CSUSM at TREC2005: Genomics and Enterprise Track
Rocio Guillén
Computer Science Department, California State University San Marcos
email:rguillen@csusm.edu

Abstract

In this paper we report on the approach, experiments and results for the
Enterprise Track and the Genomics Track. We participated in the adhoc and
one of the categorization tasks for the Genomics track. For the enterprise
track we participated in the known-item search. We ran experiments using
Indri [1], which combines inference networks with language modeling, for
the adhoc and the known-item search tasks. For the categorization task we
filtered the documents in different stages using decision trees.

1. Retrieval Engine

Indri is a new language modeling retrieval engine developed at UMass [1] de-
rived from the Lemur project. It was written to handle question answering
and web retrieval tasks using large corpora. It has been used in the Terabyte,
Novelty, and HARD tasks [2]. The engine is implemented using C++ and
runs in different platforms. We installed Indri (Version 2.0) on Linux.

Indri can be used to build an index/repository with the application buildin-
dex, run queries using the index built with the application runquery, and the
indrid application is a repository server. Buildindex can build repositories
from TREC formatted documents (e.g., terabyte track), HTML documents,
text documents and PDF files. It also handles HTML/XML documents.
Runquery evaluates queries using one or more indexes or repositories gener-
ating the results as a ranked list of documents. Indrid waits for connections
from runquery and processes queries from network requests. We only created
indexes and ran queries.

The indexing process in Indri creates the following data structures for the
collection of documents (corpus).

e A compressed inverted file for the collection including term position
information.

e Compressed inverted extent lists for each field indexed in the collec-
tionn.

e A vector for each document, which includes term position information
and field position information.

e A random-access compressed version of the corpus text.

The document vectors are compressed arrays of numbers, where each number
corresponds to some term in the collection.

The Indri query language is based on the Inquery [3]. It can handle sim-
ple queries as well as complex queries. It allows phrase matching, synonyms,
weighted expressions, Boolean filtering, numeric fields, proximity operators.
We used Indri because it is available for research purposes, the source code
code and accompanying documentation are updated frequently, and it has
been successfully tested in other TREC tasks.

2. Enterprise Track

The goal of the Enterprise Track is to study the issues that arise when search-
ing the documents of an enterprise such as web pages, news or email archives.
The two main tasks were Email search and Expert search. The Email search
included two subtasks “known item search” and “discussion search”. We par-
ticipated in the “known item search subtask, which consisted on trying to
find an email message known to exist. Each of the participants contributed
a set of ten query-message pairs of their choice. The selection was performed
using the Glasgow search system to find conference announcements or min-
utes of a meeting containing specific information about a topic or a date.
The coordinators of the track then chose 150 query-message pairs to be used
as the topics, the first 25 topics for the training set and the rest for the test
set. The W3C corpus, an enterprise collection built by the coordinators in
2004 was made available for the track, but the known-item search was based
on just the “lists” portion of the corpus.

2.1 Runs

We submitted two official runs. A description of the work done follows.

2.1.1 Building Indexes

We used the Indri search engine without any additional pre-processing or
modifications to the source code to build the index. The index was created
using the w3c corpus lists with the following parameters:

e class = trecweb,

e metadatafield = docno,
e field = body,

e field = title,

e field = p,

e field = heading

Various indexes were created using different parameters until the results
from running queries against the training set produced good results in terms
of recall and precision. Although the search engine allows for stemming,
Porter or Krovetz algorithm, and for stopword removal we opted to exclude
both.

One of the problems that we found when running the queries is related
to the inclusion of punctuation and special characters e.g., “”’, «/7 “?”
“)?, “#” which generate a syntax error because some of these characters are
part of the Inquery query language. We also assume that the parser ignores
punctuation and when building the index a term such as “C#” is stored as
“C”. Thus, it becomes quite difficult to deal with a topic like “HTML tidy
in C#”.

2.1.2 Running Queries

All the queries were automatically constructed using the only field for the
topic, the title. In the first run we created for each topic an Indri query @
of the form #combine(t;...t,), where t;...t, are the terms in the topic title.
For instance the topic

<top>

<num> Number: KI64 </num>

<title> Why doesn’t Amaya have a hand-shaped cursor? </title>
</top>

translates to
<query>#combine (Why doesnt Amaya have a hand-shaped cursor)</query>

No document was returned for this query. In this case we assume that punc-
tuation has no influence on the outcome. A topic where special characters
are part of the semantics and could not be used to create an Indri query is
the one shown below.

<top>

<num> Number: KI117 </num>
<title> HTML tidy in C# </title>
</top>

had to be created as
<query>#combine (HTML tidy in C)</query>

The document returned was ranked at position 72.

For the second run we added operators to 58 out of the 125 test queries
to improve the results. The operators included were synonyms #syn and
proximity operators #n. For instance topic K133

<top>

<num> Number: KI33 </num>

<title> WSD WG f2f ws reference examples </title>
</top>

translated to
<query>#combine (#1(WSD WG f2f) ws reference examples)</query>

The proximity operator #1 means that relevant documents will contain the
phrase WSD WG f2f, that is we are looking for an exact match. The first run
ranked the returned document at 4 and was ranked 1 by the second run. In
this case proximity operators did improve effectiveness. However, results for

4

other topics showed that the addition of synonyms and proximity operators
did not improve the ranking.

2.2 Results

Results for both runs are presented in Table 1. We show only the topics for
which adding operators resulted in ranking improvement.

Topic Rank Rank | Topic Rank Rank
Tc First Run | Second Run First Run | Second Run
33 4 1115 25 12
49 2 11116 no doc ret 1
51 3 2| 117 72 1
64 no doc ret 11119 2 1
70 21 71122 no doc ret 1
87 2 11125 no doc ret 4
89 84 12 | 127 no doc ret 1
91 42 1133 9 1
101 no doc ret 11136 no doc ret 3
106 4 1] 137 no doc ret 4
107 no doc ret 1| 141 67 3
110 6 2| 142 3 2
111 no doc ret 5| 145 3 1
113 3 2 | 146 no doc ret 1
114 40 1| 148 no doc ret 7

149 no doc ret 1

Table 1. Improving performance using additional operators

A summary of the results for the first and second run, provided by the coor-
dinators of the task, is shown in Table 2.

Run Avg reciprocal rank | # Topics target | # Topics no target

over 127 topics | found in top 10 was found
First 0.362 74 (58.3%) 35 (27.6%)
Second 0.502 89 (70.1%) 28 (22.0%)

Table 2. Summary of results

At present, we do not have information for comparison purposes with other
systems.

2.3 Discussion

Analysis of the results show that 31 out of 58 queries (55.17%) with addi-
tional operators improved the ranking of a document or retrieved a document
that was not retrieved in the first run. We observed that using exact phrases
worked better than synonyms. We are planning to rebuild the index with
stemming and stopwords to ran the same queries; this will help us to deter-
mine how much weight stemming and stopwords have in this task.

3. Genomics Track

The goal of the Genomics Track is to provide a framework for evaluation of
information retrieval systems in the genomics domain [4]. There were two
main tasks namely, ad hoc retrieval and text categorization.

For the ad hoc retrieval task, the task coordinators developed a set of five
generic topic templates (GTT), each containing 10 instances (topics), for a
total of 50 topics. The five GTTs considered were the following: 1) stan-
dard methods or protocols to perform some sort of experiment or procedure;
2) role of a gene involved in a given disease; 3) role of a gene in a specific
biological process; 4) interactions between 2 or more genes in the function
of an organ or in a disease; and 5) mutations of a given gene and its bio-
logical impact. The document collection was the same 10-year subset of the
MEDLINE bibliographic database of the biomedical literature. The total of
records in the subset is 4,591,008. We used the XML formatted documents
distributed in five gzipped files.

The categorization task was a document triage task. The goal of the task
was to see how well systems can categorize documents into four categories:
1) tumor biology; 2) embryologic gene expression; 3) alleles of mutant phe-
notypes; and 4) GO annotation. The data used is from the Mouse Genome
Informatics (MGI) system [5], [6]. The documents are a subset of journal
articles from the Journal of Biological Chemistry (JBC), Journal of Cell Bi-
ology (JCB), and Proceedings of the National Academy of Science (PNAS),
for a total of 10196,6043. We worked with XML formatted documents and
we did not use any of the additional resources available. The subtask we

focused on was tumor biology.
3.1 Runs

We submitted two official runs for each task, ad hoc retrieval task and tumor
biology categorization subtask. A description of the work done follows.

3.1.1 Building Indexes

We created five indexes, one for each of the XML-formatted MEDLINE files,
because we did not have enough disk space to store simultaneously the five
uncompressed files. Documents were not pre-processed and we did not mod-
ify or add code to the Indri system. The five indexes were created separately.
The parameters used were the same for all the files and included the follow-

ing:
e class = trectext,
e field = title,
o field = text

We used trectext as the class because the xml class required one document
per file. This may be one of the reasons why there were no documents
processed for the field Al.

3.1.2 Running Queries

All queries were automatically constructed using the file containing the topic
as a narrative. For the first run we created an Indri query as we did for the
Enterprise Track. Some of the topics included punctuation that we had to
remove.For instance the topics 109 and 148 had a “”’ and a “+”.

<109>Describe the procedure or methods for fluorogenic
5’-nuclease assay.

<148>Provide information about Mutation of familial
hemiplegic migraine type 1 (FHM1) and its/their neuronal
Ca2+ influx in hippocampal neurons.

For the second run we included pseudo-relevance feedback parameters. the
parameter fbDocs is an integer for specifying the number of documents to
use for feedback. We arbitrarily chose 100.

Although smoothing rules are part of the Indri runquery application we
included none.

3.2 Results and Discussion

A summary of the results for both runs is presented in Table 3.

Run Total | Total | Map | R-prec
rel | rel_ret
First 4584 2825 | 0.1803 | 0.2174
Second | 4584 | 2767 | 0.1642 | 0.1931
Table 3. Summary of results

The results show that pseudo-relevance feedback did not improve effective-
ness, but rather decreased. However we cannot reach a definite conclusion
because we ran only one experiment with the first 100 documents. Compar-
ison of our results against those calculated for all the participants running
systems automatically show that for most of the queries our MAP was below
the median.

One of the problems that we found was that for some topics Indri gener-
ated duplicate results at different rankings. To solve the problem we retrieved
more than 1000 documents. Thus, after deleting duplicates the number of
documents retrieved was close to 1000 and fewer adjustments were necessary.

4. Conclusion

Indri provides a robust framework for research. Experiments for the En-
terprise track generated better results than for the Genomics track. Using
proximity operators in the Enterprise track improved results, using pseudo-
relevance feedback in the Genomics track did not. However, a definite con-
clusion cannot be reached about the latter without further experimentation.
The next step is to test some other capabilities that the system offers and
start to modify some of the code to improve our results. Pre-processing
documents is another area we plan to explore.

References

[1] Allan J., Callan, J., Collins-Thompson, K., Croft, B., Feng, F.
Fisher, D., Lafferty, J., Larkey, L., Metzler, D., Truong, T. N,
Ogilvie, P., Si, L., Strohman, Turtle, H., Yau, L., and Zhai, C.:
The lemur toolkit for language modeling and information retrieval.
http://www.cs.cmu. edu/ " lemur/,2005.

[2] Abdul-Jaleel, N.; Allan, J., Croft, B., Diaz, F., Larkey, L., Li, X., Metzler,
D., Smucker, M., Strohman, T., Turtle, H., and Wade, C.: UMass at
TREC 2004: Notebook. TREC 2004, 2004.

[3] Callan, J., Croft, B., and Harding, S.: The INQUERY retrieval system.
In DEXA-92, pp. 78-83.

[4] Genomics Track Web Site: http://ir.ohsu.edu/genomics, 2005.

[5] Eppig, J., Bult C., Kadin, J., Richardson, J., Blake, J., and the members
of the Mouse Genome Database Group : The Mouse Genome Database
(MGD): from genes to mice—acommunity resource for mouse biology. Nu-
cleic Acids Res 33:D471-D475. 2005.

[6] Nf, D., Krupke, D., Sundberg, J., Eppig, J., Bult, C. : The Mouse Tumor
Biology database: a public resource for cancer genetics and pathology of
the mouse. Cancer Res 62(5):1235-40. 2002.

