical estimate of the number of expected accumulators at
the end of the term is made during each re-evaluation. If this estimate is within a tolerance factor of the
accumulator limit, no changes are made to the thresholds. Otherwise, the fd,t threshold is adjusted up or
down by a step, with the partial similarity threshold adjusted correspondingly. The step quantity is initially
set to half of the fd,t threshold, and halves after each re-evaluation. See Lester et al. (to appear) for a full
description of this method.

For the ZETDIRA run, we used the new scheme with a limit of 100,000 accumulators, which is 0.4% of
the collection size. We employed the same accumulator scheme for the baseline run, but since we used a
large accumulator size – 240,000 accumulators for 24,000,000 documents, which has been shown to have
virtually no impact on retrieval performance (Moffat and Zobel, 1996) – we effectively did not make use of
the accumulator limiting scheme for the baseline.

Run Technique employed MAP P@10 P@20 bpref R-P
Median 0.282 – – 0.303 –
ZETDIRHOC Baseline 0.279 0.556 0.516 0.300 0.341
ZETDIRA Adaptive pruning 0.276 0.548 0.508 0.295 0.336

Table 1: Effectiveness of terabyte ad-hoc task runs based on mean average precision (MAP), precision at
10 and 20 documents returned (P@10, P@20), preference relation based on binary relevance judgements
(bpref), and precision at the number of relevant documents for each query (R-P).

Results

Results for the adhoc runs are shown in Table 1. Our results are reasonably close to the median results
obtained over all submitted runs. As expected, the average effectiveness results of our adaptive pruning
scheme are effectively the same as the baseline scheme. Note that this scheme has only a negligible effect on
evaluation time, but it has a far lower memory consumption (see Lester et al. (to appear) for details).

3.2 Efficiency Task

We submitted two runs for the efficiency task. The first one is zettair as described in Section 3.1, using
a query likelihood approach with Dirichlet smoothing, but here we used stemming (which was not used for
the effectiveness task). There were also other minor differences, as explained below. For the second run, we
used a modified system in order to evaluate queries in a distributed manner.

Monolithic

We made the following modifications to the search engine that was used for the baseline adhoc run. We
used a stoplist of 477 terms to stop queries. However, the index was not stopped. Furthermore, in order to
decrease the size of the index and speed up query evaluation (since less data has to be processed), we did not
store word offsets in the index.

The machine we used for this experiment was a Intel Pentium IV 2.8 GHz with 2 GB of main memory
running Fedora Core 2. More details are given in Table 2.

Distributed

For the distributed run (ZETDIST) we used a cluster of eight evaluator nodes and one controller. Each eval-
uator node was a single-processor 2.8 GHz Intel Pentium IV with 1 GB of RAM and a single 250 GB local
SATA disk. The index was partitioned document-wise; that is to say, each of the nodes held a local index
for one eighth of the documents in the collection. These local indexes were essentially independent of each
other, except that global term weights were used during evaluation. Each query was forwarded to each of
the nodes by the cluster controller. Each node then evaluated the query against its portion of the index, using
the same approach as for the monolithic run, that is, no term offsets were stored in the index. However, no
stopping was performed. Once evaluated, the top results and scores were sent back to the controller. Finally,
the controller merged the scores and returned the results.

The total query evaluation time on the cluster was 2901.7 seconds. We note in passing that we observed
the requirement, clarified on the task mailing list, that queries be executed serially. This means that the result
for one query was returned before processing on the next query began. If this requirement was relaxed, and
the parallel processing of queries was allowed (still requiring, though, that queries be started in arrival order),
then a significant improvement in processing time could be achieved. For comparison, we conducted (but
did not submit) a run allowing up to 24 queries to be processed in parallel. This run took 2283.6 seconds,
a speedup of over 25%. Allowing the parallel processing of queries is particularly necessary to achieve
maximal throughput for alternative architectures based around partitioning the index by vocabulary, rather
than by corpus.

All runs submitted Our runs submittedCharacteristic Maximum Median Minimum ZETDIR ZETDIST
Percentage of doc collection indexed 100 100 66 100 100
Indexing time (minutes) 23,528 990 44 595 64
Av. time to return top 20 docs (secs) 4.4 0.47 0.024 0.23 0.06
Total proces. time for all topics (secs) 219,354 17,730 1,201 11,565 2,901
Total number of CPUs in system 23 2 1 1 8
Total amount of RAM in system (GB) 23 4 1 2 8
Size of on-disk file structures (GB) 600 63 5.99 17 19
Year of system purchase 2005 2004 2002 2004 2004
Estimated hardware cost (US$) 45,000 5,000 750 1,200 6,000

Table 2: System details for runs submitted for the efficiency task.

Run Technique employed MAP P@10 P@20 bpref R-P Time (sec)
ZETDIR Monolithic 0.067 0.570 0.541 0.053 0.080 0.23
ZETDIST Distributed 0.061 0.574 0.530 0.052 0.075 0.06

Table 3: Effectiveness and efficiency of terabyte efficiency runs. In addition to the measurements described
in Table 1, average query times in seconds are shown. The median average query time of all systems was
0.47 seconds.

Results

Table 2 gives a summary of the two systems that we used for the runs, as well as an overview of the range of
systems that were used by other participants.

The results of our two runs are shown in Table 3. Since no more than 20 results per query were listed, only
the precision at 10 and 20 documents returned is comparable with the adhoc results (other measurements such
as MAP are not meaningful when comparing runs against those of other tasks, where up to 1000 answers were
returned). Again, both runs produced quite comparable results; while the monolithic run is slightly ahead in
most effectiveness measures, the distributed run by far outperforms the former in terms of efficiency, by a
factor of four. However, this increase in efficiency is coupled with a similar increase in cost for the distributed
system.

3.3 Named Page Finding Task

Our research group created the topics for this year’s named page finding task. To avoid any possible advan-
tage from our knowledge of the query creation process, we limited ourselves to producing runs using mostly
the same configurations as submitted to last year’s terabyte track.

We submitted a baseline run, one run that made use of anchor text, one that gave a higher weighting to
pages that contained query terms in a small text window, and one where results were restricted to documents
where all query terms appeared in the first 50 terms. These runs are briefly discussed in the following
sections; for more detail, see our paper from TREC 2004 (Billerbeck et al., 2004).

Baseline

For the baseline run (ZETNP), we used the standard zettair system with Okapi BM25 (Sparck Jones et al.,
2000):

BM25(q, d) =
∑

t∈q

log

(

N − ft + 0.5

ft + 0.5

)

×
(k1 + 1)fd,t

K + fd,t

where K = k1 ×

(

(1 − b) + b × |d|×N
∑

i∈N
|di|

)

, k1 = 1.2, and b = 0.75. Since we set k3 to 0, the query-term

frequency component can be dropped from the typical formulation. The main reason for using Okapi is that
it is easier to combine with the anchortext ranking scheme that we used, as described below.

Anchortext

For the ZETNPANC run, we combined results from the full text index with an index obtained from anchor text,
using the metric devised by Hawking et al. (2004). For this scheme, the two scores are linearly interpolated,
mixing the score of the full text with the anchor text score in a ratio of 4:1. This is the same setting as used
last year (that is, we did not train on last year’s data). This run was also used as a basis for the next run,
described below.

The anchortext index was constructed from a collection of surrogate documents, where each document
in the collection was replaced by the anchor text from inlinks pointing to the document.

Fuzzy Phrase

We followed our intuition (and earlier, unpublished results) that a document may be a good match if it
contains phrases that are made up of query terms, even though these query terms were not explicitly specified
by the user as a phrase. We extended the concept of phrases to include fuzzy phrases; here, query terms appear
in a short text window, possibly interspersed with other terms. A necessary parameter to consider then is the
fuzziness between an exact phrase and its fuzzy phrase counterpart. This parameter governs how large the
text window may be. In our case, we used a window size of 20 terms. A fuzzy phrase is also one where terms
appear in any order other than that specified in the query, as long as there are no other terms in-between.

To arrive at the ranking for the ZETNPANCFUZZ run, we mixed the baseline results (72%) in linear
combination with scores resulting from anchor text (18%) and the fuzzy phrase scores (10%). The value
of 10% was derived by training using the GOV1 collection and the topics and relevance judgements for the
named page finding task last year.

Priority

The ZETNP50W run employs a priority scheme, for which those documents are ranked higher where all query
terms appear within the first 50 terms of each document. Again, linear interpolation was used between scores
derived conventionally and those based on the priority scheme, using a ratio of 9:1. Unlike last year, this year
we did not make use of anchor text for this run.

Results

The results for the named page finding task are shown in Table 4. Our results are somewhat disappointing:
even the best run is worse than the mean MRR achieved by all systems and runs. There are two possible
reasons for this: we used (more or less) the same approaches as for last year, which were aimed at an adhoc
task, rather than designed for a named page finding task. However, comparing our runs, the priority scheme
(run ZETNP50W) was by far the best, which is surprising, since it did not make any use of anchor text, which
is typically a good source of document descriptors for named page finding tasks.

4 Robust Track

We submitted four title-only runs and one mandatory description-only run to the Robust track. Our runs were
all automatic; details of the runs are described in the following sections, and summarised in Table 5.

Run Technique employed MRR Found in top 10 No answer found
Mean 0.379 – –
ZETNP Plain 0.067 46.8% 23.8%
ZETNPANC Anchortext 0.258 44.0% 23.4%
ZETNPANCFUZZ Anchortext, Fuzzy Phrase 0.277 46.0% 23.4%
ZETNP50W Priority 0.318 48.4% 23.8%

Table 4: Effectiveness of terabyte named page finding runs, showing mean reciprocal rank (MRR), the per-
centage of queries for which an answer was found in the top 10 documents, and the percentage of queries
for which no answer was found. The mean MRR result is calculated over the median MRR of all queries
submitted by all participants.

Expansion parametersRun ID Run type
|R| |E|

Source of expansion terms

RMIT5D1025 description-only 10 25 AQUAINT
RMIT5T0000 title-only – – –
RMIT5T1025 title-only 10 25 AQUAINT
RMIT5T0530N title-only 5 30 AQUAINT, NW, REUTERS
RMIT5T1545TD title-only 15 45 NW

Table 5: Summary of robust runs.

4.1 Adhoc Task

We used the local analysis query expansion method as proposed by Robertson and Walker (1999). Using
the setup as described in Section 2, the initial query is ranked against the collection using the Okapi BM25
similarity measure, and the top R documents are identified (see below for variations to this method). All
terms from these documents are extracted and each of them is assigned a Term Selection Value:

TSVt =

(

ft

N

)rt

×

(

|R|

rt

)

where ft is the number of documents in the collection that contain term t, N is the number of documents
in the collection, |R| is the size of the local set and rt is the the number of documents in R the contain
term t. Using this formula, |E| terms with the lowest selection value are selected and appended to the query.
Their weighting is determined using the Robertson/Sparck Jones weight (Robertson and Sparck Jones, 1976,
Robertson and Walker, 1999):

wt =
1

3
× log

(rt + 0.5)/(ft − rt + 0.5)

(|R| − rt + 0.5)/(N − ft − |R| + rt + 0.5)

The value of 1/3 was recommended by Robertson in unpublished correspondence, and is used to dampen
the impact of expansion terms on the document ranking, when compared to that of the original query terms.
(We confirmed this value as suitable in unpublished experiments.) Finally, the query is rerun against the
collection.

Collection Selection

In preparation for our runs, we used several collections. One is the target collection for the robust track
this year, AQUAINT. It was also used for the novelty track last year and has been described in this context
(Soboroff and Harman, 2003). Another is the newswire collection used for the adhoc tracks for TREC 7
and 8 (Voorhees and Harman, 1999). It consists of the data provided on TREC disks 4 and 5, not including
the congressional record. We will refer to this collection as NW. Finally, we used the REUTERS collection,
which contains the full set of newswire articles from the Reuters news agency for a one year period from
August 1996 (http://www.reuters.com/researchandstandards/corpus/).

In some runs, in particular RMIT5T0530N and RMIT5T1545TD, instead of ranking initial queries against
the AQUAINT collection in order to identify a local set of documents, alternative collections were used: for
RMIT5T0530N, in addition to the AQUAINT collection, we also used the adhoc collection from NW; for
RMIT5T1545TD we used only the latter.

The underlying idea for the use of enlarged collections or larger external collections is that retrieval
effectiveness – particularly in the high ranks – is greater if a larger collection is used (Hawking and Robertson,
2003). Since the local set consists of documents in the top ranks, and local analysis is based on the assumption
that sourcing terms from relevant documents is useful, the more relevant documents that are included in the
local set, the higher the quality of expansion terms. This approach has been used since TREC 6, see for
example Walker et al. (1997) or Allan et al. (1997).

A danger with using additional collections is that query terms might appear in different contexts than
in those provided in the target collection (Kraaij, 2004, Chapter 3). We therefore only experimented with
newswire collections, which we assume to have a similar use of vocabulary. Although different topics are
bound to be covered in different newswire collections, we hope that the mix of those might be helpful for
retrieval.

Training of Query Expansion Parameters and Collections

In earlier work, we found that varying the parameters |R| (the number of documents in the local set) and |E|
(the number of expansion terms added to the query) can have a marked impact on retrieval effectiveness
(Billerbeck and Zobel, 2004). We therefore trained the local analysis parameters by way of a simple com-
binatorial search through the following space of parameters, using last year’s robust track collection and
queries as well as relevance judgements. We varied the number of expansion terms (|E|) added to the initial
query through 2, 5, 10, 15, 20, 25, 30, 60, 75, and 90. |R|, the size of the initially retrieved documents, was
varied through 1, 2, 5, 10, 15, and 20. Each resulting set of parameters was tested by sourcing expansion
terms from the AQUAINT, NW, or REUTERS collections, as well as any combination of these collections. The
parameter settings and collection choice that showed most promise were used for the official runs submitted
to the TREC robust track for 2005.

Co-derivative Document Removal

The robust track, and the gMAP measure, are designed to emphasise reasonable worst-case performance on
poor queries over more fragile strategies that are capable of extremely good best-case performance but offer
few guarantees in the worst case. As such, it is of greater importance to return some relevant documents
consistently than to return many relevant documents occasionally.

Our intuition is that documents that are co-derived – that is, documents that share a common heritage
– are more likely to either both be relevant or both be irrelevant. Given this, it is plausible to hypothesise
that removing documents from the result list if they are co-derived with an earlier document will increase
diversity, and hence increase the probability that at least some relevant documents are present amongst the
top n documents in the result list.

We used the DECO document fingerprinting software (Bernstein and Zobel, 2004, 2005) to identify pairs
of documents that shared some proportion of text. We set the threshold to 0.15, meaning that a pair of
documents had to share about 15% of their text before they were considered co-derivative.

The removal of co-derivative documents was done as a postprocessing step. Zettair was used to create
a run with 2,000 results for each query. The run was then postprocessed so that any document that was
co-derived with any document higher in the result list was removed. Removal of documents resulted in
promotion of all documents lower in the list. Once this process was complete, the top 1,000 remaining
documents for each query were selected to form the official run submitted.

Due to the submission limit we were not able to submit official runs for the same set of parameters with
duplicates removed and not removed. However, upon release of the official relevance judgements for the
robust track we evaluated the same run in which co-derivative documents had not been removed. No other
parameters were tuned or changed.

Run MAP P@10 gMAP
RMIT5T1545TD 0.146 0.410 0.098
without removing co-derived documents 0.186 0.416 0.119

Table 6: Comparison of official run with co-derivative documents removed, and a run where all documents
are left in the result set. See Table 7 for a description of columns.

Run ID Run type MAP P@10 gMAP Area
Median description-only 0.184 0.386 0.103 1.226
RMIT5D1025 0.160 0.368 0.066 1.447
Median title-only 0.224 0.434 0.129 1.425
RMIT5T0000 0.157 0.398 0.089 1.633
RMIT5T1025 0.224 0.432 0.117 2.487
RMIT5T0530N 0.218 0.424 0.129 2.118
RMIT5T1545TD 0.146 0.410 0.098 0.946

Table 7: Summary of robust results, showing mean average precision (MAP), precision at 10 retrieved docu-
ments (P@10) and the geometric MAP (gMAP). Also shown are the areas between the best possible ordering
of predicted topic difficulty, and the difficulty we predicted. The median figures are for all runs submitted to
the robust track by all participants.

The results are shown in Table 6. The removal of co-derivative documents from the results list was not
successful in improving the average performance of the zettair search engine for this dataset. This means
that the promotion of documents in the run was insufficient to compensate for the removal of relevant docu-
ments by the co-derivative removal process. This occurs, presumably, because – in an effectively functioning
search-engine – pairs of co-derived documents near the top of the run are more likely to be relevant than those
promoted from the bottom of the run. Thus, the net effect is a loss of effectiveness as measured. We observed
the same phenomenon for the TREC 2004 terabyte track (Bernstein and Zobel, 2005), but it is interesting to
note that it is still the case even for the gMAP measure.

Results

Since we experimented with different parameters and collection selections for different runs, together with
novel approaches such as the duplicate detection, it is difficult to conclude from the five submitted runs alone
which approaches were useful and which were not.

Results are shown in Table 7. Unsurprisingly the run without expansion (RMIT5T0000) performed worst
among our title-only runs for all three effectiveness measures. As discussed previously, the general TREC
effectiveness evaluation framework (excluding the novelty tracks of previous years) rewards runs where
multiple copies of the same (or at least co-derived) relevant document is ranked. The run which removed
near duplicate documents (RMIT5T1545TD) therefore performed reasonably badly.

Our best runs were those that made use of expansion. While the run that sourced terms from the AQUAINT
collection only (RMIT5T1025) achieved slightly higher mean average precision and precision at 10 fig-
ures, the run which sourced expansion terms from a larger pool of documents (RMIT5T0530N) achieved a
marginally better geometric mean average precision. Both runs show comparable effectiveness.

Although we have shown in previous work that query expansion does not increase robustness for a query
set on average (Billerbeck and Zobel, 2004), it does seem to increase the effectiveness of those queries that
achieve only low performance.

4.2 Topic Difficulty Prediction

One task of the robust track is topic difficulty prediction. In this task participants are asked to predict the
difficulty of a run by producing a ranking from best to worst performing topic. Using the average precision

of each topic, the predicted topic difficulty ranking is then compared to the actual performance over the run.
Past submissions to the robust track have typically either considered query term related statistics, or have

relied on the similarity measure between the query and results (Voorhees, 2004). It has been shown that
documents within a collection have a non-uniform likelihood of retrieval (Singhal et al., 1996, Garcia et al.,
2004). Such information can be used to construct prior probabilities of document access. Other information
retrieval tasks have used prior evidence such as PageRank (Page et al., 1998) and document length to improve
retrieval effectiveness (Craswell et al., 2005, Kraaij et al., 2002). However, to the best of our knowledge
no-one has explored the value of document priors for topic difficulty prediction. The use of such values for
prediction is appealing because, for each topic, there is minimal computational effort required. The document
priors are pre-calculated at indexing time, and query term specific data is not required.

Proposed Techniques

Our approach to query difficulty prediction attempts to take advantage of the non-uniform likelihood of
document access by a retrieval system. For each document in the collection, a probability is generated that
represents the likelihood that the document will be retrieved by the search system. That is, for any given
query we generate a probability of document access. Using these probabilities, an absolute ordering can be
achieved from most likely to be accessed to least likely to be accessed. In a sense, this ordering represents
a form of default ranking for documents in the collection. We label this ranked set of probabilities the
retrieval-likelihood ordering.

By comparing the absolute ordering of documents based on retrieval-likelihood to the order of the those
documents returned in a topic result set, we can estimate how difficult a topic was to answer. The rationale
is that those queries that produce ranked result sets that contain documents in much the same order as the
global ordering do not have strong discriminating power. As such, these queries are considered to be difficult
to answer. Conversely, queries that produce ranked result sets that are mostly ordered in a different manner
to the global ordering are considered simpler to answer by the system.

Two aspects of importance to our approach are the generation of the retrieval-likelihood values, and the
method used to compare the ordering of documents by retrieval-likelihood to that of the ranked result set.

Given a collection and a query log for that collection, access-counts can be used to measure the skew of
document access by a search engine (Garcia et al., 2004). To generate our retrieval-likelihood probabilities
we used an approach similar to that of access counting, but instead of processing a complete query log over
a document collection, we processed a single query that was the amalgamation of every distinct term in the
collection. Using the Okapi similarity metric (see Section 3.3), we generated a rank for every document
in the collection based on its similarity to the current query. These ranks were then used as an indication
of which documents in the collection are most likely to be retrieved. The advantage of this approach is
that a result for every document in the collection can be generated with a single pass over the index. For
comparison purposes, we also submitted a run using document length as the basis for our probabilities with
larger documents being more likely to be retrieved. The length bias of search metrics was noted by Singhal
et al. (1996).

To compare the order of the ranked results with the retrieval-likelihood ordering we applied three tech-
niques. The first was to use Kendall’s τ to measure the disagreement between the two orderings directly
(Stuart, 1983). The second was to use the average rank of documents in the result sets, and the third was to
use product of document priors. Due to the track guidelines we were only able to submit one prediction set
with each submitted run. This limitation prevents the results from being directly comparable, as each sub-
mitted run uses a different query evaluation technique (see Section 4.1) and a different difficulty prediction
technique.

To compare the different techniques outlined above, we submitted the following five runs:

• as-k-1000: This run uses Kendall’s τ over the full 1,000 results per query, with the global ordering
based on our access-count variant for the retrieval-likelihood of the documents. A low τ score marked
disagreement between the ranked result set and the global ordering, therefore the query is considered
to be simple to answer.

AS-K-1000 AS-K-50 AS-P-1000 AS-A-1000 DL-K-1000
RMIT5D1025 1.447† 1.683 1.374 1.382 1.379
RMIT5T0000 0.843 1.633† 1.668 1.631 0.907
RMIT5T0530N 1.210 1.796 2.118† 2.149 1.307
RMIT5T1025 1.566 1.891 2.478 2.488† 1.732
RMIT5T1545TD 0.917 1.339 1.203 1.214 0.946†

Table 8: Combinations of all runs and query difficulty prediction measures used. The five predictions that
were submitted to TREC are marked with a †.

• as-k-50: As in the previous run, but here we only consider the top 50 ranked results per query for the τ
disagreement. This variant is based on the assumption that in a collection of this size it is unlikely that
all 1,000 retrieved results will be highly relevant to the query, therefore they should not be considered
in the difficulty prediction.

• as-p-1000: This run uses the product of the probabilities of documents in the result set. Our access-
count variant is used for the retrieval-likelihood probabilities. High products suggest a larger range of
regularly accessed documents, therefore the query is difficult to answer. Although simplistic in design,
this scheme should indicate if the number of frequently retrieved documents per query suggests topic
difficulty.

• as-a-1000: It is possible that in the product of probabilities approach, a few low probability documents
can significantly skew the query difficulty estimate. An alternate way of considering the amount of
commonality among the per-query results is to take the average of the global ranks of each document
in the result set (that is, instead of considering actual prior probabilities, the prior rank position of each
document is used). Similar to the the product technique, a higher average rank suggests a difficult
query.

• dl-k-1000: The previous four techniques utilise priors based on access-counts. In this run we employ
a technique that uses document length for priors. This approach uses Kendall’s τ over the full 1,000
results per query in a similar manner to the as-k-1000 approach.

Results

Table 8 shows the area-under the curve results for variant runs. A lower area under the curve value signifies
a stronger correlation between the prediction and the actual results. Values marked with a † denote the
variants that were submitted with each of the five submitted runs. To enable a clearer comparison between
the techniques, the remaining entries in the table have been post-calculated using the relevance judgements.

The AS-K-1000 method based on access-count document-likelihoods and Kendall’s τ was the most ac-
curate at predicting query difficulty over the variant runs with the exception of the description only run.
The DL-K-1000 based on document length and Kendall’s τ produced similar results to AS-K-1000, but was
generally outperformed by the access-count priors.

The AS-K-50 technique, which is based only on the top 50 results per query, was unable to discriminate
as effectively as using all results per query. This suggests that all documents, both likely and unlikely to be
relevant, help determine the difficulty of the topic using our document-likelihood techniques.

The AS-P-1000 product of priors, and AS-A-1000 average rank techniques that were hoped to show that
the fraction of frequently retrieved documents can indicate query performance, varied in effect producing
only one relatively effective run of the five submissions.

While not as sophisticated as techniques such as query clarity (Cronen-Townsend et al., 2002), which
have been successfully applied by Amati et al. (2004) in a similar context, the results of these predictions
show that document priors are a factor that can be considered in predicting the performance of a retrieval
system.

It is promising that these results do provide some indication of query difficulty given that only the query
results are considered when making the prediction and no use is made of query term information. It is our

hope that, in combination with more advanced techniques, these approaches can help improve query difficulty
prediction.

5 Conclusion

In this year’s terabyte efficiency task, we confirmed the strong RMIT tradition of efficient systems while
retaining good effectiveness. The adhoc task was disappointing, with the lack of stemming giving us poor
effectiveness results, but still served to validate our new accumulator limiting scheme. The bulk of our effort
in the named page task was invested in co-ordination of the task.

In the robust track, we confirmed what has become clear from last year’s TREC: query expansion is
essential in order to increase the robustness of badly performing queries. It also seems that using document
priors based on document access counts is a promising technique for predicting query difficulty, particularly
when used in conjunction with other methods, as we are planning to do in future.

Acknowledgements

This work is supported by the Australian Research Council. Hardware for some experiments was provided
with the support of an RMIT University VRII grant.

References
Allan, J., Callan, J., Croft, W. B., Ballesteros, L., Byrd, D., Swan, R. and Xu, J. (1997), Okapi at TREC-6 automatic

ad hoc, VLC, routing, filtering and QSDR, in E. M. Voorhees and D. K. Harman, eds, “Proc. Text Retrieval Conf.
(TREC)”, National Institute of Standards and Technology Special Publication 500-240, Gaithersburg, MD, pp. 169–
206.

Amati, G., Carpineto, C. and Romano, G. (2004), Query difficulty, robustness, and selective application of query expan-
sion, in S. McDonald and J. Tait, eds, “European Conf. on IR Research”, Vol. 2997 of Lecture Notes in Computer
Science, Springer, pp. 127–137.

Bernstein, Y. and Zobel, J. (2004), A scalable system for identifying co-derivative documents, in A. Apostolico and
M. Melucci, eds, “Proc. String Processing and Information Retrieval Symp.”, Springer-Verlag, Padova, Italy, pp. 55–
67.

Bernstein, Y. and Zobel, J. (2005), Redundant documents and search effectiveness, in “Proc. Int. Conf. on Information
and Knowledge Management”. To appear.

Billerbeck, B., Cannane, A., Chatteraj, A., Lester, N., Webber, W., Williams, H. E., Yiannis, J. and Zobel, J. (2004),
RMIT University at TREC 2004, in E. M. Voorhees and L. P. Buckland, eds, “Proc. Text Retrieval Conf. (TREC)”,
National Institute of Standards and Technology Special Publication 500-261, Gaithersburg, MD.

Billerbeck, B. and Zobel, J. (2004), Questioning query expansion: An examination of behaviour and parameters, in
K.-D. Schewe and H. E. Williams, eds, “Proc. Australasian Database Conf.”, Vol. 27, Australian Computer Society,
Dunedin, New Zealand, pp. 69–76.

Craswell, N., Robertson, S., Zaragoza, H. and Taylor, M. (2005), Relevance weighting for query independent evidence,
in A. Moffat, G. Marchionini, J. Tate, R. Baeza-Yates and N. Ziviani, eds, “Proc. ACM-SIGIR Int. Conf. on Research
and Development in Information Retrieval”, ACM Press, New York, Salvador, Brazil, pp. 416–423.

Cronen-Townsend, S., Zhou, Y. and Croft, W. B. (2002), Predicting query performance, in M. Beaulieu, R. Baeza-Yates,
S. H. Myaeng and K. Järvelin, eds, “Proc. ACM-SIGIR Int. Conf. on Research and Development in Information
Retrieval”, ACM Press, New York, Tampere, Finland, pp. 299–306.

Garcia, S., Williams, H. E. and Cannane, A. (2004), Access-ordered indexes, in V. Estivill-Castro, ed., “Proceedings
of the 27th Conference on Australasian Computer Science”, Vol. 26, Australian Computer Society, Dunedin, New
Zealand, pp. 7–14.

Hawking, D. and Robertson, S. E. (2003), “On collection size and retrieval effectiveness”, Kluwer International Journal
of Information Retrieval 6(1), 99–150.

Hawking, D., Upstill, T. and Craswell, N. (2004), Toward better weighting of anchors, in M. Sanderson, K. Järveln,
J. Allan and P. Bruza, eds, “Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Retrieval”,
ACM Press, New York, Sheffield, UK, pp. 512–513.

Kraaij, W. (2004), Variations on Language Modeling for Information Retrieval, PhD thesis, University of Twente.

Kraaij, W., Westerveld, T. and Hiemstra, D. (2002), The importance of prior probabilities for entry page search, in
M. Beaulieu, R. Baeza-Yates, S. H. Myaeng and K. Järvelin, eds, “Proc. ACM-SIGIR Int. Conf. on Research and
Development in Information Retrieval”, ACM Press, New York, Tampere, Finland, pp. 27–34.

Lester, N., Moffat, A., Webber, W. and Zobel, J. (to appear), Space-limited ranked query evaluation using adaptive
pruning, in “Proc. of the Int. Conf. on Web Information Systems Engineering”.

Moffat, A. and Zobel, J. (1996), “Self-indexing inverted files for fast text retrieval”, ACM Transactions on Information
Systems 14(4), 349–379.

Page, L., Brin, S., Motwani, R. and Winograd, T. (1998), The PageRank citation ranking: Bringing order to the web,
Technical report, Stanford Digital Library Technologies Project.

Robertson, S. E. and Sparck Jones, K. (1976), “Relevance weighting of search terms”, Jour. of the American Society for
Information Science 27(3), 129–146.

Robertson, S. E. and Walker, S. (1999), Okapi/Keenbow at TREC-8, in E. M. Voorhees and D. K. Harman, eds, “Proc.
Text Retrieval Conf. (TREC)”, National Institute of Standards and Technology Special Publication 500-246, Gaithers-
burg, MD, pp. 151–161.

Singhal, A., Salton, G., Mitra, M. and Buckley, C. (1996), “Document length normalization”, Information Processing &
Management 32(5), 619–633.

Soboroff, I. and Harman, D. K. (2003), Overview of the TREC 2003 novelty track, in E. M. Voorhees and L. P. Buckland,
eds, “Proc. Text Retrieval Conf. (TREC)”, National Institute of Standards and Technology Special Publication 500-
255, Gaithersburg, MD, pp. 38–53.

Sparck Jones, K., Walker, S. and Robertson, S. E. (2000), “A probabilistic model of information retrieval: Development
and comparative experiments. Parts 1&2”, Information Processing & Management 36(6), 779–840.

Stuart, A. (1983), “Kendall’s tau”, Encyclopedia of Statistical Sciences 4, 367–369.

Voorhees, E. M. (2004), Overview of the TREC 2004 robust track, in E. M. Voorhees and L. P. Buckland, eds, “Proc. Text
Retrieval Conf. (TREC)”, National Institute of Standards and Technology Special Publication 500-261, Gaithersburg,
MD.

Voorhees, E. M. and Harman, D. K. (1999), Overview of the eighth Text REtrieval Conference (TREC-8), in E. M.
Voorhees and D. K. Harman, eds, “Proc. Text Retrieval Conf. (TREC)”, National Institute of Standards and Technol-
ogy Special Publication 500-246, Gaithersburg, MD, pp. 1–23.

Walker, S., Robertson, S. E., Boughanem, M., Jones, G. J. F. and Sparck Jones, K. (1997), Okapi at TREC-6 automatic
ad hoc, VLC, routing, filtering and QSDR, in E. M. Voorhees and D. K. Harman, eds, “Proc. Text Retrieval Conf.
(TREC)”, National Institute of Standards and Technology Special Publication 500-240, Gaithersburg, MD, pp. 125–
136.

Zhai, C. and Lafferty, J. (2004), “A study of smoothing methods for language models applied to information retrieval”,
ACM Transactions on Information Systems 22(2), 179–214.

