

UNT at TREC 2004: Question Answering Combining Multiple Evidences

Jiangping Chen, He Ge, Yan Wu, Shikun Jiang

School of Library and Information Sciences
University of North Texas

P.O. Box 311068, Denton, TX 76203
{jpchen, hg0022, ywu0015, sj0071}@unt.edu

1 Introduction

Question Answering (QA) aims at identifying answers to users’ natural language
questions. A QA system can release the users from digesting large amount of text in order
to locate particular facts or numbers. The research has drawn great attention from several
disciplines such as information retrieval, information extraction, natural language
processing, and artificial intelligence. TREC QA track has provided comparable QA
system evaluation on a set of test questions since 1999. The degree of difficulty of the
test questions has increased substantially in recent two years, which push the research
toward applying more sophisticated strategies and better understanding of English texts.

Question answering is very challenging due to the ambiguity of the questions, complexity
of linguistic phenomena involved in the documents, and the difficulty to understand
natural languages. More challenging is to locate short snippets or answers from a
document collection with texts written in different languages, which is within our
research interests focusing on cross-lingual or multilingual information access and
retrieval. We have decided to participate in TREC 2004 Question Answering Track as
our first step toward exploring advanced multilingual information retrieval. Our goal of
this year is to develop a prototype automatic question answering system that can be
continually expanded and improved.

Our prototype QA system, named EagleQA, made use of available NLP (Natural
Language Processing) tools and knowledge resources for question understanding and
answer finding. This paper describes the overall structure of the system, NLP tools and
lexical resources employed, our QA methodology for TREC 2004, QA test results &
analysis, and our plan for future research.

2 System Overview

Current EagleQA system is comprised of 6 major subsystems: Question Processing,
Document Annotation, Sentence Retrieval, Web QA, Answer Finding, and Answer
Formulation. Following will briefly discuss each of the subsystems.

2.1 Question Processing
Question Processing subsystem accepts users’ questions and performs several processing
including linguistic analysis, keyword identification and expansion, and answer type
identification. Linguistic analysis performs part-of-speech tagging and phrase bracketing
on original questions. Keyword identification and expansion first extracts important
words or phrases from the annotated question. A word or a phrase is regarded as
important if it’s not included in the stopword list of the system. The stopword list was
generated manually by identifying words that occur frequently in previous TREC
questions. Next, for each extracted noun and verb, its synonyms and derivation forms
were identified based on WordNet 2.0 (www.princeton.edu). Those terms are added to
the keyword list. Answer type identification is another important procedure in Query
Processing. We developed a simple ontology for QA purpose. 16 top level categories
were identified from previous TREC questions. Sample categories include ANIMAL,
CODE, CURRENCY, LOCATION, NUMBER, ORGANIZATION, and PERSON.

2.2 Document Annotation
This year we didn’t carry out our own IR experiments to find relevant documents for test
questions. Instead, we used the ranked document list provided by NIST. We plan to use
Lemur (http://www-2.cs.cmu.edu/~lemur/) as the search engine for QA in the future.

Our Document Annotation subsystem combines document annotation results from two
NLP systems: LingPipe (http://www.alias-i.com/lingpipe/) and Minipar (Lin, 1994).
LingPipe is used first to detect sentence boundaries, the identified sentences are sent to
Minipar for part-of-speech tagging and named entity categorization. LingPipe can also
perform named entity categorization and co-reference annotation. At last, we integrate
the results of annotations from the two systems using an XML format. Figure 1 shows an
example of the combined annotated text. The categorization results from LingPipe are
identified after ‘ling_type =’ in the xml brackets, while those from Minipar are labeled
after ‘mini_cat=’.

<sent id="19">
 <TOK id="1" pos="U">Last</TOK>
 <TOK id="2" pos="N">week</TOK>
 <TOK id="3" pos="U">,</TOK>
 <TOK id="4" pos="DET">the</TOK>
 <TOK id="5" pos="N">literature</TOK>
 <TOK id="6" pos="N">prize</TOK>
 <TOK id="7" pos="V" base="go" subj="prize:TOK_6">went</TOK>
 <TOK id="8" pos="PREP">to</TOK>
 <TOK id="9" pos="N" mini_cat="LANG">Portuguese</TOK>
 <TOK id="10" pos="N">novelist</TOK>
<NP id ="1" mini_cat="PERSON" ling_type="PERSON">
 <TOK id="11" pos="U">Jose</TOK>
 <TOK id="12" pos="N" mini_cat="PERSON">Saramago</TOK>
</NP>
 <TOK id="13" pos="U">.</TOK>
</sent>

Figure 1: Text Annotation Using LingPipe and Minipar

http://www.princeton.edu/
http://www-2.cs.cmu.edu/~lemur/
http://www.alias-i.com/lingpipe/

2.3 Sentence Retrieval
The Sentence Retrieval subsystem identifies a certain number of non-duplicate sentences
(500 sentences maximum for this year) from the annotated documents as sentence
candidates which may contain an answer to each test question. The keyword lists and
answer type information obtained in Question Processing are utilized to find matched
sentences for each factoid and list question. For questions labeled other, the sentence
retrieval subsystem returns the sentences that match the target as answer candidates.

2.4 Web QA

The Internet is a huge and unique knowledge base. Our Web QA subsystem attempts to
make use of this knowledge resource by submitting the original test questions to Google.
The short summaries returned by Google are annotated and analyzed. A list of answer
candidates that match the answer type of each question is then identified. Their frequency
information is also kept as a factor for ranking the candidate by the Answer Finding
subsystem.

2.5 Answer Finding
Answer Finding subsystem applies multiple evidences to find answers for factoid and list
test questions. Factors that are taken into account when ranking an answer candidate
include: 1) answer type; 2) weight of the sentence; 3) distance to keywords in the same
sentence; and 4) whether it is a candidate returned by Web QA

2.6 Answer formulation
Finally, the system combines the answers for different types of questions such as factoid,
list, and other questions. The duplicate answers are filtered out from the list of answers to
other questions. An answer file is formulated at the end of this stage for submission.

Figure 2 outlined the current architecture of our EagleQA system for TREC 2004.

3 NLP tools and Knowledge Resources

As mentioned in the introduction, we chose to make use of freely available NLP tools and
knowledge resource and to integrate them into our QA system. Following describes the
NLP tools and knowledge resource employed by the different subsystems of EagleQA to
process test questions or documents.

3.1 LingPipe (http://www.alias-i.com/lingpipe/)
LingPipe, an open source NLP software, is developed by Alias-I, Incorporated
(http://www.alias-i.com/). LingPipe is regarded as “a suite of Java tools designed to
perform linguistic analysis on natural language data.” LingPipe provides linguistic
analysis functions such as sentence boundary detection, named entity detection for
person, organization, and location, and within-document co-reference resolution.
Evaluation of LingPipe system performance for various tasks can be found at
http://www.alias-i.com/lingpipe/benchmarks.html.

http://www.google.com/
http://www.alias-i.com/lingpipe/
http://www.alias-i.com/lingpipe/benchmarks.html

Figure 2. EagleQA Architecture

3.2 Minipar (http://www.cs.ualberta.ca/~lindek/minipar.htm)
MINIPAR, an efficient parser for English developed by Dr. Dekang Lin (1994), provides
NLP functions such as part-of-speech tagging, phrase bracketing, and named entity
categorization. An executive version can be downloaded from Dr. Lin’s website.
Minipar was used by our system in combination with LingPipe and WordNet to annotate
questions and documents.

3.3 WordNet (http://www.cogsci.princeton.edu/~wn/) and Related Tools
WordNet (Miller, 1990) is the well-known English ontology freely available on the Web
and covers the vast majority of nouns, verbs, adjectives, and adverbs from the English
language. It has been widely used in many NLP applications and other QA systems
(Harabagiu, et al., 2003).

In addition to the WordNet database itself, we made use of a Perl interface to WordNet:
WordNet::QueryData developed by Jason Rennie
(http://people.csail.mit.edu/u/j/jrennie/public_html/WordNet/). It allows the user direct
access to the full WordNet semantic lexicon. For example, you can query synonyms,
hyponyms, the gloss of a particular sense, and derived forms of a word.

3.4 Google (www.google.com)
As many other QA systems, we used Google.com to search for answers on the Internet.
The Web QA subsystem submits the original questions to Google for short summaries
from which we identify a list of possible answer candidates. The test results showed that

TREC
questions

Questions
Processing

Document
AnnotationRetrieved

documents

Answer type and
keywords

Answer file

Sentence
Retrieval

Web QA

Answer
finding

Answer
Formulation

Answers to other
questions

Answer type
identification,
Keywords
identification &
expansion

POS tagging,
Co-reference
resolution, NE
categorization

Answer
finding using
Google

Answer
Sentence
Weighting
&
Extraction

Answer
identification &
ranking for
factoid and list
questions based
on multi-
evidence

Annotated
docs

Answer
candidates

Answers to factoid
& list questions

Sentence
candidates

Answer file
generation by
removing the
duplicates

TREC
questions

Questions
Processing

Document
AnnotationRetrieved

documents

Answer type and
keywords

Answer file

Sentence
Retrieval

Web QA

Answer
finding

Answer
Formulation

Answers to other
questions

Answer type
identification,
Keywords
identification &
expansion

POS tagging,
Co-reference
resolution, NE
categorization

Answer
finding using
Google

Answer
Sentence
Weighting
&
Extraction

Answer
identification &
ranking for
factoid and list
questions based
on multi-
evidence

Annotated
docs

Answer
candidates

Answers to factoid
& list questions

Sentence
candidates

Answer file
generation by
removing the
duplicates

http://www.cs.ualberta.ca/~lindek/minipar.htm
http://www.cogsci.princeton.edu/~wn/
http://people.csail.mit.edu/u/j/jrennie/public_html/WordNet/
http://www.google.com/

our approach was too naïve and the performance was not satisfactory. Further analysis
will be conducted to improve the strategies of identifying and ranking answer candidates
from the search results.

4 QA Methodology for 2004

We basically employed similar strategy to factoid questions and list questions except that
a threshold was applied to list questions in order to determine the number of answers that
should be returned. The threshold was predetermined based on experiments using last
year’s test questions. Other questions are quite different from factoid questions.
Therefore we used a different approach to answer them.

4.1 factoid questions and list questions
As depicted by figure 2, factoid questions and list questions were handled following the
procedures of question processing, document annotation, sentence retrieval, Web QA,
answer finding, and answer formulation. Following we will describe more specifically
approaches for some of the subsystems, such as question processing, sentence retrieval,
and answer finding.

For question processing, EagleQA first performed a shallow co-reference resolution to
replace pronouns in questions with the actual targets. For example, in question 4.5
“Which was the first movie that he was in?” “he” was replaced by the target “James
Dean”. Then we used Minipar to tag each question and WordNet to expand nouns and
verbs in the question, as described in 2.1. Final result for each question included the
answer type and a list of keywords with expansions if any. For example,

Question: Which was the first movie that James Dean was in?
Answer type: movie
Keywords: movie(synonym: movie, film, picture, moving picture, moving-picture show, motion

picture, motion-picture show, picture show, pic, flick) / James Dean /

After annotating the retrieved documents using LingPipe and Minipar, we employed a
simple strategy to find sentences that may contain the answers. Two factors were
considered for ranking the sentences: number of question keywords occurred in the
sentence, and whether the sentence contains the same answer type as the question. Higher
weights were assigned to sentences that contain more keywords and named entities that
are annotated the same as the answer type of the question.

At the answer finding stage, we first attempted to identify possible answer candidates.
Named entities annotated by LingPipe and Minipar were identified as answer candidates
if their categories are the same as those of the question. However, the document
annotation using LingPipe and Minipar can only identify named entities in certain
categories, such as person, country, location, city, money, number, and organization.
Many questions ask about names in other categories, or cannot be answered using entity-
based strategy. We therefore developed following additional strategies for answer
candidate identification:

• WordNet hypernyms. For those questions asking about certain categories such as
animal, disease, plant and color, we evaluated each noun or noun phrase in the
sentence using knowledge about hypernym relationship in WordNet. For example,
question “What is their gang color?” the answer type is color. For each noun in a
candidate sentence, we used WordNet to check whether ‘color’ is one of its
hypernyms. If conformed, the word or phrase was regarded as an answer candidate.

• Name lists. Some frequently asked questions, such as “Who was the 23rd president of
the United States?” can be easily answered if a list of US presidents has been stored
in the system. We therefore manually developed about thirty short lists to store names
about US presidents, NBA teams, candy brands, state nicknames, and newspaper
agencies. If a noun or noun phrase matched one of the names in an appropriate list, it
was regarded as an answer candidate. The criterion to choose the appropriate list
depended on the degree of match between keywords of the question and the title of
the list.

• Additional named entity patterns. In order to compensate for the incomplete
document annotation, we developed a pattern set to identify names or titles of a book,
a move, a poem, and a song. Also included are patterns to identify terms or phrases
regarding speed, temperature, and age.

• Answer patterns. Some questions are difficult to apply entity-based strategy. For
instance, question “How did James Dean die?” is ambiguous with regard to the
answer type. We therefore developed simple patterns for answering such questions.
These patterns were derived from the answers to the similar test questions of 2003.

Once the answer candidates were identified, the next step was to rank them in order to
determine the final answer. The ranking strategy depended on following three evidences:
• The weighting score of the answer sentence obtained in Sentence Retrieval

subsystem. This score is determined by two factors: number of question keywords
and answer type presence if applicable, as discussed above.

• The weighting score of the answer candidates. Candidates obtained through different
strategies outlined above might be assigned a different weighting score. For example,
answer candidates obtained from document annotation had a higher score than those
from additional named entity patterns.

• Web QA. If an answer candidate was also returned by the Web QA subsystem, it
received a higher ranking.

A formula considering the above factors was used to calculate the final score for each
candidate. The parameters in the formula were trained using a small number of test
questions of last year.

4.2 Other questions
The other questions were previous definition questions. Other questions require QA
systems to provide information about the targets in addition to answers to the factoid and
list questions for the same targets. The usual ways to answer definition questions include
developing heuristic linguistic patterns to find matched sentence segments (Hildebrandt,
Katz, & Lin, 2004). Due to the time constraints, we were unable to develop training
material and heuristic patterns for other questions. We instead employed a simple

strategy: just return the whole sentences which include more than 50% of the words in
the targets. In ranking candidate sentences, higher scores were given to sentences which
include the whole targets as phrases. This simple strategy sacrifices precision based on
current performance measures.

5 Results & Analysis

We submitted three runs, namely UNTQA04M1, UNTQA04M2, and UNTQA04M3.
Their scores are listed in Table 1. The three runs applied the same program for other
questions. The difference between UNTQA04M1 and UNTQA04M2 was that
UNTQA04M2 took into account Web QA or Google results for weighting the answer
candidates, but UNTQA04M1 didn’t. The difference between UNTQA04M1 and
UNTQA04M3 was the different post processing for other questions. UNTQA04M1
returned non-duplicate answers for each other question. Non-duplicate means if an
answer sentence had returned an answer for factoid or list questions for the same target, it
was removed from the answer list for the other question. UNTQA04M3 didn’t perform
this process of removing duplicate answers. The results showed that the process produced
no effect on system performance.

 Table 1. Official Results

Run Factoid
(Accuracy)

List
(Average F)

Other
(Average F)

Final Score

UNTQA04M1 0.187 0.128 0.305 0.202
UNTQA04M2 0.196 0.123 0.305 0.205
UNTQA04M3 0.187 0.127 0.307 0.202

median 0.170 0.094 0.184

Run UNTQA04M2 did slightly better than the other two runs, mainly because of the use
of Google results. Event though the three runs were all above the median, there is big
room for further improvement.

We are still in the process of analyzing our QA results. The analysis aims at discovering
the weakest point of the system so that we can take it as the start point for future
development.

6 Future Research

Our QA system is still at a very early development stage. Some of the subsystems had not
been fully tested before the TREC experiments due to time constraints. We will continue
our effort to develop and evaluate the system.

We plan to use Lemur (http://www-2.cs.cmu.edu/~lemur/) as our search engine for
document retrieval for QA. Based on our testing using 2003 questions, Lemur could
retrieve more relevant documents than NIST search engine.

http://www-2.cs.cmu.edu/~lemur/

For question processing and answer finding, we are attempting template-based techniques
in combination with machine learning to improve the system performance. Preparing
training material will be our first step of exploring these new strategies. We expect to
improve the QA performance of our EagleQA system in the near future.

7 References

Harabagiu, S., Moldovan, D., Clark, C., Bowden, M., Williams, J., & Bensley, J. (2003).

Answer Mining by combining extraction techniques with abductive reasoning. In
Proceedings of The Twelfth Text Retrieval Conference (TREC 2003).

Hildebrandt, W., Katz, B., & Lin, J. (2004). Answering definition questions with multiple
knowledge sources. Proceedings of the 2004 Human Language Technology
Conference and the North American Chapter of the Association for Computational
Linguistics Annual Meeting (HLT/NAACL 2004), May 2004, Boston, Massachusetts.

Lin, D. (1994). PRINCIPAR---An Efficient, broad-coverage, principle-based parser. In
Proceedings of COLING-94. pp.42--488, Kyoto, Japan.

Miller, G. (1990). WordNet: an on-line lexical database. International Journal of
Lexicography, 2(4), Special issue.

http://www.cs.ualberta.ca/~lindek/papers/coling94.ps

	UNTQA04M1

