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Abstract

In the domain of biomedical publications, synonyms and homonyms are omnipresent and pose a great
challenge for document retrieval systems. For this year’s TREC Genomics Ad hoc Retrieval Task, we mainly
addressed the problem of dealing with synonyms. We examined the impact of domain-specific knowledge
on the effectiveness of query expansion and analyzed the quality of Google as a source of query expansion
terms based on pseudo-relevance feedback.

Our results show that automatic acronym expansion, realized by querying the AcroMed database of biomed-
ical acronyms, almost always improves the performance of our document retrieval system. Google, on the
other hand, produced results that were worse than the other, corpus-based feedback techniques we used as
well in our experiments. We believe that the primary reason for Google’s bad performance in this task is
its highly restricted query language.

1 Introduction

This paper describes the work done by members of
the MultiText project at the University of Waterloo
for the TREC 2004 Genomics track. The MultiText
group only participated in the Ad hoc retrieval task
of the Genomics track, which consisted of finding
documents that are relevant with respect to certain
topics in a subset of the Medline/PubMed database
of medical publications [PM04]. The subset in-
cluded articles published between 1963 and 2004.
It consisted of 4,591,008 different documents with a
total size of 14 GB (XML text), where the term doc-
ument refers to incomplete articles, annotated with
certain keywords, such as MeSH terms [MeS04]. Out
of these 4,591,008 documents, 3,479,798 contained
the abstract of the article, the remaining 1,111,210
only the article title and the annotations. In total,
50 topics were given to the track participants. An
example topic is shown in Figure 1.

Information retrieval in the context of biomedical
databases traditionally has to contend with three
major problems: the frequent use of (possibly non-
standardized) acronyms, the presence of homonyms
(the same word referring to two or more different
entitities) and synonyms (two or more words refer-
ring to the same entity). For the two runs we sub-
mitted for the Genomics track, we addressed the
problems caused by acronyms and synonyms. We
chose to follow a strategy that was a mixture of
known heuristics for approximate string matching
for genomics-related data and a knowledge-based
approach that used domain-specific knowledge from
various sources, such as the AcroMed database of
biomedical acronyms [Acr04]. Since acronyms can
be viewed as special forms of synonyms, it was pos-
sible to develop a system that can deal with both
problems (synonyms and acronyms) in a uniform
way.

Furthermore, we implemented an automatic query
expansion technique using pseudo-relevance feed-
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<TOPIC>

  <ID>14</ID>

  <TITLE>Expression or Regulation of TGFB in HNSCC cancers</TITLE>

  <NEED>

    Documents regarding TGFB expression or regulation in HNSCC cancers.

  </NEED>

  <CONTEXT>

    The laboratory wants to identify components of the TGFB signaling

    pathway in HNSCC, and determine new targets to study HNSCC.

  </CONTEXT>

</TOPIC>

Figure 1: Example topic in original XML form

back. We evaluated the quality of feedback terms
produced by a simple Google query and compared
the results with known query expansion techniques.
We also studied possibilities to combine both strate-
gies.

2 The MultiText system

Our work is based on the MultiText text retrieval
system, which was initially implemented at the
University of Waterloo in 1994 [CCB94] and has
experienced a variety of extensions and modifica-
tion over the last decade. MultiText supports sev-
eral different document scoring mechanisms. We
employed the MultiText implementation of Okapi
BM25 [RWJ+94] [RWB98] and MultiText’s QAP
passage scoring algorithm [CCT00] [CCL01], which
had initially been developed for question answering
tasks.

2.1 Okapi BM25 document scoring

MultiText’s implementation of BM25 is the same
as the original function proposed by Robertson et
al. [RWJ+94] in the absence of document relevance
information. Every query term T is assigned a term
weight

wT = ln(
|D| − |DT | + 0.5

|DT | + 0.5
), (1)

where D is the set of all documents in the corpus,
and DT is the set of documents containing the term
T . For a given query Q = {T1, ..., Tn}, the score of
a document D is computed using the formula

∑

T∈Q

wT · qT ·
dT · (1 + k1)

dT + k1 · ((1 − b) + b · lenD

lenavg
)
, (2)

where dT is the number of occurrences of the term T

in the document D, lenD is the length of D, lenavg

is the average document length in the corpus, and
qT is the query-specific relative weight of the term
T . Usually, qT equals the number of occurrences of
T in the original query. We discuss this parameter in
more detail in section 8. The remaining parameters
in formula 2 were chosen to be k1 = 1.2 and b = 0.75.

In addition to mere term queries, MultiText sup-
ports structured queries, and in particular disjunc-
tions of terms. We call a disjunction of query terms

T∨ = T1 ∨ T2 ∨ · · · ∨ Tm

a disjunctive query element. The BM25 weight of a
disjunctive query element is

wT∨
= ln(

|D| − |DT1
∪ · · · ∪ DTm

| + 0.5

|DT1
∪ · · · ∪ DTm

| + 0.5
). (3)

For convenience, we let the “+” symbol denote the
disjunction operator (“∨”) whenever we present ex-
ample queries.

2.2 MultiText QAP passage scoring

MultiText’s QAP passage scoring algorithm com-
putes text passage scores based on the concept of
self-information. It may be extended to a docu-
ment scoring algorithm by finding the passage with
the highest score within a document and assigning
the passage’s score to the entire document, although
this is not the original purpose of QAP. Our pseudo-
relevance feedback mechanisms are derived from the
QAP scoring function.

Given a query Q, every passage P of length l, con-
taining the terms T ⊆ Q, is assigned the score

H(P ) =
∑

T∈T

(log2(
N

fT

) − log2(l)), (4)

where N is the total number of tokens in the corpus
(corpus size), and fT is the number of occurrences
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Figure 2: The document retrieval system

of the term T in the corpus. H(P ) is called the
self-information of the passage P .

3 System overview

An overview of the document retrieval system
developed for the Genomics track is given by Figure
2. The system consists of a preprocessing stage and
three document retrieval stages. Most parts of the
system can be changed by varying the respective
parameters. Because there were no training data
available, many of these parameters are arbitrarily
chosen.

Query preprocessing & Synonym expansion
(Stage 1)

In the preprocessing stage, the input data (XML
text) is parsed and all stop words are removed.
The list of stop words contains the usual terms, like
“the” and “and”, but also a number of additional
terms inferred from the sample topics, e.g. “find”,
“information”, and “literature”. After the stop
words have been removed, several synonym genera-
tion techniques are applied to the query. A detailed
explanation of these techniques can be found in
section 4. The result of this process is an expanded
query containing possible synonyms of the terms

in the original query. The unexpanded query
is taken by MultiText to score documents using
both BM25 and QAP, while the expanded query is
used to produce a third, BM25-scored document set.

Expansion validation (Stage 2)

In the second stage (see section 5 for details), the
documents returned by the first stage are analyzed
and systematically scanned for any occurrences of
terms added to the query in the expansion phase
of stage 1 or permutations of query terms. Terms
that have been added to the query in stage 1, but
occur very infrequently in the documents returned,
are removed from the query, whereas frequent
permutations of query terms which have not been
part of the old query might be added. The resulting
query is sent to MultiText, and documents are
scored by BM25.

Pseudo-relevance feedback (Stage 3)

The third stage, which is described in sections 6
and 7, performs a set of standard pseudo-relevance
feedback operations in order to create new expan-
sion terms. The terms produced by the feedback
are added to the query, and BM25 is used again to
compute the document scores. Finally, if our re-
trieval system has found species names in the orig-
inal query, it tries to match the documents in the



ID: 14

TITLE: Expression or Regulation of TGFB in HNSCC cancers

NEED: Documents regarding TGFB expression or regulation in HNSCC cancers.

QUERY_TITLE: "expression" "regulation" "tgfb" "hnscc" "cancers"

EXPANDED_TITLE: "expression" "regulation" ("tgfb"+"blk"+"ced"+"dlhc"+

    "tgfbeta"+"tgfb1"+"tgfb2"+"tgf r"+"transforming growth factor beta"+

    "latent transforming growth factor beta"+"ltbp 1"+"ltbp1"+"mav"+

    "maverick"+.....) ("hnscc"+"head and neck squamous cell") "cancers"

QUERY_NEED: "regarding" "tgfb" "expression" "regulation" "hnscc" "cancers"

EXPANDED_NEED: "regarding" ("tgfb"+"blk"+"ced"+"dlhc"+"tgfbeta"+"tgfb1"+

    .....) "expression" "regulation" ("hnscc"+"head and neck squamous cell")

    "cancers"

Figure 3: Example topic after preprocessing and query expansion in stage 1

result list against these species names and promotes
documents that contain the species names or syn-
onyms of them.

4 Domain-specific query ex-

pansion

For domain-specific query expansion, we used two
different techniques in stage 1 of our system:

• a general variant generation approach that cre-
ates lexical variants of a list of given terms;

• a database of biomedical synonyms, extracted
from various sources available on the web.

In addition to these methods, we examine permu-
tations of query terms to find further expansions.
The result of the query expansion in stage 1 is an
expanded query that combines each original query
terms and all its expansions (synonyms etc.) into
one disjunctive query element (defined in section 2),
as shown in Figure 3.

4.1 Lexical variants

In the context of biomedical articles, we have to deal
with an abundant number of lexical variants of the
same term. These are mainly caused by the authors’
different preferences of hyphenation, spacing and
Greek letters. In the Medline corpus used for this
year’s Genomics track, for instance, the NF-kappa B
protein is referred to in 6 different ways: “NF-kappa
B” (33902 times), “NF-kappaB” (28551), “NFkap-
paB” (3211), “NF-kB” (688), “NFkB” (259), and
“NFkappa B” (45).

Our system addresses this problem by scanning the
original query for interesting terms (i.e., terms that

are likely to have lexical variants). We consider a
term interesting if it contains at least one hyphen,
digit, or Greek letter. For each such term, a list of
possible variants is created according to the follow-
ing rules:

1. Greek letters are contracted to their Latin
equivalents: “alpha” becomes “a”, “beta” be-
comes “b”, and so on.

2. Hyphens are removed from the term.

3. Before and after every Greek letter, a hyphen
is inserted.

4. At every transition from alphabetic to numeri-
cal characters and back, a hyphen is inserted.

For each term, every possible combination of the
above rules is applied to the term. For exam-
ple, the set of variants generated for the term
“Lsp1alpha” (Larval serum protein 1 alpha) is: “lsp-
1-alpha”, “lsp-1-a”, “lsp-1alpha”, “lsp-1a”, “lsp1-
alpha”, “lsp1-a”, “lsp1alpha”, “lsp1a”.

The problem of replacing spaces by hyphens and
vice versa can be ignored because the MultiText en-
gine already considers them equivalent. Case folding
is automatically applied to all terms as well.

4.2 Synonym expansion

In biomedical publications, we have mainly three
types of synonyms that can appear in a query:

• acronyms;

• gene names or symbols;

• protein names or symbols.

Acronyms can be dealt with in a straightforward
fashion by adding the respective long form to the
query whenever a known acronym is encountered.



Genes and proteins have additional structure that
can be used when looking for appropriate expan-
sions: the symbol “ACP” (acid phosphatase) de-
scribes a family of proteins, including ACP1 and
ACP2. This allows us to not only add synonyms of
“ACP” to the query, but also “ACP1” and “ACP2”.
Following the Gene Ontology terminology, we call
these narrow synonyms (as opposed to exact syn-
onyms, such as acronyms).

We used three different sources to deal with the
above kinds of synonyms: The AcroMed database
of biomedical acronyms [PCC+01] [Acr04], the Eu-
karyotic Genes database at the University of Indiana
[Gil02] [euG04], and the LocusLink database [LL04].

AcroMed

The AcroMed database contains a list of mappings
from acronyms to their long forms, automatically
created from Medline abstracts. For our experi-
ments, we used only a subset of the AcroMed data.
We ignored all acronym/long-form pairs with less
than 5 occurrences. The rationale behind this was to
avoid low-quality expansion terms caused by wrong
AcroMed data. The resulting database contained
25,589 acronyms and 49,822 long forms.

For every input topic, our system searches the
topic text for occurrences of acronyms stored in
the AcroMed database. In order to allow for lexical
variants, an approximate string matching algorithm
is used that allows exactly the types of variants
that are described in section 4.1.

euGenes

The Genomic Information for Eukaryotic Organisms
database (euGenes.org) consists of genetic informa-
tion for 9 different species. The version used for our
experiments contains 184,460 different genes. Our
system does not use the information offered by eu-
Genes to its full extent. Instead, it only builds a
mapping from gene symbols to full names.

Again, the special needs discussed in section 4.1
are taken into account when the euGenes database
is searched for a gene symbol. Furthermore, when
looking for expansions, we also allow for narrow
synonyms by cutting off the tail of the gene symbol
after the last transition from alphabetical to nu-
merical characters or vice versa. The gene symbol
“TGFB2” (Human gene Transforming Growth
Factor Beta 2), for example, is given the database
entries “TGFB2” and “TGFB”. The same holds for
hyphens, so the gene “ATPsyn-beta” (Drosophila
gene ATP Synthase Beta) can even be found when

the query is asking for “ATPsyn”.

LocusLink

LocusLink is most prominent source of publicly
available information on genes. It provides de-
tailed information about the function and position
of genes. We used a version of the LocusLink
database containing 128,580 entries. Our system
does not utilize the full LocusLink information but
only the following fields of a LocusLink record:

• OFFICIAL SYMBOL: the officially approved sym-
bol for this gene;

• PREFERRED SYMBOL: a symbol that might be-
come the official symbol in the future, but has
not been validated by the nomenclature com-
mittee yet;

• OFFICIAL GENE NAME: the official name of the
gene;

• PREFERRED GENE NAME: similar to the
PREFERRED SYMBOL field;

• ALIAS SYMBOL: an alias that is sometimes used
to refer to the gene;

• PRODUCT: the protein product of the transcript.

A gene can be found in the database by searching
for its official symbol, its preferred symbol, one of
its aliases, or its protein product. The product is
included in this list because genes and their products
are often treated as synonyms. Narrow synonyms do
not get a special treatment in the LocusLink data
because that information in many cases is already
included in the ALIAS SYMBOL fields of a gene record.

Some LocusLink records also provide a PMID field
that contains a list of PubMed articles related to
the gene. This information could have been very
beneficial if used in an appropriate way. However,
it was not clear to us if these fields are of sufficiently
high quality and how exactly we could make good
use of them.

5 Expansion validation

In stage 2, the results of the first stage are combined
using an interleaving fusion technique described by
Yeung et al. [YCC+03]. From each of the three
documents lists generated in stage 1, one document
is picked in turn and added to the new document
list. Duplicates are removed from the result.

The new document list is used to validate the expan-
sion terms in the following way: The system takes



ID: 14

TITLE: Expression or Regulation of TGFB in HNSCC cancers

NEED: Documents regarding TGFB expression or regulation in HNSCC cancers.

QUERY_TITLE: "expression" "regulation" "tgfb" "hnscc" "cancers"

EXPANDED_TITLE: #1.00 "expression" #1.00 "regulation" #0.45 "tgfb" #0.95

    ("tgfb"+"tgf beta"+"beta tgf"+"tgfbeta"+"tgfb1"+"tgfb2"+"tgfb3") #0.45

    "hnscc" #0.95 ("hnscc"+"head and neck squamous cell") #1.00 "cancers"

QUERY_NEED: "regarding" "tgfb" "expression" "regulation" "hnscc" "cancers"

EXPANDED_NEED: #1.00 "regarding" #0.45 "tgfb" #0.95 ("tgfb"+"tgf beta"+

    "beta tgf"+"tgfbeta"+"tgfb1"+"tgfb2"+"tgfb3") #0.45 "hnscc" #0.95

    ("hnscc"+"head and neck squamous cell") #1.00 "cancers"

Figure 4: Example topic in stage 2 (with query-specific term weights qT )

the first 150 documents from the result list produced
by stage 1 and tries to match them against the
expansion terms generated by the expansion tech-
niques described in section 4. Furthermore, it looks
for permutations of expansion terms in the docu-
ments returned. This is done because the name of
the protein that belongs to a certain gene is often
a permutation of the gene name. The Homo sapi-
ens gene “glucosidase, alpha; acid”, for instance, en-
codes the “acid alpha-glucosidase” preprotein.

The documents are scanned for the expansion terms
or term sequences, and the number of occurrences
is counted for every expansion. For every original
query term, the best 10 expansions are kept. This
set of remaining expansion candidates is then fur-
ther restricted by removing all expansions that have
less than 1% of the occurrences of the top candidate.
The remaining expansions are combined into a new
disjunctive query element that is added to the orig-
inal query.

Terms for which an expansion has been found, are
given a reduced term weight qT = 0.45. How-
ever, the set of validated expansions gets a weight
qT ′ = 0.95, so the total weight of the term increases
to qT,total = 1.4. The idea behind this weight in-
crease is the assumption that terms for which we
have an expansion are likely to be key elements of
the original query. Having the original term appear
twice in the resulting query (once by itself, once in
the disjunction) is intended to keep query drift low.
Query terms for which no expansion could be found
get the default term weight qT = 1.0.

The result of the validation process is shown in fig-
ure 4.

6 Pseudo-relevance feedback

In stage 3 of our retrieval system, we expand the
query produced in stage 2 by using the results of
three difference pseudo-relevance feedback (PRF)
algorithms. The output of each PRF process is a
vector of term-score pairs. All terms that are al-
ready part of the old query (either exactly or in a
stem-equivalent form) are removed from the vectors.
The results are merged using the normalized Comb-
SUM fusion algorithm [Lee97] [SF94].

From the merged term vector, the best 10 candi-
dates are taken and added to the old query with
query-specific term weights

qT = 0.3 · scoreT , (5)

where scoreT is the feedback score of the term T .
Because feedback scores are normalized, the top-
scoring feedback term will have weight 0.3 in the
resulting expanded query.

In the following sections we explain the computation
of the feedback scores for each of the three feedback
techniques employed.

6.1 Passage feedback

The passage feedback algorithm used by our system
creates a vector of expansion candidate terms from a
list of scored passages (nodes “MultiText QAP” and
“Passage Feedback” in Figure 2). It is based on the
QAP passage scoring algorithm described in section
2 and has successfully been used by the MultiText
group in TREC 2003 [YCC+03].

The algorithm takes the top 100 documents, as
returned by MultiText’s QAP, and examines the
neighborhood of the best passage within each doc-
ument. Every time the algorithm encounters a cer-
tain term T within that neighborhood, the score of



that term is increased:

scoreT := scoreT + log2(
N

fT

) − log2(l), (6)

where N is the corpus size, fT the number of oc-
currences of T in the corpus, and l is the size of the
minimum window that contains both the relevant
passage and the term T . If, for example, the rele-
vant passage in the document were “Bart Simpson”
and the neighborhood “This is Bart Simpson with
his sister Lisa”, the size of the minimum window for
the term “sister” would be 5. Obviously, this pas-
sage feedback algorithm was inspired by the original
QAP scoring function.

6.2 Document feedback

The document feedback is similar to the passage
feedback. However, it examines entire documents
instead of passage neighborhoods. In addition, the
document feedback algorithm does not assume that
all documents returned by the previous stage are
equally relevant. Instead, it gives different weights
to the input documents according to their rank and
score in the previous stage.

The algorithm examines the top 100 documents, as
returned by BM25 in stage 2. For every term T that
appears within a document D, the feedback score of
that term is increased:

scoreT := scoreT + wD · log2(
N

fT · lenD

), (7)

where wD is the feedback weight of the document D.
After trying several document weighting schemes,
we decided to use the following formula:

wD = scoreD · crankD . (8)

scoreD is the document BM25 document score,
rankD is the document rank in the result list pro-
duced by stage 2, and c < 1 is chosen in such a way
that

10∑

i=1

ci =

100∑

i=11

ci, (9)

i.e., the first 10 documents have the same cumulated
weight as the following 90 documents. This weight-
ing function assumes that the results produced in
stage 2 are already of high quality.

6.3 Google feedback

While the two feedback techniques described so
far rely on the quality of the previous query and

the text found in the Medline corpus, our feedback
system includes a third technique that uses Google
as a source of expansion terms.

The NEED part of the original query, stop words re-
moved, is sent to Google. The document snippets
returned are considered ordinary documents, and for
every term T appearing in a Google snippet S, the
term score is updated in the same way as above:

scoreT := scoreT + log2(
N

fT · lenS

). (10)

7 Species names

After the feedback process has finished, a final filter-
ing is performed on the list of documents returned.
The filter does not cause any changes to the docu-
ment ranks unless our system has found one or more
species names in the original query.

For example, if the original query contains the terms
“human” and “mice”, then the filter will try to
match the documents against the strings “human”,
“humans”, “homo sapiens”, “mouse”, “mice”, and
“mus musculus”. The filter is based on a manually
created list of 11 species names (and synonyms) that
frequently appear in biomedical publications. The
idea behind this process is that a species name that
appears in a topic is most probably a key word.

The actual filtering is based on the interleave fusion
technique. From the list of documents D returned
by BM25, two lists are created:

• Dpos consists of all documents that contain at
least one of the search strings;

• Dneg contains all the remaining documents.

Dpos and Dneg are merged into a new document list
D′ by taking two documents from Dpos and one doc-
ument from Dneg in turn. Depending on the relative
size of Dpos and Dneg , the filtering may leave the
document order untouched or change it radically.

8 Evaluation

We submitted two runs for the Genomics track. The
first run only made use of the NEED field of the given
topics. The second run considered TITLE and NEED.
If a query term appeared in both TITLE and NEED,
it was simply given twice the normal term weight
(qT = 2.0). The results of our runs are shown in
Table 1.



Table 1: Results for NEED-only and TITLE+NEED

runs (50 topics, 8,268 relevant documents; “*”: bug-
fixed versions)

Run Recall Avg.prec. R-Prec.

NEED 5,082 0.3318 0.3630

TITLE+NEED 5,544 0.3867 0.4037

NEED* 5,094 0.3394 0.3716

TITLE+NEED* 5,534 0.3895 0.4046

Table 2: Intermediate results for TITLE+NEED run
(default parameters)

Stage/Process Recall Avg.prec. R-Prec.

1/BM25,plain 4,811 0.3353 0.3707

1/BM25,exp. 4,772 0.2775 0.3138

1/QAP,plain 3,892 0.2782 0.3215

2/BM25 5,315 0.3639 0.3845

3/BM25,PRF 5,534 0.3935 0.4108

3/Filtering 5,534 0.3895 0.4046

After the runs had been submitted, we found a bug
in the validation part of our retrieval system that
gave a validation score to the first term in a docu-
ment n times as high as to the last term, where n

is the length of the document. All experiments dis-
cussed in this section have been conducted with the
corrected version of the validation algorithm. For
comparison, we have included both versions (with
and without the bug) in Table 1. It can be seen from
the table that using the TITLE as well improves the
quality of the results dramatically over the NEED-
only run. For the further discussion, we will only
consider TITLE+NEED runs.

8.1 System components

This section deals with the retrieval effectiveness of
the individual stages of our system. Table 2 shows
the major trec eval values for the intermediate re-
sults produced by each stage of our document re-
trieval system. The first row (1/BM25,plain) con-
tains the BM25 baseline, i.e., the results produced
by an unexpanded query (stop words removed),
where documents have been scored by BM25. The
last row contains the results for the final document
list obtained after species names filtering. We can
see that both the number of relevant documents re-
trived and the mean average precision (MAP) in-
crease significantly, from 4,811 to 5,534 (15.0% im-
provement) and from 0.3353 to 0.3895 (16.2% im-

provement), respectively.

From the intermediate values, we can also conclude
that the domain-specific query expansion techniques
applied in stage 1 and stage 2 constitute a little more
than half of this improvement (5,315 relevant doc-
uments retrieved, 0.3639 MAP), while the pseudo-
relevance feedback performed in stage 3 is responsi-
ble for the other half.

Additional experiments have shown that the effec-
tiveness of the second stage is primarily caused
by the generation of permutations of query
terms/expansions, not by throwing away infrequent
expansions.

Perhaps more interesting than the mean average
precision, from the point of view of an actual person
who has to look at the documents retrieved by our
system, is the precision after 20 documents. This
value increases from 0.530 (plain BM25 query) to
0.585 (final result), which is a 10.4% improvement.

From Table 2 we can also see that the final species
names filtering process could not improve the re-
sults in the expected way. We will investigate this
phenomenon in section 8.4.

8.2 Domain-specific knowledge

It is clear by now that domain-specific query expan-
sion is beneficial for the effectiveness of our docu-
ment retrieval system. However, we do not know
yet which part of our domain-specific query expan-
sion method is the major factor for the improvement
seen. Therefore, we have conducted some additional
experiments in which we have selectively disabled
certain parts of the query expansion subsystem.

From the results shown in Table 3 (in compari-
son with Table 2) we see that the general heuris-
tics we employed when generating lexical variants
are responsible for the biggest improvement. The
second best contributor is the AcroMed acronym
database, which causes an improvement of 4.8% over
the Heuristics only run. It is surprising that adding
gene information from euGenes and LocusLink dete-
riorates the mean average precision (comparing rows
Heuristics&AcroMed and All of the above in Table
3), although the additional data increases the re-
call from 5,284 to 5,315 relevant documents. We
believe that this is mainly because the number of
alias symbols provided by the LocusLink database
is overwhelming. For the term “TGFB” in topic 14,
for instance, the expansion techniques in stage 1 pro-
duce 185 candidates (including lexical variants). For



Table 3: Comparison of domain-specific knowledge
(results after stage 2)

Technique Recall Avg.prec. R-Prec.

Heuristics only 5,230 0.3550 0.3832

Heu.&AcroMed 5,284 0.3722 0.4059

Heu.&euGenes 5,253 0.3554 0.3827

Heu.&Loc.Link 5,288 0.3631 0.3843

All of the above 5,315 0.3639 0.3845

Table 4: Comparison of pseudo-relevance feedback
methods

Method Recall Avg.prec. R-Prec.

Passage PRF 5,470 0.3889 0.4092

Document PRF 5,528 0.3924 0.4065

Google PRF 5,370 0.3708 0.3942

Passage&Doc. 5,559 0.3957 0.4128

All of the above 5,534 0.3935 0.4108

“P53” in topic 22, they come up with a set of 176
candidates. This high number of expansion terms
entails two possible risks: reduction of the weight of
the original query term and query drift.

8.3 Pseudo-relevance feedback

Pseudo-relevance feedback could increase the MAP
by 8.1% and the recall by 4.1% over the results pro-
duced in stage 2 in our experiments (cf. Table 2).
Since we have utilized three different PRF methods,
it is interesting to see which method had the great-
est impact.

Table 4 shows that passage feedback and docu-
ment feedback were very effective. We can also see
that the combination of both methods (row Pas-
sage&Doc.) produced even better results than each
technique taken alone. On the other hand, Google
feedback performed really poorly. It is not clear
what caused Google to deliver much worse results
than the other feedback methods.

We can, however, identify at least two potential
problems related with the use of Google:

• Google only supports exact boolean searches.
While this is acceptable for short queries (3-5
terms), it can be problematic when dealing with
longer queries.

• Queries are cut off after the 10th term. This
does not only mean that we cannot send ex-

panded queries to Google, but even unexpanded
queries might be too long. In fact, this was the
case for 10 of the 50 topics.

8.4 Species names

The results shown in Table 2 suggest that the fi-
nal filtering process performed after the pseudo-
relevance feedback could not improve the perfor-
mance of our system and did even decrease its pre-
cision. To understand what happened during the
filtering process, it is necessary to look at individual
topics: Our system could identify species names in
15 out of 50 topics. For 9 of these 15 topics a slight
improvement was caused by the filtering, for 4 top-
ics nothing changed, and for the remaining 2 topics
the average precision dropped radically (0.8870 to
0.7971 and 0.9478 to 0.7870). Because of the un-
usually high precision before the filtering, these two
topics cannot be considered representative.

Hence, the filtering seems to have a slightly pos-
itive impact on the precision for topics with low
or medium precision. We did not expect precision
values above 70% when designing the filtering algo-
rithm.

8.5 Expansion term weights

In stage 2 and 3, as shown in Figure 4, our sys-
tem gives a term weight qT = 0.45 to a term T

for which we have an expansion. The disjunctive
query element (the expansion) that is derived from
the original term is given the weight qT ′ = 0.95. Due
to the lack of training data, we could not validate
the choice of these parameters. Additional experi-
ments conducted after the qrels for the topics had
been released showed that by setting qT := 0.9 and
qT ′ := 0.5 the MAP could have been increased:

• from 0.3639 to 0.3740 in stage 2;

• from 0.3935 to 0.4042 in stage 3.

This increase, however, carries the cost of a slightly
decreased recall (5,253 down from 5,315 documents
and 5,519 from 5,534 documents, respectively).

9 Conclusions & Future work

For the TREC 2004 Genomics track, we have imple-
mented a number of different query expansion tech-
niques, based on simple heuristics generating lexical



variants of query terms, domain-specific knowledge
used to find synonyms and acronym expansions, and
pseudo-relevance feedback. We have shown that
most of the techniques utilized by our system im-
proved recall and precision.

From the sources we employed for knowledge-based
query expansion, the AcroMed database of biomed-
ical acronyms produced expansions of highest qual-
ity, outperforming both the euGenes and LocusLink
genetic databases.

Since the domain-specific knowledge in the genomics
domain can be used to produce a very large number
of possible synonyms for initial query terms, tech-
niques to validate these expansions have to be found.
We presented a simple way that can be used to ver-
ify that an expansion term appears in the context
we are interested in by looking at the results of an
early retrieval stage. Better techniques for expan-
sion validation, probably based on language model
approaches, are desirable.

Our experiments with Google as a source of pseudo-
relevance feedback were a little disappointing, since
Google performed worse than either of the two other
feedback methods. Nonetheless, we will keep using
Google for this purpose and try to find a way to cir-
cumvent the problems created by Google’s restricted
query interface. We will also study how our own web
corpus, which is about 1 terabyte of publicly avail-
able text data, can be used to produce high-quality
expansion terms in the special context of biomedical
publications.
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