
Bangor at TREC 2004: Question Answering Track

Terence Clifton, William Teahan
{terence, wjt}@informatics.bangor.ac.uk

ABSTRACT
This paper describes the participation of the School of
Informatics, University of Wales, Bangor in the 2004
Text Retrieval Conference. We present additions and
modi�cations to the QITEKAT system, initially devel-
oped as an entry for the 2003 QA evaluation, includ-
ing automated regular expression induction, improved
question matching, and application of our knowledge
framework to the modi�ed question types presented in
the 2004 track. Results are presented which show im-
provements on last year's performance, and we discuss
future directions for the system.
Keywords: Question answering, knowledgeable
agents, knowledge grid, regular expressions, regular ex-
pression induction.

1. INTRODUCTION
The 2004 evolution of the TREC QA track moved
more towards a context based approach to providing
the question set. A speci�ed target subject was given,
which was then used as the basis for a series of corre-
sponding questions. These questions were made up of
three types:

• Factoid

• List

• Other

The TREC QA guidelines [7] describe the `other' ques-
tions as follows:

The �nal question in each series is an explicit
`other' question that should be interpreted as
�tell me other interesting things about this
target I didn't know enough to ask directly�.
This �nal question is roughly equivalent to the
TREC 2003 QA track's de�nition question.

Our 2004 entry was a minor evolution of our 2003 sys-
tem, and focused mainly on automating the creation of
further regular expression patterns, which are the key to
the generation of our Knows and KnowsAbout rela-
tions. In addition to the automated regular expression
production, we have implemented an improved question
matching architecture, and improved the application of

our logic framework to the `list' and `other' question
types.

We describe these modi�cations, and their e�ect on
system performance in the 2004 QA task, in this paper,
which is organised as follows. Firstly we give a general
recap of the system architecture which was developed
for the TREC 2003 QA task, and provide an overview
of the performance in that task in relation to other
systems entered (Section 2). We then present the addi-
tions and modi�cations made to the QITEKAT system
for the 2004 QA evaluation. In Section 4 we present
initial results received from NIST, and a brief analy-
sis of how the system performed. Sections 5 describes
our plans for the future development of the QITEKAT
system.

2. BACKGROUND
The QITEKAT system is a practical implementation
of our logic-based framework for implementing knowl-
edgeable agents that will become the core component
for our multi-agent information retrieval systems. A
brief overview of the framework and the system archi-
tecture is included below, and we refer the reader to [1]
for a more detailed explanation.

In [5], we describe a framework for designing and
implementing knowledgeable agents and Knowledge
Grids. The framework is based on three types of knowl-
edge relations: Knows, KnowsAbout , and Knowl-
edgeableAbout. These are used to de�ne what an
agent knows, what it knows about, and whether an
agent has been judged to be knowledgeable by other
agents. Essentially, the architecture is based on using
knowledgeable agents as a middle layer between the
user and the information resources. A key aspect of
the design is the use of information extraction coupled
with compression-based language modelling technology
[6] and the use of a conversational agent that the user
asks questions of and receives answers from the system.
In this architecture, there are three types of objects:
users, knowledgeable agents and information resources.
The users do not interface directly with the information
resources. Instead, they must go through a knowledge-
able agent who e�ectively acts as a knowledge broker
in determining which of the information resources are
likely to contain an answer to the user's questions. No-
tice that knowledgeable agents may need to go though

1

10 %

5 %

85 %

Correct

Incorrect

Inexact

Figure 1. Results on TREC 2003 (Who and When ques-
tions)

other knowledgeable agents in the hunt to �nd the most
relevant answer to the user's questions.

The knowledge framework proposed by Teahan [5],
which is used as the basis for the extraction of knowl-
edge relations from suitable source documents essen-
tially relies on a reverse approach to standard Q&A
techniques. Rather than using the question text to
retrieve a subset of documents from the test collec-
tion, which are then analysed to �nd an answer, the
QITEKAT system was designed to parse the entire col-
lection, forming a number of question/answer relations
before any actual questions are posed. The TREC Q&A
Track uses the AQUAINT document collection as its
source corpus, which consists of over 1 million docu-
ments, totalling 375 million words. The system was
developed based around three main stages:

• Documents are normalised;

• Knowledgeable agents tag and extract Ques-
tion/Answer pairs;

• Input questions are analysed, and answers are re-
trieved and ranked.

Figure 2 shows the component make up, and how each
of the individual modules interacts with the rest of the
system.

Overall performance of the QITEKAT system on the
TREC2003 evaluation was satisfactory - table 1 shows
the �nal results for the factoid component evaluation
[8]. The initial development timescale meant that the
system was designed to only account for two distinct
question types (Who and When). Manual examination
of the 2003 test questions showed that the system was
equipped to deal with a possible 124 questions, of which
it correctly answered 107, giving an accuracy score of
86.2% (Figure 1) [1].

Submitter Accuracy
Language Computer Corp. 0.700

LexiClone 0.622
National University of Singapore (Yang) 0.562
University of Southern California, ISI 0.337

IBM Research (Prager) 0.298
Massachusetts Institute of Technology 0.295

University of Wales, Bangor 0.259
University of Albany 0.240

ITC-irst 0.235
BBN 0.208

Fudan University 0.194
NTT Communication Science Labs 0.150

MITRE Corp. 0.148
Chinese Academy of Sciences (CAS-ICT) 0.145

University of Amsterdam 0.145

Table 1. TREC 2003 evaluation scores for the runs with
the best factoid component.

3. MODIFICATIONS AND ADDITIONS
In this section we describe the additions and modi�ca-
tions we made to the QITEKAT system for the 2004
TREC evaluation. Minor bug-�xing and optimisation
was carried out to improve performance, but the major-
ity of development e�ort went into the changes detailed
below.

3.1. Regular Expressions
Regular expressions were developed to pattern match
sentence construction for common question types. This
approach is similar to that used by Ravichandran and
Hovy in [3]. It was important to make the best use of
the previously tagged documents, and to ensure that
regular expressions used by the system were not too
speci�c as to require multiple expressions for a single
question construct. This led us to develop a dynamic
substitution system, whereby a generic regular expres-
sion was populated at runtime using the tagged con-
tents of the sentence it was being applied to. We main-
tained a data store of basic regular expression formats,
suitable substitution types, an allowable answer type,
and a generic question format for the particular rela-
tion.
By using the named entities already tagged in the

document, the system can create a number of actual
regular expressions, substituting suitable types into the
ANSWER and OBJECT locations. For example, given
the sentence:

2

Knowledge

Grid

Document

Normalisation
Tagger

Document

Normalisation
Tagger

Document

Normalisation
Tagger

Document

Normalisation
Tagger

Knowledgeable

AgentD
o

c
u

m
e

n
t

Q&A

Controller

Search Engine

Corroboration

System

User

Knowledgeable

Agent

Knowledgeable

Agent

Knowledgeable

Agent

D
o

c
u

m
e

n
t

D
o

c
u

m
e

n
t

Figure 2. System architecture (simpli�ed)

3

<domain>PEOPLE</domain>
<answer>DATE</answer>
<object1>PERSON</object1>
<object2>NONE</object2>
<object3>NONE</object3>
<regexp>
(OBJECT1)\sdied\s(on|in|around)\s(ANSWER)
</regexp>
<format>When did OBJECT1 die?</format>

Figure 3. Example of hand-crafted RE

�John Lennon died on December 8th, 1980
during a public dramatic interpretation of
J.D. Salinger's Catcher in the Rye"

the system would tag one DATE entity (December 8th,
1980) and two PERSON entities (John Lennon and
J.D. Salinger). The system would then dynamically
produce two regular expressions:

1. (John Lennon)\sdied\s((on|in|around)\s(December
8th, 1980)

2. (J.D.Salinger)\sdied\s((on|in|around)\s(December
8th, 1980)

These would then be applied to the document to extract
any matches which would be transformed into Knows
relations. In this case, option 1 would match, resulting
in the following relation (given that the knowledgeable
agent who produced the document text referred to as
Doc-XXX-Agent).

Knows(Doc-001-Agent, "Domain: PEOPLE",
"When did John Lennon die?",
"December 8th, 1980",
1.0).

Further examples of extracted Knows relations:

K1 = Knows(Doc-004-Agent, "Domain: PEOPLE",
"Who is George W. Bush?",
"United States President",
1.0).

K2 = Knows(Doc-004-Agent, "Domain: PEOPLE",
"When was George W. Bush born?",
"July 6th 1946",
1.0).

<domain>PEOPLE</domain>
<answer>PERSON</answer>
<object1>PERSON</object1>
<object2>NONE</object2>
<object3>NONE</object3>
<regexp>
(OBJECT1)\swife\sof\s(ANSWER)
</regexp>
<format>Who is OBJECT1 married to?</format>

Figure 4. Example of auto-generated RE

These Knows relations are then used to populate suit-
able KnowsAbout relations such as the following:

KnowsAbout(Doc-004-Agent, "Domain: PEOPLE",
"George W. Bush",
{K1,K2},
1.0).

KnowsAbout(Doc-001-Agent, "Domain: PEOPLE",
"John Lennon",
Ka,
1.0).

A small number of broad domain types were used
(PEOPLE, GEOGRAPHY, BUSINESS, MISC).

Our initial regular expressions were hand-crafted, but
it became quickly evident that this would not be e�-
cient, either in terms of the time taken, or the required
generality of the expressions. Using previous Question-
Answering data as a source, we were able to implement
an automated system to generate regular expressions,
based on a combination of entity type tagging and prox-
imity matching. Given a source document, a question
and an answer (that exists in the document), the fol-
lowing procedure is followed:

1. Extract the `subject' of the question using tradi-
tional speech tagging techniques, and PPM com-
pression based language modeling (see [6] for fur-
ther details).

2. Analyse the source document for the proximity of
the known answer to the subject.

(a) Partial matching is applied here to ensure
that subjects are recognised in the answer
document.

4

Proximity No of Regexps No of Questions
10 152 1.4 million
20 263 2.8 million
50 393 3.2 million
100 469 3.6 million
150 532 3.7 million
200 566 3.8 million
500 579 3.9 million

Table 2. E�ect of proximity level on regular expression
generation

3. If the answer falls within a given proximity thresh-
old to the subject (i.e. is within a certain number
of characters either side of the subject), we retrieve
the surrounding subtext.

4. This subtext is then parsed and a regular expres-
sion generated.

(a) Stopwords are ignored.
(b) Named Entity tags are inserted where possi-

ble to generalise the regular expression.

Our experiments with di�erent proximity limits (num-
ber of characters) on the AQUAINT corpus led us to
adopt a proximity level of 150 characters, which of-
fered the best compromise between performance and
the quality of expressions. (Larger proximity expres-
sions lose generality, and thus e�ectiveness).

3.1.1. Example
Given the following information:

Source Document NYT19980601.0001
Known Question When did Kenneth Lenihan die?
Known Answer May 25
Source Excerpt Kenneth Joseph Lenihan, a

New York research sociologist
who helped re�ne the scienti�c
methods used in criminology,
died May 25 at his home in
Manhattan. He was 69.

Table 3. Example source information for regular expression
induction

We would extract a question subject of `Kenneth
Lenihan', and parse the source text to �nd a suitable
match. Through the use of our partial matching al-
gorithm [1] we are able to recognise a match between

`Kenneth Joseph Lenihan' in the source text and `Ken-
neth Lenihan' as our subject, resulting in a matching
string:

�Kenneth Joseph Lenihan, a New York re-
search sociologist who helped re�ne the sci-
enti�c methods used in criminology, died May
25�

From this string we apply our proximity check to deter-
mine if the match is within a suitable distance. In this
example, the subject is 101 characters from the answer,
and thus the match is accepted. We then generalise
the string to a suitable regular expression, by remov-
ing stopwords and inserting named entity classes where
appropriate. Part-of-speech groups in close proximity
to the answer, which correlate to the question text are
kept to ensure the meaning is retained:

�PERSON\s.*\s(LOCATION\s)?
(PROFESSION\s)?.*\sdied\sDATE�

This would provide us with the regular expression con-
struct shown in �gure 5:

<domain>PEOPLE</domain>
<answer>DATE</answer>
<object1>PERSON</object1>
<object2>LOCATION</object2>
<object3>PROFESSION</object3>
<regexp>
(OBJECT1)\s.*\s((OBJECT2)\s)? .

((OBJECT3)\s)?.*\sdied\s(ANSWER)
</regexp>
<format>Who is OBJECT1 married to?</format>

Figure 5. Generated regular expression

3.2. Improved Question Matching
Upon completion of the 2003 evaluation, it was clear
that in a number of cases where incorrect, or no an-
swer was returned by the system, this was not because
the answer was not found, but due to an inability to
cross-match the entered question with the question in
the knowledge base. The original system used a very
limited string matching system, coupled with identi�-
cation of question types (What, When, etc). Unfortu-
nately, even small discrepancies in entered and known
questions would result in a NIL match. The 2003 evalu-
ation proved that this was insu�cient, and that a better
system was needed.

5

We implemented a vector matching system, whereby
entered and known questions were compared based on
their non-stopword content. In addition to simple po-
sitional matching, we added two extra factors that in-
�uenced match-weight:

• Subject - Matching the subject explicitly (i.e. not
a partial match, see below) boosted a question's
match-weight.

• Word frequency - Using the same dictionary we
adopted for tagging, we tested matched words for
frequency, boosting weights for less frequent words,
as a match was likely to have more signi�cance.

To handle the changes brought in to the question format
for the 2004 task regarding subject speci�cation, we
implemented a simple system to substitute the subject
for occurrences of personal pronouns in the question
text, and applied our partial matching algorithm [1] to
provide greater generality to the produced questions.

3.3. Handling `Other' and `List' Questions
The knowledge framework which forms the basis of
the QITEKAT system was designed to incorporate
the notion of context, and this was practically imple-
mented through the use of domain speci�cation both
at the Knows and KnowsAbout level of our archi-
tecture. This gave us an excellent starting point when
addressing the `list' and `other' question types which
formed part of the 2004 TREC QA evaluation. In
its original incarnation, the QITEKAT system speci-
�ed very broad domain constructs for each question it
extracted from the source corpus (PEOPLE, GEOG-
RAPHY, etc), which were then grouped within each
agent to form our knowledge base. These were gener-
ated using a two-step approach:

1. Determine the most likely question/answer sub-
ject. This was done using traditional speech tag-
ging techniques, and PPM compression based lan-
guage modeling (see [6] for further details) to ex-
tract named entities from the question. When
required, selection was made based on frequency
of occurrence in the parent document, with the
assumption that more frequent occurrences were
likely to be the focus of information.

2. Our named entity tagger was then applied to this
`focus' object to determine a broad domain clas-
si�cation (PERSON entity type yields PEOPLE
domain, etc.)

The new format, with explicit speci�cation of the sub-
ject of the question, correlated well with our method,
as we were simply able to remove our second-step, and
store the named entity as our domain classi�cation.
These speci�c domains were then grouped into Knows-
About relations stored at each agent and generalised
where possible using our partial matching algorithm.
For example:

• Bush;

• George Bush; and

• George W. Bush

occurring in three di�erent Knows relations in the
same document would be grouped into a singleKnows-
About relation. In this case, the more explicit domain -
George W. Bush - would be used, to allow for improved
matching at later stages in the process.
Once we had ourKnowsAbout information, answer-

ing `list' queries was a matter of retrieving all corre-
sponding relations for a particular question subject, ap-
plying our improved question-matching algorithm, as
detailed previously, to �nd answers that correspond to
those required by the list, and returning the results. In
generating answers to the `other' questions we would
have ideally liked to reconstruct useful `nuggets' from
the question/answer pairs our system extracted, but
time didn't permit this element of the system to be
completed, and it has been scheduled for a future re-
vision. As a result we were only able to return our
known answers, and provide no context from the ques-
tion, which made the information of little use (in fact,
technical issues meant no answers were returned at all
- see results section).

3.3.1. Example
Given the following question/answer pairs extracted
from a document:

• When was John Lennon born? October 9, 1940

• When did Lennon die? December 8, 1980

• How did John Lennon die? Assassinated

The system would �rst extract the named entities from
each of the questions to determine their subjects

• John Lennon

• Lennon

6

• John Lennon

And produce the Knows relations:

K1 = Knows(Doc-001-Agent, "Domain: John Lennon",
"When was John Lennon born?",
"October 9, 1940",
1.0).

K2 = Knows(Doc-001-Agent, "Domain: Lennon",
"When did Lennon die?",
"December 8, 1980",
1.0).

K3 = Knows(Doc-001-Agent, "Domain: John Lennon",
"How did John Lennon die?",
"Assassinated",
1.0).

Using partial matching, the system would recognise
`Lennon' and `John Lennon' as the same subject class,
and produce the following KnowsAbout relation (us-
ing the more explicit subject as the topic, and the gen-
eral entity type as the domain):

KnowsAbout(Doc-001-Agent, "Domain: PEOPLE",
"John Lennon",
{K1,K2,K3},
1.0).

4. DISCUSSION
Performance of the QITEKAT system in the 2003 eval-
uation was a useful benchmark on which to build, and
initial results made available by NIST for the 2004 task
show that gains have been made in both `factoid' and
`list' categories, as well as in the overall f-score. The
2003 results were hindered by the limited development
time, which meant regular expressions were only cre-
ated for a small subset of question types. This years'
performance re�ects the addition of the automated ex-
pression system, and the corresponding increase in the
number of regular expressions generated, and thus the
question types covered. Factoid accuracy moved from
26% in 2003 to 64% in 2004. `list' and `other' (de�ni-
tion) questions were adversely a�ect by technical issues
in 2003, meaning a zero score was recorded for both
types. These problems were addressed for the 2004
evaluation, producing a list score of 0.258, but unfor-
tunately, further problems manifested themselves, pro-
ducing NIL answers for all `other' questions. Overall,

0
.2

5
9

0
.6

4
3

0
.2

5
8

0

0
.1

3

0
.3

8
6

F
a

c
to

id

L
is

t

O
th

e
r

O
v

e
r
a

ll

2003

2004

Figure 6. Performance comparison 2003-2004

the system performance has progressed from a com-
bined F-score of 0.130 in 2003, to 0.388 this year. Fig-
ure 6 shows a graphical representation of performance
over the two years that Bangor has participated in the
evaluation.
These preliminary results show a good performance

gain for the QITEKAT system, with a 38% improve-
ment in factoid scores, and an almost three-fold increase
in overall performance, which is very promising. Elim-
ination of some technical issues which meant the 2003
evaluation was not a complete run of the system, can
account for some of the gains (although the 2004 run
su�ered its own problems which limited the analysis
time also), while auto-generating the regular expres-
sions rather than hand-crafting them was far more e�-
cient in terms of time, and meant that a greater propor-
tion of question types could be targeted and answered
by the system.
Although results for other groups entered in the

current evaluation will not be made available un-
til after the TREC conference, based on the known
min/max/average scores for each of the question types
(Factoid, List, Other) we can make a preliminary as-
sessment as to the performance of the QITEKAT sys-
tem in relation to the other entries. Table 4 shows the
relative comparison of the QITEKAT performance with
the know minimum, maximum and average scores for
the 2004 evaluation∗. These �gures imply that factoid

∗Overall minimum, maximum and average scores are not
provided by NIST and are estimated by assuming that the
MIN/MAX/AVERAGE in each category are from the same
system run.

7

performance on the 2004 evaluation was very good -
well above average, and the `list' performance was also
above the recorded. The technical issues with `other'
questions resulted in a zero result, which pulled down
the overall score. This was still above average, however,
and a good improvement on last year.

QITEKAT MIN MAX AVE
Factoid 0.643 0.009 0.770 0.170
List 0.258 0.000 0.622 0.094
Other 0.000 0.000 0.460 0.184
Overall 0.386 0.005 0.656 0.155

Table 4. Relative comparison of 2004 evaluation results.

5. FUTURE DIRECTIONS
A number of additions and modi�cations have been
recognised which could provide improved performance,
and are outlined below.

5.1. Improved Named Entity Classi�cation
Although the Named Entity classi�er developed as part
of the system performs well, for the purposes of Ques-
tion Answering it is important to broaden the scope of
the system, and introduce further NE types in order
to allow for more accurate answer matching. Sekine
et al. present a system o�ering a far greater number of
Named Entity classi�cations [4], which we feel would be
a bene�cial addition to the overall system architecture.

5.2. Synonym substitution
The present system architecture o�ers no methods for
word substitution, which is a limiting factor, both in
terms of matching questions with appropriate knowl-
edge relations, and also extracting relations from doc-
ument texts. The addition of a synonym system, such
as WordNet [2] would enable a greater number of sen-
tence constructs to be identi�ed and extrapolation of
questions to form multiple queries, o�ering a far greater
chance of successful responses. As an example, take the
question text:

�When did Charles Bronson die?"

In the present system, this will match only those rela-
tions with an equivalent question construct, which may
result in no answer being found. With synonym substi-
tution, however, the query would be reformulated as:

�When did Charles Bronson pass away?"

which may provide a positive match.

5.3. Past Participle Determination
In a similar vein to synonym substitution, it would be
useful to develop a feature within the system to au-
tomatically generate past participles of verbs, particu-
larly for con�dence-ranking through search engine cor-
roboration. When querying a search engine, the system
passes the main subjects of a question, so for example,
given the question:

�When did Charles Bronson die?"

The system forms a query using Charles Bronson
and Die . It is likely however that in any documents
retrieved by a search engine the information that we
are interested in would be described using the past par-
ticiple (died), i.e.

�Charles Bronson died on .."

Substituting the past participle may result in a more
useful query string, and ultimately a greater number
(or more accurate) results.

5.4. Automated Regular Expression
Production
Further development of our automated regular expres-
sion system is required to handle multiple subject ques-
tions, such as:

�How far is it from New York to Los Angeles?"
�Is New Zealand larger in size than Japan or
Great Britain?"

We are investigating the feasibility of parsing input into
two or more atomic questions, which can then be ad-
dressed and the answers combined to formulate a re-
sponse to the original query. This would allow us to
extract further information from the source corpus, and
extend the number of question types the system is ca-
pable of answering.

5.5. `Other' Questions
We are currently investigating the problems encoun-
tered and the conversion our Question/Answer pairs
into useful `nuggets' of information about speci�ed
question subjects. We hope to be able to leverage the
fact that we explicitly store domain information for all
question/answer pairs extracted from the corpus in or-
der to target this particular problem successfully.

8

REFERENCES
[1] Clifton T., Colquhoun A., Teahan, W. "Bangor at

TREC 2003: Q&A and Genomics Tracks". In Pro-
ceedings of the Twelfth Text Retrieval Conference,
2003, NIST. pp 600-611

[2] Miller G. "WordNet: An On-Line Lexical Data-
base". In International Journal of Lexicography.
2002

[3] Ravichandran D., Hovy E. "Learning Surface Text
Patterns for a Question Answering System". In Pro-
ceedings of ACL 2002, pp 41-47.

[4] Sekine S., Sudo K., and Nobata C. "Extended
Named Entity Hierarchy". In Proceedings of the
LREC-2002 Conference, 2002. pp 1818-1824.

[5] Teahan W. 2003. "Knowing About Knowledge: To-
wards a Framework for Knowledgeable Agents and
Knowledge Grids". Arti�cial Intelligence and Intel-
ligent Agents Tech Report AIIA03.2, School of In-
formatics, University of Wales, Bangor.

[6] Teahan W., Harper D. "Using Compression-Based
Language Models for Text Categorization". In Lan-
guage Modelling for Information Retrieval, 2003,
Kluwer Academic Publishers. pp 141-165.

[7] Vorhees E. Q&A Track Guidelines. Thir-
teenth Text Retrieval Conference, 2004, NIST.
http://trec.nist.gov/act_part/tracks/qa/
qa.04.guidelines.html (restricted)

[8] Vorhees E. "Overview of the TREC 2003 Question
Answering Track". In Proceedings of the Twelfth
Text Retrieval Conference, 2003, NIST. pp 54-68.

9

