
Expanding Queries using Stems and Symbols

Michela Bacchin ∗ Massimo Melucci

Department of Information Engineering
University of Padova

Italy

Abstract

This paper describes the experiments conducted in the ad-hoc retrieval
task of the Genomic track at TREC 2004. Different query expansion
techniques based on the addition of keyword stems and of genomic prod-
uct symbols selected by relevance feedback were studied. Stemming was
tested using a mutual reinforcement process for building a domain-specific
stemmer. Relevance feedback was tested using a technique exploiting as-
sociations between symbols and related keywords.

1 Introduction

The Information Management Systems (IMS) research group of the Department
of Information Engineering of the University of Padova participated in the ad-
hoc retrieval task of the Genomic track. The aim of this first participation
in the Genomic track was to explore this new domain-specific context using
different query expansion techniques. On the one hand, a probabilistic stemming
algorithm was used to expand queries by adding morphologically related words;
on the other, a relevance feedback technique was designed to expand queries
by selecting symbols added to queries together with their semantically related
keywords and symbols – symbols are strings which describe genomic or proteic
products.

In general, the employment of stemming is based on the basic idea that
words which are similar in morphology are also similar in meaning. Hence the
use of stemming algorithm allows to expand the query words with all their
variants. Past experiments showed that, firstly, stemming could not improve
retrieval performance because of the morphology of the documents language,
and, secondly, that stemming is as more effective as the morphology of the
language is more complex. In the context of documents about genomics, the
dictionary, i.e. the set of keywords extracted from the documents, includes
several words which are not present in a generic English dictionary, because they

∗Contact author: michela.bacchin@dei.unipd.it

are composed by two or more domain-specific morphemes. Hence the number
of variants seems to be greater than in a generic English collection, making the
specific language morphology more complex. The hypothesis that the use of
stemming in the Genomic track test collection could be more valuable than in
a generic English collection has been investigated.

Symbols are strings of alphabetical, numerical and special characters naming
genomic,proteic or biologic products. The language used in the test documents
is characterized by the occurrence of several symbols. Symbols precisely and
succintly describe document content without using keywords. Despite their
precision, symbols can be affected by ambiguity – a genomic product might
be identified by more than one symbol – thus making the problem of recall
more difficult. It is well known in the IR literature that query expansion is
an effective means to improve recall without decreasing precision in contexts
where synonymy prevents the retrieval of relevant documents. At TREC our
interest was in the investigation as to whether a relevance feedback-driven query
expansion technique based on symbol detection can be effective.

Several experiments were conducted before and also after the release of the
official runs. Hence it was decided to report in this paper all the significant
experiments conducted even if only two runs was submitted for official TREC
evaluation. The paper is organized as follows: In the next section, some issues
of stemming in the context of genomic information retrieval are illustrated. In
Section 3 the probabilistic model for stemmer generation is surveyed, whereas in
Section 4 a relevance feedback technique based on the extraction and processing
of symbols is presented. Section 5 describes the experimental setting and results.

2 Stemming in a Specific Domain Context

In the last years our research group proposed and developed a probabilistic
model for stemmer generation [4]. The proposed stemming algorithm infers the
word formation rules directly from the words of the corpus of documents and
uses no prior linguistic knowledge on the language. Several experiments were
carried out to evaluate if this probabilistic approach could be applied for building
stemming algorithms for different languages and if the probabilistic stemming
algorithm could be as effective as the ones manually built by linguistic experts.

The results observed were quite successfully with all the tested European lan-
guages, such as Italian, Spanish, French, German and English [1, 2, 3, 6]. For
all the test languages the retrieval performances of the probabilistic stemming
algorithm were similar to the ones obtained by linguistic stemming algorithms
manually built. It was observed that for languages with a complex morphol-
ogy, such as the Italian language, stemming could be useful for improving the
retrieval performance of systems, especially if a researcher is interested in eval-
uating the precision after a few retrieved documents.

In TREC 2004 the interest was concentrated in evaluating if stemming could
be valuable for improving retrieval performance in the context of documents and
queries about Genomics. In this paper, it has been made the hypothesis that

the morphology of this domain-specific language could be more complex than
the one of the English common language. The dictionary of the MEDLINE
collection is different from the one extracted from a collection which uses a
common English language, such as the Wall Street Journal articles. There are
many word compounds and words composed by two or more domain-specific
morphemes. This fact could make the morphology of the MEDLINE language
more complex than the common English morphology which is on the contrary
quite simple and gives out a few variants for each word. The presence in the
document collection of many variants decreases the probability of retrieving all
the relevant documents because in every relevant document could be present a
different variant which represents the same concept relevant to the one expressed
in the query.

The complexity of the language of the Genomics track test collection would
make the implementation of a stemmer difficult and subject to errors, and
its effectiveness is not guaranteed even if it is built after an intellectual la-
bor conducted by experts of the domain. Moreover, the language of the do-
main might evolve rapidly and the stemmer should be kept up-to-date. The
research reported in this paper investigated whether an automatic and language-
independent procedure to generate a stemmer for this domain could be a useful
and effective exercise. In the next section, the design of such a procedure is
illustrated.

3 A Probabilistic Model for Stemmer Genera-
tion

The probabilistic model proposed in [4] computes a list of pairs (word, stem)
starting from the set of words extracted from a corpus of documents. It is based
on a suffix stripping paradigm in which each word is split into a pair of sub-
strings, called prefix and suffix, and considers the prefix as the stem. The model
considers that words are the outcome of a generative process performed by a
hypothetical machine that takes the set of all the possible prefixes and suffixes
as input and produces words as output according to some type of linguistic
knowledge and not at random. Because of this, the probability of generating a
pair is not uniform – since the machine exploits some kind of linguistic knowl-
edge, the probability that a stem is correctly concatenated with a derivation is
higher than the probability that a generic prefix is concatenated with a generic
suffix. Stemming can be seen as the inverse of this generative process: given
a word, a stemmer has to guess the prefix and the suffix in order to form the
most probable pair that the machine has chosen to generate the word. As the
machine pools together its knowledge of the language, the most probable pair
is formed by the stem and the derivation of the word.

3.1 The Algorithm

Given a finite collection W of words, let U be the set of N sub-strings generated
after splitting each word z ∈ W into all possible positions, except for those
which generates empty sub-strings. If x, y are the prefix and the suffix of word
z, respectively, then z = xy and there are n − 1 possible positions to which z
is split, if |z| = n. Let us define the universe of the elementary random events
as follows. Let Ω = {(x, y) ∈ U × U : ∃z ∈ W, z = xy} be the set of all pairs
(prefix, suffix) which can form any word and let Ω(z) = {(x, y) ∈ Ω : xy = z}
be the set of all of the pairs (prefix, suffix) leading to the same word z.

The stemmer has to infer the most probable pair of prefixes and suffixes
(x, y)∗ = ω∗ chosen by the machine to generate the given word, computing the
expression:

ω∗ = arg max
ω∈Ω(z)

Pr(ω | z) (1)

= arg max
ω∈Ω(z)

Pr(z | ω) Pr(ω)
Pr(z)

(2)

= arg max
ω∈Ω(z)

Pr(ω) (3)

= arg max
i=1,...,n−1

Pr(xi, yi) (4)

where (2) is obtained applying the Bayes’ rule, (3) is obtained observing that
Pr(z | ω) = 1, since ω ∈ Ω(z) yields to z only, and Pr(z) is the same for all
ω and so it does not influence the maximization, and (4) is obtained because
Ω(z) = ∪n−1

i=1 {ωi} and ωi = (xi, yi).
Finally, the relationship which views that probability as the combination

of one marginal probability and one conditional probability was exploited to
compute Pr(xi, yi), and hence:

ω∗ = arg max
ω∈Ω(z)

Pr(x) Pr(y | x)

3.2 The Mutual Reinforcement in Stemming

To estimate the probability distribution of the pairs (prefix, suffix) Pr(xi, yi)
which is necessary to find the most probable pair, the following notion of prob-
abilistic mutual reinforcement in stemming was introduced:

Stems are prefixes which have a high probability of being completed
by derivations; derivations, in turn, are suffixes which have a high
probability of completing stems.

If a collection of words is observed, a prefix is completed by diverse suffixes, and
a suffix completes diverse prefixes. The mutual reinforcement relationship em-
phasizes that stems are more likely to be completed by derivations; derivations
in turn are more likely to complete stems.

Let us formalize the notion of mutual reinforcement in stemming just intro-
duced. It is a fact that:

Pr(xi) =
N∑

j=1

Pr(xi, yj)

Pr(yj) =
N∑

i=1

Pr(xi, yj)

and
Pr(xi, yj) = Pr(yj | xi) Pr(xi)
Pr(xi, yj) = Pr(xi | yj) Pr(yj)

Thus the mutual reinforcement relationship between the stems and the deriva-
tions can be written as:

Pr(xi) =

N∑
j=1

Pr(xi | yj) Pr(yj) i = 1, . . . , N

Pr(yj) =

N∑
i=1

Pr(yj | xi) Pr(xi) j = 1, . . . , N

(5)

Using a more compact notation,

p = [Pr(x1) · · ·Pr(xN)]′

as the vector of the prefix probabilities, and

s = [Pr(y1) · · ·Pr(yN)]′

as the vector of the suffix probabilities. Moreover, let A = [asr] be the N × N
matrix such that asr = Pr(xr | ys), and let B = [brs] be the N ×N matrix such
that brs = Pr(ys | xr). Therefore,

p = A′s

and
s = B′p

After substituting,
p = A′B′p

and
s = B′A′s

and then p is the eigenvector of C = (BA)′ associated to unity eigenvalue,
and s is the eigenvector of D = (AB)′ associated to unity eigenvalue. Hence,
the probability Pr(xi) can estimated by the component of the eigenvector p
associated with the prefix xi, and the probability Pr(yi) by the component of
the eigenvector s associated with the suffix yi. To compute the eigenvectors an
iterative algorithm can be applied; the details of our iterative algorithm can be
found in [4].

4 Query Expansion using Symbols

The symbols, i.e. strings of alphabetical, numerical and special characters used
to name genomic or proteic products, could be useful to make retrieval results
more precise. Actually, symbols encapsulate much information about what the
end user aims at searching since these strings are often acronyms or nicknames
of longer descriptions of the products about which the documents are relevant
or not.

Despite their potential usefulness in improving retrieval performance, sym-
bols are also ambiguous since a genomic or proteic product can be labelled using
more than one symbol in different research papers of the database. As a conse-
quence, a query can label a product using a symbol which mismatches the ones
used in relevant documents.

As it is well known in the IR literature, query expansion helps to address
the problem of word ambiguity. Therefore query expansion could be applied to
symbols as it was done for keywords. However, it is necessary to add semantics
to symbols so that they can be employed in a query expansion technique. If
semantics is added to symbols, these can be associated one to each other and
these associations can be exploited to expand a query including symbols.

To add semantics to a symbol, it could be possible to exploit the informa-
tion given by ontologies or similar databases. However, ontologies or similar
databases often cover a small portion of a document collection. Alternatively, it
could be possible to exploit the information encoded into the documents content
and compute the similarities among all the symbols in the collection. However,
such an approach poses significant problems since a vector-based representation
of the symbols and a similarity function should be defined.

In order to search for a source of evidence which adds semantics to sym-
bols, the following hypothesis was drawn: Symbols occur in the document texts
closely to keywords which give a semantics to the symbols. This closeness can
occur if, for instance, a symbol is introduced just before or after the words giv-
ing its definition or function. Another hypothesis was drawn: Symbols occur
closely to keywords to which related symbols occur as well. The latter is the
association between symbols being searched. The algorithm to discover the as-
sociations among symbols has been based on the notion of mutual reinforcement
which has been used to design the stemming algorithm presented and tested in
this paper. The notion of mutual reinforcement for query expansion can be
stated as follows:

A symbol used to expand the query co-occurs frequently with and
closely to keywords used to expand the query, and a keyword used
to expand the query co-occurs frequently with and closely to the
symbols used to expand the query.

4.1 Symbol Recognition

To recognize symbols, the following regular expressions were defined:

[A-Z][A-Z0-9]*[-/][a-zA-Z0-9]+

[a-zA-Z][A-Z0-9]*’(’[a-zA-Z0-9]+’)’[a-zA-Z0-9]*

[a-zA-Z][A-Z0-9][a-zA-Z0-9]+

These expressions defined a symbol as a string containing uppercase letters,
digits or some special characters. Some normalization was done to make special
characters little influential. The characters -()/ were removed from the strings
matching one of the first two regular expressions.

4.2 The Blind Relevance Feedback Algorithm

Given a collection of documents D and a full-text query q, a list of documents
was retrieved and the m top-ranked ones were selected to start up the query
expansion algorithm. Let M be set of these selected documents. The assumption
of implicit relevance feedback was made, i.e. the list of document contains
many relevant items and the synonyms occur in the retrieved relevant items.
From M the algorithm extracted all the tokens labelling symbols or keywords
– the distinction between symbols and keywords was made using the regular
expressions above introduced.

Query expansion can be computed choosing to expand the query only with
tokens labelled as symbols, or with those labelled as keywords. Once the token
type had been chosen, the k top-ranked tokens were extracted from M . The
tokens extracted from the top-ranked documents were ranked by a TF·IDF
measure, in which TF represents the token frequency in M , while IDF represents
the inverse document frequency computed considering all the documents in the
collection D. This way, query q was expanded by adding the tokens which were
the most specific ones for the top-ranked documents M .

4.3 The Exploitation of the Mutual Reinforcement

The algorithm explained above used the TF·IDF measure to select the k top-
ranked tokens to be added to the query. In order to investigate if the notion
of mutual reinforcement could be valuable also in the query expansion context,
the algorithm was modified to compute also a different token ranking based
on the mutual reinforcement relationship between symbols and keywords. The
algorithm built a graph whose nodes were symbols and the keywords occurring
closely to those symbols. If a symbol occurred within a 10-word text window,
then all the window words were extracted and associated to that symbol as
co-occurring words. Hence an edge was added from the symbols and the nodes
which represented the keywords associated. Then an algorithm exploiting the
mutual reinforcement relationship between symbols (hubs) and keywords (au-
thorities) was performed to associate a weight to each symbol and keyword.
These weights represented a measure of the degree to which each token (symbol
or keyword) is associated to the symbols of the list of top-ranked documents.
A symbol (keyword) with the highest score is the “best” one. The hypothesis
was that two synonymous symbols tend to be associated to the same keywords,

and that the synonyms being found can be effectively used to improve the per-
formance if the keywords come out of relevant documents. The query is then
expanded using the top-ranked symbols or keywords. Distinct experiments were
carried out both using the best symbols and the best keywords.

5 Experimental Setting

System. To carry out the experiments for the ad-hoc task of the genomic
track, a PC equipped with RedHat Linux, a 800 MHz Intel Pentium CPU and
512MB RAM was used. The MySQL AB relational database systems was em-
ployed for storing, indexing and searching documents, and a suite of tools were
developed in Java and C++ for pre- and post-processing. MySQL is one of
the most popular open source database server. It has full-text indexing and
searching capabilities, based on a space-vector model [8].

Indexing. Before storing the documents into the document table in MySQL
a conversion was necessary. Because of the limit of 4GB for each table in
MySQL, all the sections of a generic document could not be stored, and (PMI,
TI, AB), i.e., Document-Id, Title and Abstract were only stored. The original
9GB document collection was reduced to a 3GB MySQL document table. All the
599 stop-words have been removed before storing the documents. The MySQL
full-text capabilities were exploited to build an index consisting of both Title
and Abstract fields.

Searching. To retrieve the relevant documents a database application was de-
veloped to establish a connection to the MySQL database, send the queries and
produce a list of relevant documents in a format compatible with trec eval [5].
The queries have been built using the MySQL full-text extension to standard
SQL:

SELECT pmid, match(TI,AB) AGAINST(Query Text) AS score

FROM Table name WHERE

match(TI,AB) AGAINST(Query Text) LIMIT 1000

To build the query string Query Text, all the words except stop-words ap-
pearing in Title and Need sections of the topics provided by NIST were used.

6 Experimental Results

Several runs were performed to test, on the one hand, the effectiveness of query
expansion by stemming and, on the other hand, the effectiveness of query ex-
pansion algorithm presented in Section 4. Each run was characterized by the use
of a different algorithm and the run labels and a brief description are reported
in Table 1.

Run Labels Description
PDnoStem No stemming nor query expansion
PDTDmp4 Stemming using the probabilistic algorithm
PDporter Stemming using Porter’s algorithm for English
PDnmXkY fFrZyW Query expansion using m = X, k = Y ,

f = F , r = Z, y = W as parameter values
Parameters Description
m number of top-ranked documents: |M |
k number of top-ranked tokens to be added to q
f token type choice: 1=symbols, 2=keywords
r number of iterations of mutual reinforcing computation
y number of tokens extracted to build the graph

Table 1: Run labels and descriptions.

6.1 Experimental Results about Stemming

Since MySQL does not use any stemming algorithm, stemming was a pre-process
and a different document table was stored into the database for each different
stemming algorithm applied to the original documents. As reported in Table 2,
the size of the table which store the original documents was obviously much
greater than the size of the stemmed tables. In particular, the table which
stored the documents stemmed by the probabilistic stemmer is about 75% of
the original one thus confirming that stemming could be useful to decrease
table and index sizes. The same stemming pre-process was also performed for

Stemming Size in MB Unique terms
algorithm
PDnoStem 3,330 706,523
PDTNmp4 2,527 324,234
PDporter 2,824 577,553

Table 2: Size of tables in the database.

the topics, so three set of 50 queries were created – one set for each stemming
algorithm applied. Once the topics and the documents were stemmed by the
same stemming algorithm, the searches were carried out using the database
application described in the previous Section.

Building the stemming algorithm. Starting from the complete MEDLINE
collection, a set of 706,523 words with frequency greater than one were selected
out of the 1,200,090 unique words extracted from the collection. The proba-
bilistic stemmer generation was performed from this restricted, yet large set of
words thus obtaining a list of pairs (word, stem).

By default, MySQL does not index words which have a length minor than
four, hence the stemming algorithm was modified in order to stem only words
whose length was at least five – a rule such that the stem length has to be at least
four was added. Moreover, several words which should not have been stemmed
because they were already roots were observed in the past experiments. At
TREC-13 the stemming algorithm was modified in a way that algorithm does
not split the words which have a high probability of being root forms – the
complete words is treated as a stem. As result, 113,212, out of 706,523 words
has been not stemmed because 89,394 presented a word length minor than five,
and 23,818 were already stems with high probability.

Results. Table 3 reports the traditional effectiveness measures: the number
of relevant documents which had been retrieved (Rel-Retr), Average Precision
(A-P), R-Precision (R-P) and the Precision computed at 5 (P@5) and 10 (P@10)
document cut off values. The PDTNmp4 run was one of the two submitted official
runs. The results seem confirming the intuition that stemming could be useful

RunID Rel-Retr A-P R-P P@5 P@10
PDnoStem 2985 0.2015 0.2384 0.4880 0.4300
PDTNmp4 3102 0.2074 0.2476 0.5120 0.4560
PDporter 3248 0.2024 0.2457 0.5160 0.4320

Table 3: Some effectiveness measures for the experiments done.

in this domain-specific context, even if the improvement is little for A-P and R-
P. Yet the precision computed at the 5-document cut off value shows a greater
improvement for the runs which stemming was applied in. It is remarkable
that PDporter reports the largest improvement of recall, whereas PDTNmp4 is
comparable in terms of precision.

6.2 Experimental Results about Relevance Feedback us-
ing Symbols

The experiments were designed in a way that it could be possible to isolate
each single algorithm feature, which could influence the performances of the
query expansion algorithm proposed in this paper. First of all, a set of runs
were carried out with different quantities of top-ranked documents used as the
source from which relevance information is extracted – m is the number of top
ranked documents from which the token to be added to the query are extracted
– and with different quantities of top-ranked tokens added to the initial query
– k is the maximum number of tokens to be added to the query. It should be
recalled that the extracted tokens are ranked by TF·IDF (see Section 4.2).

For each value of m,k two runs were performed: one run was performed by
adding symbols to queries, one run was performed by adding keywords. In this
first set of runs, the mutual reinforcement among symbols and keywords was not

used. A run was also done using the query expansion feature of the embedded
full-text engine of MySQL with the aim of comparing our algorithm, which
distinguishes symbols from keywords, to another blind relevance feedback-based
query expansion algorithm which does not distinguish symbols from keywords.

To implement implicit relevant feedback, it was decided to use only the top
2 and 5 top-ranked document, i.e. m = 2 and m = 5 was used, and to extract
the top k = 5 and k = 20 tokens from M .

Table 4 reports the usual effectiveness figures for the first set of runs.

RunID Rel-Retr A-P R-P P@5 P@10
PDnoStem 2985 0.2015 0.2384 0.4880 0.4300
PDnm2k5f1 3014 0.1967 0.2331 0.4480 0.4000
PDnm2k5f2 3002 0.1902 0.2304 0.4600 0.4060
PDnm5k20f1 2968 0.1904 0.2224 0.4600 0.4100
PDnm5k20f2 3035 0.1918 0.2263 0.5040 0.4400
PDmysqlqe 2745 0.2086 0.2397 0.4840 0.4300

Table 4: Effectiveness measures for the query expansions.

Quite surprisingly, a constant decrease of all the effectiveness figures was
observed. In effect, the precision computed at five documents showed a decrease
of the baseline performance. The most probable reason is that the baseline could
not provide enough relevant documents within the top m. Also the MySQL
query expansion run labelled with PDmysqlqe did not obtain an effectiveness
improvement.

An exception was the run labelled with PDnm5k20f2 which reported an in-
crease of the total number of retrieved relevant documents and of the precision
at five documents retrieved.

To test if this average decrease could be imputable to the lack of enough
relevant documents among the top m retrieved, a set of runs was performed to
test explicit relevant feedback. The top ranked m relevant documents retrieved
among the top j retrieved documents were identified. The symbols and the key-
words were extracted from this subset of documents to be added to the initial
query. Table 5 reports the figures for the second set of runs. The runs based on

RunID Rel-Retr A-P R-P P@5 P@10
PDnoStem 2985 0.2015 0.2384 0.4880 0.4300
PDnm5k20f1j25 2992 0.2014 0.2277 0.5440 0.4500
PDnm5k20f2j25 3028 0.2082 0.2295 0.5640 0.4640
PDnm5k100f1j1000 3003 0.2104 0.2417 0.6000 0.4920
PDnm5k100f2j1000 3038 0.2130 0.2405 0.6520 0.5220

Table 5: Effectiveness measures for explicit relevance feedback.

a known set of relevant documents seem to perform better than the same runs

based on blind relevance feedback. In particular, the improvement of the preci-
sion at five documents is statistically significant with a p-value < 0.002 for the
Wilcoxon test and for all the runs. Hence, it seems that the explicit knowledge
of some relevant documents is a necessary condition to significantly improve
the performance of the relevance feedback technique based on the distinction
between symbols and keywords.

In order to test if the mutual reinforcement could be useful to improve the
ranking of the top-ranked tokens used to expand the query, a third set of runs
was performed. These runs were labelled using r = R as the number of iterations
performed by the algorithm implementing the mutual reinforcement between
symbols and keywords. As reported in Table 6 the mutual reinforcement in
this context is not clearly useful since precision does not improve consistently.
Yet the total number of retrieved relevant documents increases as reported by
PDnm5k100f1j1000r10y10 and PDnm5k20f1j25r10y10 which are two runs that
employ symbols.

RunID Rel-Retr A-P R-P P@5 P@10
PDnoStem 2985 0.2015 0.2384 0.4880 0.4300
PDnm5k100f2j1000r10y10 2986 0.2015 0.2384 0.4880 0.4300
PDnm5k100f1j1000r10y10 3134 0.2125 0.2388 0.5680 0.4720
PDnm5k20f1j25r10y10 3120 0.2063 0.2316 0.5160 0.4400

Table 6: Effectiveness measures for explicit relevance feedback and mutual reinforce-
ment.

However, j = 1000 is a rather unrealistic assumption in real operational
settings and the improvement reported by the runs based on such a high value
should be considered carefully. On the contrary, it is worth noting that an
appreciable improvement can be observed if j = 25 and mutual reinforcement
is performed using r = 10.

7 Conclusions and Future Work

Our interest has been in the investigation of different query expansion algo-
rithms. First stemming was studied to test if it could be useful in this domain-
specific context, and the results were quite positive because all the runs which
employ the stemming process obtained performances which were superior to the
baseline.

Then a set of relevance feedback techniques were tested on the basis of
the idea that symbols could be crucial for this domain specific context. The
results have been rather inconclusive – the query expansion algorithm seems to
really improve the performances of the systems only if the start up document set
consisted of relevant documents and keywords are the tokens used to expand the
query. If the query expansion algorithm were based on blind relevance feedback
or symbols are used instead, performance decreases. This might be due to the

fact that in the first k documents there are several not relevant documents or
symbols do not sufficiently discriminate relevant documents from non-relevant
documents.

However, there are some positive signals which suggest to continue the study
of the symbols role in this domain-specific context. An analysis is planned to
compare the symbols statistical distribution among relevant and non-relevant
documents. Other activities are also planned to improve and adapt the prob-
abilistic stemmer model to this domain – it may be hypothesised that if the
model could better infer the word formation rules specific for this context, it
could improve the performances of the retrieval system.

References

[1] M. Agosti, M. Bacchin, N. Ferro, and M. Melucci. Improving the Automatic
Retrieval of Text Documents. In C. Peters, M. Braschler, J.Gonzalo, M.
Kluck (eds.) Advances in Cross-Language Information Retrieval, Third
Workshop of the Cross-Language Evaluation Forum, CLEF 2002. Rome,
Italy, September 19-20, 2002. Revised Papers, pages 279–290. Lecture Notes
in Computer Science (LNCS) 2785, Springer-Verlag, Germany, 2003.

[2] M. Bacchin, N. Ferro, and M. Melucci. The Effectiveness of a Graph-based
Algorithm for Stemming. In E. P. Lim, S. Foo, C. S. G. Khoo, H. Chen, E.
A. Fox, S. R. Urs, and C. Thanos (eds.) Digital Libraries: People, Knowl-
edge, and Technology. Proceedings of 5th International Conference on Asian
Digital Libraries (ICADL 2002), Singapore, December 11-14, pages 117–
128. Lecture Notes in Computer Science (LNCS) 2555, Springer-Verlag,
Germany, 2002.

[3] M. Bacchin. A Language-Independent Stemming Algorithm. Ph.D. Thesis,
Department of Information Engineering, University of Padua, Italy, 2002.

[4] M. Bacchin and N. Ferro and M. Melucci. A Probabilistic Model for Stem-
mer Generation. Information Processing & Management, 41(1): pages 121–
137, Elsevier, 2005.

[5] C. Buckley et al. The trec eval Evaluation Package. ftp://ftp.cs.
cornell.edu/pub/smart/, 2004. Visited on October, 2004.

[6] G. Di Nunzio, N. Ferro, M. Melucci, and N. Orio. Experiments to Eval-
uate Probabilistic Models for Automatic Stemmer Generation and Query
Word Translation. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck
(eds.) Evaluation of Cross-Language Information Retrieval Systems, Fourth
Workshop of the Cross-Language Evaluation Forum, CLEF 2003. Trond-
heim, Norway, August 21-22, 2003. Revised Papers. Lecture Notes in Com-
puter Science (LNCS), Springer-Verlag, Germany, 2004.

[7] D. Harman. How Effective is Suffixing? Journal of the American Society
for Information Science, 42(1):7–15, Wiley, 1991.

[8] MySQL AB. MySQL Homepage. http://www.mysql.com. Visited on Oc-
tober 2004.

[9] M.F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137,
1980. Reprinted in K. Sparck Jones, and P. Willet, Readings in Information
Retrieval, Morgan Kaufmann, 1997,

[10] The English Stoplist of the SMART System. ftp://ftp.cs.cornell.edu/
pub/smart/english.stop. Visited on October, 2004.

