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Abstract

This paper summarizes our participation in the TREC 2005 spam track, in which
we consider the use of adaptive statistical data compression models for the spam
filtering task. The nature of these models allows them to be employed as Bayesian
text classifiers based on character sequences. We experimented with two different
compression algorithms under varying model parameters. All four filters that we
submitted exhibited strong performance in the official evaluation, indicating that
data compression models are well suited to the spam filtering problem.

1 Introduction

The Text REtrieval Conference (TREC) is an annual event devised to encourage
and support research within the information retrieval community by providing the
infrastructure necessary for large-scale evaluation of text retrieval methodologies. In
2005, the set of tracks included in TREC was expanded with the addition of a new
track on spam filtering. The goal of the spam track is to provide a standard evalua-
tion of current and proposed spam filtering approaches. To this end, a methodology
for filter evaluation and a software toolkit that implements this methodology were
developed. As a testbed for the comparison, a collection of evaluation corpora, both
public and private, was also compiled by the organizers of the track.

This paper describes the system submitted to the spam track by the Department
of Intelligent Systems at the Jozef Stefan Institute in Slovenia (“Institut Jožef Ste-
fan” - IJS). The primary goal of our participation was to evaluate a character-based
approach to spam filtering, as opposed to common word-based methods. Specifi-
cally, we consider the use of adaptive statistical data compression models for the
spam filtering task. The nature of these models allows them to be employed as
Bayesian text classifiers based on character sequences (Frank et al., 2000). We com-
pare the filtering performance of the Prediction by Partial Matching (PPM) (Cleary



and Witten, 1984) and Context Tree Weighting (CTW) (Willems et al., 1995) com-
pression algorithms, and study the effect of varying the order of the compression
model.

Our approach is substantially different from the methods adopted by typical
spam filtering systems. In most spam filtering work, text is modeled with the
widely used bag-of-words (BOW) representation, even though it is widely accepted
that tokenization is a vulnerability of keyword-based spam filters. Some filters, such
as the Chung-Kwei system (Rigoutsos and Huynh, 2004), use patterns of characters
instead of word features. However, their techniques are different to the statistical
data compression models that are evaluated here. In particular, while other sys-
tems use character-based features in combination with some supervised learning
algorithm, compression models were designed from the ground up for the specific
purpose of modeling character sequences. Furthermore, the search for useful char-
acter patterns is expensive, and does not lend itself well to the incremental learning
setting that was used for the TREC evaluation. To our knowledge, our system was
the only character-based system that was evaluated in the spam track at TREC
2005.

The remainder of this paper is structured as follows. Section 2 outlines the
approach to spam filtering that was adopted in our system with a brief review of
statistical data compression models and the relation to Bayesian text classification.
We then describe the filter evaluation procedure that was used for TREC 2005, as
well as the four system configurations that were submitted for the official runs by
our group (Section 3). In Section 4, we summarize the relevant results from the
official evaluation. The major conclusions that can be drawn from the evaluation
are presented in Section 5, which also outlines our plans for the future development
of our system.

2 Methods

The “IJS” system uses statistical data compression models for email classification.
Such models can be used to estimate the probability of an observed sequence of
characters. By building one model from the training data of each class, compres-
sion models can be employed as Bayesian text classifiers (Frank et al., 2000). The
classification outcome is determined by the model that deems the sequence of char-
acters contained in the target document most likely. The following subsections
describe our methods in greater detail.

2.1 Statistical Data Compression Models

Probability plays a central role in data compression: Knowing the exact probability
distribution governing an information source allows us to construct optimal or near-
optimal codes for messages produced by the source. Statistical data compression
algorithms exploit this relationship by building a statistical model of the information
source, which can be used to estimate the probability of each possible message that
can be emitted by the source. Each message d produced by such a source is typically
represented as a sequence sn

1 = s1 . . . sn ∈ Σ∗ of symbols over the source alphabet Σ.



For text generating sources, a symbol is usually interpreted as a single character. To
make the inference problem tractable, each symbol in a message d ∈ Σ∗ is assumed
to be independent of all but the preceding k symbols (the symbol’s context):

P (d) =
|d|∏
i=1

P (si|si−1
1 ) ≈

|d|∏
i=1

P (si|si−1
i−k) (1)

The number of context symbols k is also referred to as the order of the model.
To achieve accurate prediction from limited training data, compression algorithms
typically blend models of different orders, much like smoothing methods used for
modeling natural language (n-gram language models).

2.1.1 Prediction by Partial Matching

The Prediction by Partial Matching (PPM) algorithm (Cleary and Witten, 1984)
uses a special escape mechanism for smoothing. An order-k PPM model works as
follows: When predicting the next symbol in a sequence, the longest context found
in the training text is used (up to length k). If the target symbol has appeared in
this context in the training text, its relative frequency within the context is used
as an estimate of the symbol’s probability. These probabilities are discounted to
reserve some probability mass for the escape mechanism. The accumulated escape
probability is effectively distributed among symbols not seen in the current context,
according to a lower-order model. The procedure is applied recursively, ultimately
terminating in a default model of order −1, which always predicts a uniform dis-
tribution among all possible symbols. Many versions of the PPM algorithm exist,
differing mainly in the way the escape probability is estimated. In our implementa-
tion, we used escape method D (Howard, 1993) in combination with the exclusion
principle (Sayood, 2000).

2.2 Context Tree Weighting

The Context Tree Weighting (CTW) algorithm (Willems et al., 1995) uses a mixture
of all tree source models up to a certain order to predict the next symbol in a
sequence. Each such model can be interpreted as a set of contexts with one set of
parameters (i.e. next-symbol probabilities) for each context in the model. These
contexts form a tree. The CTW algorithm blends all models that are subtrees of
the full order-k context tree (see Figure 1). When predicting the next symbol,
the models are weighted according to their Bayesian posterior, which is estimated
from the training data. Although the mixture includes more than 2|Σ|

k−1
different

models, the algorithm’s complexity is linear in the length of the training text. This
is achieved with a clever decomposition of the posteriors, exploiting the property
that many of these models share the same parameters. The CTW algorithm has
favorable theoretical properties, i.e. a theoretical upper bound on non-asymptotic
redundancy can be proven for this algorithm. However, the algorithm is not widely
used in practice, possibly due to its complex implementation, and the observation
that it yields only minor gains in compression compared to PPM (or no gains at
all). The original CTW algorithm was designed for compression of binary sources.



We used a version of the algorithm that is adapted for multi-alphabet sources, using
a PPM-style escape method for estimating zero-frequency symbols that is described
in (Tjalkens et al., 1993).

0 1

10 1

0 1 0 1

p(0|11)

Input sequence:
010110 ...

0 1

0 1

p(0|1)

0 1

p(0|1)

0

p(0)p(0|11)

Figure 1: All tree models considered by an order-2 CTW algorithm with a binary alphabet. An
example input sequence is given to show the context that each of the models use for prediction
of the last character in this sequence.

2.3 Using Compression Models for Text Classification

To classify a target document d, Bayesian classifiers select the class c that is most
probable with respect to the document text using Bayes rule:

c(d) = arg max
c∈C

[P (c|d)] (2)

= arg max
c∈C

[P (c)P (d|c)] (3)

A statistical compression model Mc, built from the training data for class c,
can be used to estimate the conditional probability of the document given the class
P (d|c):

c(d) = arg max
M∈{Mham,Mspam}

[P (c)PM (d)] (4)

For the binary spam filtering problem, compression models Mspam and Mham are
trained from examples of spam and legitimate email. In our implementation, we
ignored the class priors, which is equivalent to setting P (c) in Equation 4 to 0.5 for
both spam and ham.

2.4 Adapting the Model During Classification

Each sequence of characters in an email message (such as, for example, a word),
can be considered a piece of evidence on which the final classification is based.
The simplest such sequence is a single character, which is always evaluated in the
context of its preceding k characters. Each sequence favors classification into one
particular class, albeit to a varying degree. While the first occurrence of a sequence
undoubtedly provides fresh evidence to be used for classification, repetitions of a
sequence are to some extent redundant, since they convey little new information.



However, when evaluating the (conditional) probability of a document according to
Equation 1, repeated occurrences of the same sequence contribute an equal weight
on the classification outcome.

To discount the influence of repeated subsequences, we chose to allow the model
to adapt during the evaluation of the target document, as would typically be the
case in adaptive data compression. To this end, the statistical counters contained in
model M are incremented after the evaluation of each character when estimating the
conditional document probability PM (d) according to Equation 1. These statistics
are removed from both models Mham and Mspam after classification. Updating the
models at each character improved performance considerably in our preliminary
experiments, as well as in follow-up experiments on the public corpus compiled for
TREC. A further theoretical analysis of this modification and empirical evaluation
of its effect on performance are given in Bratko and Filipič (2005).

2.5 Calculating the Spamminess Score

Probability estimates for P (d|spam) and P (d|ham) are computed as a product
over all character occurrences in the document text (Equation 1). With increasing
document length, these estimates converge towards zero. To convert probability
estimates into “spamminess scores” that are comparable across documents, the fol-
lowing transformation was used:

spam score(d) =
p(d|spam)1/|d|

p(d|spam)1/|d| + p(d|ham)1/|d| (5)

In the above equation, |d| denotes the length of the document text, i.e. the total
number of all character occurrences. The spamminess score can be loosely inter-
preted as the geometric mean of the probability that the target document is spam,
calculated over all character occurrences. Note that this transformation does not
affect the classification outcome for any target document, but helps produce scores
that are relatively independent of document length. This is crucial when thresh-
olding is used to reach a desirable tradeoff between ham misclassification and spam
misclassification, which is also the basis of the Receiver Operating Characteristic
(ROC) curve analysis that was the primary measure of classifier performance for
TREC.

3 The Spam Filtering Task at TREC 2005

For the spam filtering task at TREC, a number of email corpora containing legiti-
mate (ham) and spam email were constructed automatically or labeled by hand. To
make the evaluation realistic, messages were ordered by time of arrival. Evaluation
is performed by presenting each message in sequence to the classifier, which has to
label the message as spam or ham (i.e. legitimate mail), as well as provide some
measure of confidence in the prediction - the “spamminess score”. After each clas-
sification, the filter is informed of the true label of the message, which allows the
filter to update its model accordingly. This behavior simulates a typical setting in



personal email filtering, which is usually based on user feedback, with the additional
assumption that the user promptly corrects the classifier after every misclassifica-
tion. Each participating group was allowed to submit up to four different filters for
evaluation.

3.1 Filters Submitted by the IJS Group

The filters that were submitted by our group at the Jozef Stefan Institute are listed
in Table 1. Three of the filters were based the PPM compression algorithm, the
fourth was based on the CTW algorithm, since, in our initial tests, it was found that
the PPM algorithm generally outperforms CTW. The difference between the three
PPM-based filters was in a different order of the model, since we primarily wanted
to study the effect of varying the PPM model order. All of the four submitted filters
adaptive the classification models during evaluation of the target document, as de-
scribed in Section 2.4. This decision was based on the results of initial experiments,
in which this approach generally outperformed a static model. In hindsight, we
probably should have omitted the CTW-based method altogether and submitted at
least one filter in which the model would be kept static during classification. We
would very much wish to see the difference in performance confirmed in the results
of experiments on the private corpora.

Table 1: Filters submitted by IJS for evaluation in the TREC 2005 spam track.

Label Comp. algorithm Order
ijsSPAM1pm8 PPM 8
ijsSPAM2pm6 PPM 6
ijsSPAM3pm4 PPM 4
ijsSPAM4cw8 CTW 8

Our system was designed as a client-server application. The server maintains
the compression models required for classification in main memory and updates
the models incrementally with each new training example. The system performs
very limited message preprocessing, which primarily includes mime-decoding and
stripping messages of all non-textual message parts. All sequences of whitespace
characters (tabs, spaces and newline characters) were replaced by a single space.
The reason for this step was to undo line breaks added to messages by email clients.
The newline characters that delimit header fields and separate the header from the
body part were preserved. No other preprocessing was done.

Since the data collections used for TREC were large, we limited memory usage
to around 500MB. When this limit was reached, the server discarded one half of the
training data and rebuilt the classification models from the remaining examples. In
general, the newest examples were kept for the pruned model, but measures were
also taken to keep the dataset balanced. Specifically, if the number of all training
messages was N when the memory limit was hit, the server would discard all but
the newest N/4 spam and N/4 ham messages.



4 Results

In this section, we summarize the results of the TREC evaluation that are most
relevant to our system. In particular, we compare the performance of different
compression models and evaluate the effect of varying the order of the compression
model. Finally, we compare the performance of our system to the results achieved
by other participants. The full official results of the evaluation are reported in the
spam track results section of the TREC 2005 proceedings1.

4.1 Datasets

Four email datasets were used for the official TREC evaluation. The TREC 2005
public dataset2 (t05p) contains almost 100,000 messages received by employees of
the Enron corporation. The dataset was prepared specifically for the evaluation in
the TREC 2005 spam track. The messages were labeled semi-automatically with
an iterative procedure described by Cormack and Lynam (2005). The mrx, sb and
tm datasets contain hand-labeled personal email. As these datasets are not publicly
available for privacy reasons, the evaluation of filters was done by the organizers of
the TREC 2005 spam track. The basic statistics for all four datasets are given in
Table 2.

Table 2: Basic statistics for the evaluation datasets.

Dataset Messages Ham Spam
t05p 92189 39399 52790
mrx 49086 9038 40048
sb 7006 6231 775
tm 170201 150685 19516

4.2 Evaluation Criteria

A number of evaluation criteria proposed by Cormack and Lynam (2004) were used
for the official evaluation. In this paper, we only report on a selection of these
measures:

• HMR: Ham Misclassification Rate, the fraction of ham messages labeled as
spam.

• SMR: Spam Misclassification Rate, the fraction of spam messages labeled as
ham.

• 1-ROCA: Area above the Receiver Operating Characteristic (ROC) curve.

We believe the 1-ROCA statistic is the most comprehensive measure, since it
captures the behavior of the filter at different filtering thresholds. Increasing the

1http://trec.nist.gov/pubs.html
2http://trec.nist.gov/data.html



filtering threshold will reduce the HMR at the expense of increasing the SMR, and
vice versa. The desired tradeoff will generally depend on the user and the type
of mail they receive. The HMR and SMR statistics are interesting for practical
purposes, since they are easy to interpret and give a good idea of the kind of
performance one can expect from a spam filter. They are, however, less suitable for
comparing filters, since one of these measures can always be improved at the expense
of the other. For this reason, we focus on the 1-ROCA statistic when comparing
different filters.

4.3 A Comparison Between Compression Algorithms

A comparison between the performance of the PPM and CTW algorithms is given
in Figure 2. In all comparisons, an order-8 compression model is used, since we
only submitted an order-8 CTW-based filter. The reason for this is that the CTW
algorithm weights models of different orders according to their utility, so we expect
performance to improve as the order of the model is increased.

Dataset CTW PPM
SpamAssa 0.161 0.132
t05p 0.025 0.021
mrx 0.063 0.069
sb 0.422 0.372
tm 0.167 0.155
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Figure 2: Performance of CTW and PPM algorithms for spam filtering.

Although the performance of the algorithms is similar, the PPM algorithm usu-
ally outperforms CTW in the 1-ROCA statistic, with the exception of the mrx
dataset. We observed a similar pattern in our preliminary experiments (Bratko and
Filipič, 2005). The CTW algorithm is more complex and slower than PPM, without
yielding any noticeable improvement in PPM’s performance.

4.4 Varying the Model Order

The effect of varying the order of the PPM compression model on classification
performance is given in Figure 3. No particular model is uniformly best, however,
it can be seen that using an order-6 model usually produces good results. In data
compression, it is known that increasing the order of PPM to beyond 5 characters
or so usually results in a gradual decrease of compression performance (Teahan,
2000), so the results are not unexpected. Since the difference in performance is
much greater between different datasets than the order of the PPM model, we may
conclude that the filter is rather robust to the choice of this parameter.



Comparison of order-4, order-6 and order-8 PPM models. The best results in the 1-AUC statistic are in bold.

Order
Dataset 4 6 8
SpamAssassin 0.188 0.148 0.132
t05p 0.022 0.019 0.021
mrx 0.05 0.069 0.069
sb 0.475 0.285 0.372
tm 0.181 0.135 0.155
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Figure 3: Comparison of order-4, order-6 and order-8 PPM models.

4.5 Comparison to Other Filters

A summary of the results achieved with our order-6 PPM model (ijsSPAM2pm6)
on the official datasets is listed in the first row of Table 3. Overall, ijsSPAM2pm6
was our best performing filter configuration. The results achieved by the best per-
forming filters of six other groups are also listed for comparison. The IJS system
outperformed other systems on most of the evaluation corpora in the 1-ROCA
criterion. However, the tradeoff between ham misclassification and spam misclassi-
fication varies considerably for different datasets. A comparison with the statistics
in Table 2 reveals that our system disproportionately favored classification into the
class that contains more training examples. Our system did not vary the filtering
threshold dynamically, but rather kept it fixed at a spamminess score above 0.5.
The results in Table 3 indicate that adjusting the threshold with respect to the
number of ham and spam training examples or, alternatively, with respect to pre-
vious performance statistics, would be beneficial. This modification would have no
effect on the ROC curve analysis.

Table 3: Comparison of seven best performing filters from different groups.

t05p mrx sb tm
Filter 1-roca hm% sm% 1-roca hm% sm% 1-roca hm% sm% 1-roca hm% sm%

ijsSPAM2 0.019 0.23 0.95 0.069 1.52 0.34 0.285 0.16 11.74 0.135 0.36 3.43

lbSPAM2 0.037 0.51 0.93 0.083 1.63 0.23 0.835 0.03 33.16 0.411 0.29 11.63

621SPAM1 0.044 2.38 0.20 2.616 2.31 2.77 2.389 1.57 5.29 0.161 2.17 0.74

crmSPAM2 0.122 0.62 0.87 0.051 1.50 0.24 1.888 0.30 13.55 0.166 0.21 2.91

tamSPAM1 0.164 0.26 4.10 0.138 0.28 2.55 1.892 0.14 27.48 0.294 0.25 8.25

yorSPAM2 0.457 0.92 1.74 0.051 0.34 1.03 0.983 0.14 23.64 0.619 0.25 14.90

kidSPAM1 1.463 0.91 9.40 1.274 4.02 9.10 3.553 3.37 13.57 0.530 0.65 5.24

ROC curves for the same set of filters on the aggregate result set of per-message
classification outcomes on all four datasets are plotted in Figure 4. The ROC
learning curves on the same aggregate results for the seven best-performing groups



is depicted in Figure 4. The graph shows how the area above the ROC curve
changes with an increasing number of examples. Note that the 1-ROCA statistic
is plotted in log-scale. All filters learn fast at the start, but performance levels off
at around 50,000 messages. This behavior may be attributed to the implicit bias in
the learning algorithms, data or concept drift, or even errors in the gold stand. It
remains to be seen whether a more refined model pruning strategy would help the
filter to continue improving beyond this mark.
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Figure 4: ROC curves (left) and learning curves (right) for seven best performing filters from
different groups on the aggregated raw results.

5 Conclusion

Our system performed beyond our expectations in the TREC evaluation, especially
since some competing systems were large open source and commercial (IBM) solu-
tions with a long development history. The TREC results confirmed our intuition
that compression models offer a number of advantages over word-based spam filter-
ing methods. By using character-based models, tokenization, stemming and other
tedious and error-prone preprocessing steps that are often exploited by spammers
are omitted altogether. Also, characteristic sequences of punctuation and other
special characters, which are generally thought to be useful in spam filtering, are
naturally included in the model.

We find that Prediction by Partial Matching usually outperforms the Context
Tree Weighting algorithm, although the margin is typically small. Somewhat sur-
prisingly, varying the order of the PPM compression model does not have a major
effect on performance. An order-6 PPM model performed best in most experiments.
This filter configuration was also the best ranking filter overall in the 1-ROCA statis-
tic for most of the datasets in the official evaluation.

Despite the encouraging results at TREC, we believe there is much room for
improvement in our system. In future work, we intend to adapt the system to use a
disk-based a model, rather than keeping the data structures in main memory. This
would enable us to overcome the need for pruning the model, which was typically



required at around 15,000 examples. We also wish to employ a suitable mechanism
for dynamically adapting the filtering threshold. Finally, an interesting avenue for
future research would be to devise a strategy which would automatically determine
the order of the PPM model that optimizes classification performance.
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