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1 Introduction  
 
Question Answering (QA) aims at identifying answers to users’ natural language 
questions. A QA system can release the users from digesting large amount of text in order 
to locate particular facts or numbers.  The research has drawn great attention from several 
disciplines such as information retrieval, information extraction, natural language 
processing, and artificial intelligence. TREC QA track has provided comparable QA 
system evaluation on a set of test questions since 1999. The degree of difficulty of the 
test questions has increased substantially in recent two years, which push the research 
toward applying more sophisticated strategies and better understanding of English texts. 
 
Question answering is very challenging due to the ambiguity of the questions, complexity 
of linguistic phenomena involved in the documents, and the difficulty to understand 
natural languages. More challenging is to locate short snippets or answers from a 
document collection with texts written in different languages, which is within our 
research interests focusing on cross-lingual or multilingual information access and 
retrieval. We have decided to participate in TREC 2004 Question Answering Track as 
our first step toward exploring advanced multilingual information retrieval. Our goal of 
this year is to develop a prototype automatic question answering system that can be 
continually expanded and improved.  
 
Our prototype QA system, named EagleQA, made use of available NLP (Natural 
Language Processing) tools and knowledge resources for question understanding and 
answer finding. This paper describes the overall structure of the system, NLP tools and 
lexical resources employed, our QA methodology for TREC 2004, QA test results & 
analysis, and our plan for future research. 
 
 
2 System Overview 
 
Current EagleQA system is comprised of 6 major subsystems: Question Processing, 
Document Annotation, Sentence Retrieval, Web QA, Answer Finding, and Answer 
Formulation. Following will briefly discuss each of the subsystems. 
 



   

2.1 Question Processing 
Question Processing subsystem accepts users’ questions and performs several processing 
including linguistic analysis, keyword identification and expansion, and answer type 
identification. Linguistic analysis performs part-of-speech tagging and phrase bracketing 
on original questions. Keyword identification and expansion first extracts important 
words or phrases from the annotated question. A word or a phrase is regarded as 
important if it’s not included in the stopword list of the system. The stopword list was 
generated manually by identifying words that occur frequently in previous TREC 
questions. Next, for each extracted noun and verb, its synonyms and derivation forms 
were identified based on WordNet 2.0 (www.princeton.edu). Those terms are added to 
the keyword list. Answer type identification is another important procedure in Query 
Processing. We developed a simple ontology for QA purpose. 16 top level categories 
were identified from previous TREC questions. Sample categories include ANIMAL, 
CODE, CURRENCY, LOCATION, NUMBER, ORGANIZATION, and PERSON. 
 
2.2 Document Annotation 
This year we didn’t carry out our own IR experiments to find relevant documents for test 
questions. Instead, we used the ranked document list provided by NIST. We plan to use 
Lemur (http://www-2.cs.cmu.edu/~lemur/) as the search engine for QA in the future.  
 
Our Document Annotation subsystem combines document annotation results from two 
NLP systems: LingPipe (http://www.alias-i.com/lingpipe/) and Minipar (Lin, 1994). 
LingPipe is used first to detect sentence boundaries, the identified sentences are sent to 
Minipar for part-of-speech tagging and named entity categorization. LingPipe can also 
perform named entity categorization and co-reference annotation. At last, we integrate 
the results of annotations from the two systems using an XML format. Figure 1 shows an 
example of the combined annotated text. The categorization results from LingPipe are 
identified after ‘ling_type =’ in the xml brackets, while those from Minipar are labeled 
after ‘mini_cat=’.  
 

<sent id="19"> 
   <TOK id="1" pos="U">Last</TOK> 
   <TOK id="2" pos="N">week</TOK> 
   <TOK id="3" pos="U">,</TOK> 
   <TOK id="4" pos="DET">the</TOK> 
   <TOK id="5" pos="N">literature</TOK> 
   <TOK id="6" pos="N">prize</TOK> 
   <TOK id="7" pos="V" base="go" subj="prize:TOK_6">went</TOK> 
   <TOK id="8" pos="PREP">to</TOK> 
   <TOK id="9" pos="N" mini_cat="LANG">Portuguese</TOK> 
   <TOK id="10" pos="N">novelist</TOK> 
<NP id ="1" mini_cat="PERSON" ling_type="PERSON"> 
   <TOK id="11" pos="U">Jose</TOK> 
   <TOK id="12" pos="N" mini_cat="PERSON">Saramago</TOK> 
</NP> 
 <TOK id="13" pos="U">.</TOK> 
</sent> 

 
Figure 1: Text Annotation Using LingPipe and Minipar 

http://www.princeton.edu/
http://www-2.cs.cmu.edu/~lemur/
http://www.alias-i.com/lingpipe/


   

2.3   Sentence Retrieval 
The Sentence Retrieval subsystem identifies a certain number of non-duplicate sentences 
(500 sentences maximum for this year) from the annotated documents as sentence 
candidates which may contain an answer to each test question. The keyword lists and 
answer type information obtained in Question Processing are utilized to find matched 
sentences for each factoid and list question. For questions labeled other, the sentence 
retrieval subsystem returns the sentences that match the target as answer candidates.   
 
2.4 Web QA 
 
The Internet is a huge and unique knowledge base. Our Web QA subsystem attempts to 
make use of this knowledge resource by submitting the original test questions to Google. 
The short summaries returned by Google are annotated and analyzed. A list of answer 
candidates that match the answer type of each question is then identified. Their frequency 
information is also kept as a factor for ranking the candidate by the Answer Finding 
subsystem.  
 
2.5  Answer Finding 
Answer Finding subsystem applies multiple evidences to find answers for factoid and list 
test questions. Factors that are taken into account when ranking an answer candidate 
include: 1) answer type; 2) weight of the sentence; 3) distance to keywords in the same 
sentence; and 4) whether it is a candidate returned by Web QA 
 
2.6 Answer formulation 
Finally, the system combines the answers for different types of questions such as factoid, 
list, and other questions. The duplicate answers are filtered out from the list of answers to 
other questions. An answer file is formulated at the end of this stage for submission. 
 
Figure 2 outlined the current architecture of our EagleQA system for TREC 2004. 
 
3 NLP tools and Knowledge Resources 
 
As mentioned in the introduction, we chose to make use of freely available NLP tools and 
knowledge resource and to integrate them into our QA system. Following describes the 
NLP tools and knowledge resource employed by the different subsystems of EagleQA to 
process test questions or documents. 
 
3.1 LingPipe (http://www.alias-i.com/lingpipe/) 
LingPipe, an open source NLP software, is developed by Alias-I, Incorporated 
(http://www.alias-i.com/).  LingPipe is regarded as “a suite of Java tools designed to 
perform linguistic analysis on natural language data.” LingPipe provides linguistic 
analysis functions such as sentence boundary detection, named entity detection for 
person, organization, and location, and within-document co-reference resolution. 
Evaluation of LingPipe system performance for various tasks can be found at 
http://www.alias-i.com/lingpipe/benchmarks.html. 
 

http://www.google.com/
http://www.alias-i.com/lingpipe/
http://www.alias-i.com/lingpipe/benchmarks.html


   

 
 

 
 

Figure 2. EagleQA Architecture 
 
 
3.2 Minipar (http://www.cs.ualberta.ca/~lindek/minipar.htm) 
MINIPAR, an efficient parser for English developed by Dr. Dekang Lin (1994), provides 
NLP functions such as part-of-speech tagging, phrase bracketing, and named entity 
categorization. An executive version can be downloaded from Dr. Lin’s website.  
Minipar was used by our system in combination with LingPipe and WordNet to annotate 
questions and documents. 
 
3.3 WordNet (http://www.cogsci.princeton.edu/~wn/) and Related Tools 
WordNet (Miller, 1990) is the well-known English ontology freely available on the Web 
and covers the vast majority of nouns, verbs, adjectives, and adverbs from the English 
language.  It has been widely used in many NLP applications and other QA systems 
(Harabagiu, et al., 2003).   
 
In addition to the WordNet database itself, we made use of a Perl interface to WordNet: 
WordNet::QueryData developed by Jason Rennie 
(http://people.csail.mit.edu/u/j/jrennie/public_html/WordNet/). It allows the user direct 
access to the full WordNet semantic lexicon. For example, you can query synonyms, 
hyponyms, the gloss of a particular sense, and derived forms of a word.  
 
3.4 Google (www.google.com) 
As many other QA systems, we used Google.com to search for answers on the Internet. 
The Web QA subsystem submits the original questions to Google for short summaries 
from which we identify a list of possible answer candidates. The test results showed that 
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our approach was too naïve and the performance was not satisfactory. Further analysis 
will be conducted to improve the strategies of identifying and ranking answer candidates 
from the search results. 

 
4 QA Methodology for 2004 
 
We basically employed similar strategy to factoid questions and list questions except that 
a threshold was applied to list questions in order to determine the number of answers that 
should be returned. The threshold was predetermined based on experiments using last 
year’s test questions. Other questions are quite different from factoid questions. 
Therefore we used a different approach to answer them. 
 
4.1 factoid questions and list questions 
As depicted by figure 2, factoid questions and list questions were handled following the 
procedures of question processing, document annotation, sentence retrieval, Web QA, 
answer finding, and answer formulation. Following we will describe more specifically 
approaches for some of the subsystems, such as question processing, sentence retrieval, 
and answer finding. 
 
For question processing, EagleQA first performed a shallow co-reference resolution to 
replace pronouns in questions with the actual targets. For example, in question 4.5 
“Which was the first movie that he was in?” “he” was replaced by the target “James 
Dean”. Then we used Minipar to tag each question and WordNet to expand nouns and 
verbs in the question, as described in 2.1. Final result for each question included the 
answer type and a list of keywords with expansions if any. For example, 
 
Question:     Which was the first movie that James Dean was in? 
Answer type: movie 
Keywords:   movie(synonym: movie, film, picture, moving picture, moving-picture show, motion 

picture, motion-picture show, picture show, pic, flick) / James Dean /  
 
After annotating the retrieved documents using LingPipe and Minipar, we employed a 
simple strategy to find sentences that may contain the answers. Two factors were 
considered for ranking the sentences: number of question keywords occurred in the 
sentence, and whether the sentence contains the same answer type as the question. Higher 
weights were assigned to sentences that contain more keywords and named entities that 
are annotated the same as the answer type of the question. 
 
At the answer finding stage, we first attempted to identify possible answer candidates. 
Named entities annotated by LingPipe and Minipar were identified as answer candidates 
if their categories are the same as those of the question. However, the document 
annotation using LingPipe and Minipar can only identify named entities in certain 
categories, such as person, country, location, city, money, number, and organization. 
Many questions ask about names in other categories, or cannot be answered using entity-
based strategy.  We therefore developed following additional strategies for answer 
candidate identification: 



   

• WordNet hypernyms.  For those questions asking about certain categories such as 
animal, disease, plant and color, we evaluated each noun or noun phrase in the 
sentence using knowledge about hypernym relationship in WordNet. For example, 
question “What is their gang color?” the answer type is color. For each noun in a 
candidate sentence, we used WordNet to check whether ‘color’ is one of its 
hypernyms. If conformed, the word or phrase was regarded as an answer candidate.  

• Name lists. Some frequently asked questions, such as “Who was the 23rd president of 
the United States?” can be easily answered if a list of US presidents has been stored 
in the system. We therefore manually developed about thirty short lists to store names 
about US presidents, NBA teams, candy brands, state nicknames, and newspaper 
agencies. If a noun or noun phrase matched one of the names in an appropriate list, it 
was regarded as an answer candidate. The criterion to choose the appropriate list 
depended on the degree of match between keywords of the question and the title of 
the list. 

• Additional named entity patterns. In order to compensate for the incomplete 
document annotation, we developed a pattern set to identify names or titles of a book, 
a move, a poem, and a song. Also included are patterns to identify terms or phrases 
regarding speed, temperature, and age.  

• Answer patterns. Some questions are difficult to apply entity-based strategy. For 
instance, question “How did James Dean die?” is ambiguous with regard to the 
answer type. We therefore developed simple patterns for answering such questions. 
These patterns were derived from the answers to the similar test questions of 2003. 

 
Once the answer candidates were identified, the next step was to rank them in order to 
determine the final answer. The ranking strategy depended on following three evidences: 
• The weighting score of the answer sentence obtained in Sentence Retrieval 

subsystem. This score is determined by two factors: number of question keywords 
and answer type presence if applicable, as discussed above. 

• The weighting score of the answer candidates. Candidates obtained through different 
strategies outlined above might be assigned a different weighting score. For example, 
answer candidates obtained from document annotation had a higher score than those 
from additional named entity patterns.  

• Web QA. If an answer candidate was also returned by the Web QA subsystem, it 
received a higher ranking.  

  
A formula considering the above factors was used to calculate the final score for each 
candidate. The parameters in the formula were trained using a small number of test 
questions of last year.  
 
4.2 Other questions 
The other questions were previous definition questions. Other questions require QA 
systems to provide information about the targets in addition to answers to the factoid and 
list questions for the same targets. The usual ways to answer definition questions include 
developing heuristic linguistic patterns to find matched sentence segments (Hildebrandt, 
Katz, & Lin, 2004). Due to the time constraints, we were unable to develop training 
material and heuristic patterns for other questions. We instead employed a simple 



   

strategy: just return the whole sentences which include more than 50% of the words in 
the targets. In ranking candidate sentences, higher scores were given to sentences which 
include the whole targets as phrases. This simple strategy sacrifices precision based on 
current performance measures. 
 
5 Results & Analysis 
 
We submitted three runs, namely UNTQA04M1, UNTQA04M2, and UNTQA04M3. 
Their scores are listed in Table 1. The three runs applied the same program for other 
questions. The difference between UNTQA04M1 and UNTQA04M2 was that 
UNTQA04M2 took into account Web QA or Google results for weighting the answer 
candidates, but UNTQA04M1 didn’t.  The difference between UNTQA04M1 and 
UNTQA04M3 was the different post processing for other questions. UNTQA04M1 
returned non-duplicate answers for each other question. Non-duplicate means if an 
answer sentence had returned an answer for factoid or list questions for the same target, it 
was removed from the answer list for the other question. UNTQA04M3 didn’t perform 
this process of removing duplicate answers. The results showed that the process produced 
no effect on system performance.   
 
   Table 1. Official Results 

Run Factoid  
(Accuracy ) 

List 
(Average F ) 

Other 
( Average F ) 

Final Score 

UNTQA04M1 0.187 0.128 0.305 0.202 
UNTQA04M2 0.196 0.123 0.305 0.205 
UNTQA04M3 0.187 0.127 0.307 0.202 

median 0.170 0.094 0.184  
 
Run UNTQA04M2 did slightly better than the other two runs, mainly because of the use 
of Google results. Event though the three runs were all above the median, there is big 
room for further improvement.  
 
We are still in the process of analyzing our QA results. The analysis aims at discovering 
the weakest point of the system so that we can take it as the start point for future 
development.  
 
6  Future Research 
 
Our QA system is still at a very early development stage. Some of the subsystems had not 
been fully tested before the TREC experiments due to time constraints. We will continue 
our effort to develop and evaluate the system. 
 
We plan to use Lemur (http://www-2.cs.cmu.edu/~lemur/) as our search engine for 
document retrieval for QA. Based on our testing using 2003 questions, Lemur could 
retrieve more relevant documents than NIST search engine. 
 

http://www-2.cs.cmu.edu/~lemur/


   

For question processing and answer finding, we are attempting template-based techniques 
in combination with machine learning to improve the system performance. Preparing 
training material will be our first step of exploring these new strategies. We expect to 
improve the QA performance of our EagleQA system in the near future. 
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