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Abstract

The University of Maryland and Johns
Hopkins University worked together in
the 2004 High Accuracy Retrieval from
Documents (HARD) track to explore de-
sign options for interactive passage re-
trieval systems. HARD assessors re-
sponded to clarification forms by (1)
selecting additional search terms from
an automatically constructed list of po-
tentially discriminating terms, (2) se-
lected relevant passages from an auto-
matically constructed list of possibly rel-
evant passages, and (3) entered addi-
tional search terms. Query expansion
based on these three types of elicited
information yielded statistically signifi-
cant improvements in R-precision over
baselines with and without blind rel-
evance feedback. For topics that re-
quested passages as answers, a prelimi-
nary analysis shows that statistical mod-
els for passage extent trained on HARD
2003 data yielded a significant improve-
ment over a replication of the Univer-
sity of Maryland’s HARD-2003 tech-
nique for passage extent determination,
and the results of the new technique ap-
pear to generally be well above the me-
dian for HARD 2004 systems.
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1 Introduction

An Information Retrieval (IR) process can be mod-
eled as establishing relationships between queries
entered by a user and the documents in a collec-
tion. In such a model, evidence, usually counts
of content-bearing words drawn from entire docu-
ments, is used as a basis for assessing the strength
of a relationship. Some research has also focused
on modeling portions of a document text (called
“passage retrieval”), finding that passage-level ev-
idence can sometimes provide better evidence for
the full-document retrieval task than that of the full
document text, especially when the documents are
long or span different subject areas (Callan, 1994;
Kaszkiel and Zobel, 1997).

We started to work on passage retrieval at the
University of Maryland in the 2003 High Accu-
racy Retrieval of Documents (HARD) track. Our
interest is motivated by the novel design of the
HARD passage retrieval evaluation; in HARD pas-
sages are assessed based on their intrinsic utility
to searchers as passages (rather than their extrinsic
value as a basis for retrieval of full documents).
For our 2003 experiments we developed a sim-
ple but effective module to identify and rank pas-
sages; it achieved an R-precision among the best
reported that year. However, a subsequent inter-
annotator consistency study conducted at the Uni-
versity of Maryland showed that our HARD-20003
passage retrieval module was far below human per-
formance on the same task. Our analysis indicated
that the most problematic part of our approach
that year was passage extent determination; our
passages were generally far shorter than the pas-
sages annotated by the HARD assessors. There-
fore, the first research question we wanted to ad-
dress was how we might better approximate hu-



man determination of passage extent. The Johns
Hopkins University joined our team this year, and
they focused on this challenge. We developed a
set of paragraph-based features and some statisti-
cal models to identify the most likely passage ex-
tent for a query in its corresponding retrieved doc-
uments

Our second research question focused on opti-
mizing the utility of a limited opportunity for user
interaction. Previous research on presentation of
passages in interactive information retrieval has fo-
cused on the display of passages as a basis for doc-
ument selection task (Knaus et al., 1995; He et al.,
2004). Our goal, by contrast, was to use passage-
level feedback to improve passage retrieval effec-
tiveness. We explored this by using passage selec-
tion and term selection in the design of our clarifi-
cation forms, and then using the results as a basis
for automatic query expansion.

In this report, we first introduce our 2003 pas-
sage retrieval module in section 2.1, then describe
the design of the new passage extent model in sec-
tion 2.2. We then move to a discussion of the de-
sign and use of clarification questions for improv-
ing passage retrieval in section 3. We conclude
with a preliminary analysis of the experiment re-
sults in section 4.

2 Passage Retrieval

Perhaps the greatest challenge in the design of an
end-user passage retrieval system is that there is
little a priori basis for determining passage extent;
some users may prefer terse passages, while oth-
ers may prefer more context. Learning from ex-
amples can be useful in such cases, but only when
users exhibit some degree of agreement regarding
the desired passage length. In 2003, no training
examples were available, however. We therefore
adopted a simple ad-hoc approach for passage ex-
tent determination in HARD 2003. Since then, we
have run a small inter-annotator agreement study,
concluding that annotation consitency would be
adequate to detect further improvements over our
HARD 2003 system (Dina Demner Fushman et al.,
2004). We therefore developed a new system for
passage extent determination that is trained on the
LDC HARD 2003 passage extent judgments. Both
the old and the new system are described in this
section.

2.1 The 2003 Passage Retrieval Module

Leveraging previous research on passage re-
trieval (Liu and Croft, 2002; Kaszkiel and Zo-
bel, 1997), our 2003 passage retrieval module was
based on assumptions that the relevance of a pas-
sage to a given query is related to:

• the computed overall probability of relevance
for the document that contains the passage;

• the density of the query terms appearing in
the passage;

• the importance of the query terms appearing
in the passage.

For our 2003 passage retrieval module, we used
(1) Inquery scores as a surrogate for the probabil-
ity of relevance of the documents, (2) the number
of different query terms appearing in the passage,
and how close their positions in the passages are,
as the representation of the query term density;
and (3) TFIDF weights of the query terms in the
passage, normalized for passage length, and ad-
justed by relative importance factors assigned to
each query term based on its source (e.g., title field,
clarification form, or blind relevance feedback) as
the representation of the importance for each term.
We formed a linear combination of these three fac-
tors, gaving more emphasis to the document scores
because Inquery scores have been demonstrated to
be a useful approximation to document relevance,
whereas it was the first time we had tried the other
two factors.

This approach implicitly assumes that passages
have a known extent, but it offers no guidance on
what that extent should be. We chose to model
variable passage extents rather than using a fixed
window size because that choice allows us to take
advantage of paragraphs, a meaningful structural
unit that is assigned by the author of the docu-
ments.

Our passage retrieval model identifies each in-
stance of a query term and then extends the pas-
sage to the nearest paragraph boundary in each di-
rection. When there is no paragraph markup in the
document, we use a fixed 40-words windows size
around the query term as the passage extent. When
two passages containing a query term are adjacent,
we merge them into a single larger passage.

Passages were ranked in decreasing order of
these scores, and top 1000 passages were returned
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Figure 1: The Hidden Markov chain, with two
states and four possible transitions. The output of
the HMM is considered to be “emitted” either from
a state or a transition.

for each query. In 2003, we limited the number of
passages from a single document to the best three;
based on our 2003 results, we have removed that
restriction for 2004.

2.2 A Statistical Model for Passage Extent
Determination

For 2004, we focused on improving passage re-
trieval by exploring (i) a novel Hidden Markov
Model (HMM) approach, (ii) the application of
Linear Discriminant Analysis (LDA), and (iii) a
voting scheme among multiple classifiers.

Our analysis of HARD 2003 data showed that
the atomic units for retreived passages arepara-
graphs; assessors worked on HARD 2003 data
were never observed to choose sub-paragraph units
as a passage. Therefore, we model each paragraph
in a document as being in one of two states: “rele-
vant” and “irrelevant”. A “relevant” paragraph ap-
pears in the system output as part of a “relevant”
passage.

It is natural to model the consecutive paragraphs
in a document as changing their states according to
the transitions of a Hidden Markov chain (see Fig-
ure 1). In this model, the probability that a para-
graph is relevant or irrelevantdependson the char-
acteristics of the current paragraph and the state
of the immediately preceding paragraph. Table 1
shows the transition probabilities of the Markov
chain, trained on a mixture of: (i) the HARD 2003
LDC passage retrieval relevance documents, and
(ii) the top 100 passages that were found automat-

ically by our 2003 passage retrieval system; these
probabilities were used for the HARD 2004 evalu-
ation.

to relevant to irrelevant
from relevant 0.87 0.13

from irrelevant 0.04 0.96

Table 1: The transition probabilities between “rel-
evant” and “irrelevant” paragraphs.

We then assumed that the output of the HMM
is a Gaussian-distributed scalar. Depending on the
particular model, this scalar may be “emitted” at
each state, or at each statetransition. In both
cases, this scalar-valued feature is equal to a lin-
ear combination of various similarity measures be-
tween the query and the paragraph, between ad-
jacent paragraphs, etc. The weights of the lin-
ear combination can be determined, during the
training phase, using Linear Discriminant Analy-
sis (LDA), based on the ground truth.

We employed the following set of similarity
measures for paragraphi as the scalar-valued fea-
tures in our LDA model. All the paragraphs
are preprocessed with stemming and stopword re-
moval, and the temporal sequence of paragraphs in
each document was preserved during the calcula-
tion.

1. Paragraph features: Similarity of the i-th
paragraph with the query (a) Title, (b) De-
scription, (c) Narrative, and (d) the ”nega-
tive” portion of the query Narrative. (4 di-
mensions)1

2. Document features:Similarity of the entire
document with the (a) Title, (b) Description,
(c) Narrative, and (d) the ”negative” portion
of the Narrative. These provide a baseline for
interpreting the similarity scores 1(a)-1(d) of
individual paragraphs within the document.
(4 dimensions)

3. Document-minus-paragraph features:Simi-
larity of the document, less the i-th paragraph,
with the (a) Title, (b) Description, (c) Narra-
tive, and (d) the ”negative” portion of the Nar-
rative. (4 dimensions)

1By ”negative,” we mean the text segment in a narrative
that describes what the retrieved passages ”should not” con-
tain. Such segments are found automatically by detecting the
presence of cue phrases such as ”should not contain.”



4. Inter-paragraph similarity: Similarity be-
tween the i-th and the (i-1)-th paragraph. (1
dimension)

5. Delta-features:The ”temporal” derivatives of
the paragraph based features 1(a)-1(d), 3(a)-
3(d) and 4. (9 dimensions)

All similarities are computed using the Okapi
formula (Robertson et al., 1994), where the inverse
“document” frequencies are computed at the para-
graph level (i.e., they are inverseparagraph fre-
quencies).

The elements of the above 22-dimensional vec-
tor are linearly combined through 3 sets of LDA
coefficients: one set was trained assuming that the
vector was emitted from the HMM state; the other
2 sets were trained assuming that the previous state
was relevant or irrelevant, respectively (that is, the
vector was emitted by thetransitionof the HMM).

During both training and testing, for each para-
graph of each document, we computed scalar
quantities equal to the linear combinations of the
various similarity values and differences, with
weights obtained through LDA training. Thus, we
obtain 3 scalars: one assumed to be the output of
an HMM with 2 conditional output distributions
(one per state); and two scalars assumed to be the
output of an HMM with 4 conditional output distri-
butions (one per transition), where the two scalars
correspond to two possible originating states.

For each one of the HMMs (one with outputs
on states, and one with outputs on transitions),
we compute the likelihood of the observed output
using the forward-backward equations (Jelinek,
1997); then, we pick the state sequence which min-
imizes thestateerror (maximum aposteriori esti-
mation).

Moreover, in addition to the HMM detectors, we
used a collection of very conservative classifiers,
which exploit some trends that were observed in
the HARD 2003 data (and we assumed that these
trends will also hold for HARD 2004). Specifi-
cally, we built the following 8 classifiers for find-
ing relevant paragraphs in every retrieved docu-
ment:

1. The paragraph with the highest similarity to
the title field of the query is marked as rele-
vant.

2. The paragraphs with the two highest differ-
ences of similarities (to the query’s title) from

the similarities of the preceding paragraphs
are marked as relevant.

3. For each document, we expressed the simi-
larities of paragraphs to their preceding para-
graphs as a time series, and we computed
its Fourier transform. Then, we set all
paragraphs of a document to be relevant, if
the bandwidth of the computed spectrum is
among the lowest 10% bandwidths of all re-
turned documents for a given topic. (By
bandwidth we mean the range of frequen-
cies which contains most of the signal en-
ergy.) The rationale behind this technique
is that documents which are pretty homoge-
neous (i.e., all paragraphs are on-topic) have
slow variation in inter-paragraph similarities
(hence, small spectral bandwidth).

4-7. Similar to 1-2 above, but with similarity to the
query’sdescriptionandnarrative.

8. The paragraph with the highest weighted sum
of the values of its 22-dimensional vector (de-
scribed above) is marked as relevant. The
weights were chosen empirically, based on
the HARD 2003 data.

Finally, each paragraph of each document is
scored according to two schemes:

• Score 1: The number of classifiers which
classify the paragraph as relevant (integer-
valued). If no classifier mark it as relevant,
and the adjacent paragraphs have non-zero
scores, then Score 1 is equal to Score 2 (other-
wise, if the adjacent paragraphs were not clas-
sified as relevant by any classifier, Score 1 is
negative, and proportional to the “bandwidth”
of the document).

• Score 2:The average of two normalized like-
lihoods of the paragraph, with respect to the
two HMMs.

Since our passage retrieval model operates on
the output of the document retrieval results, we
trained on a mixture of documents: those which
were truly relevant (obtained from the golden
truth), and the documents which contained the top-
100 passages that our document retrieval system
had produced for the 2003 evaluation. We did
a 10-fold cross-validation. Table 2 shows the R-
precision obtained on HARD 2003 data, for differ-
ent scoring schemes and test sets: (i) truly relevant



documents, obtained from the golden truth; (ii)
The subset of UMD’s (2003) retrieved documents
that contained the top-100 passages for that topic;
and (iii) top-1000 documents per topic. The mea-
sure reported throughout this report is R-Precision
because this was the measure we used last year and
during our training.

Score 1

Testing on: R-Precision
Truly relevant docs 0.51
Top-100 passages 0.37∗

Top-1000 docs 0.23

Score 2

Testing on: R-Precision
Truly relevant docs 0.49
Top-100 passages 0.29
Top-1000 docs 0.12

Table 2: The retrieval effectiveness (R-Precision)
obtained by JHU passage retrieval models on 2003
HARD data.

The 37% precision (marked with * above) is sig-
nificantly higher than the 32% R-Precision that the
UMD passage retrieval system achieved during the
HARD 2003 evaluation.

Furthermore, one can see that, on average, Score
1 gives consistently better R-precision. For that
reason, it was chosen as the first submission in the
HARD 2004 evaluation.

During the development of the models, we
also explored integrating Marti Hearst’s TextTiling
system (Hearst, 1997) into our passage retrieval
model, where “tiles” were treated as atomic units
rather than natural paragraphs. As shown in ta-
ble 3, using 2003 passage retrieval data, the R-
Precision under Score 1 was obtained for two Text-
Tiling parameter values (w=7 andw=20), and fol-
lowing a 10-fold cross-validation procedure on the
1042 truly relevant documents and the top-1000
documents. In both cases, the R-Precision is sig-
nificantly lower than the one obtained when the
atomic blocks are paragraphs.

3 Clarification Questions

Communicating through clarification forms pro-
vides each site a means to interact with the peo-
ple who proposed the search topic. We mod-
eled the communication as a simplifed need ne-

w R-Precision

Truly relevant docs Top-1000 docs
7 0.45 0.19
20 0.37% 0.11

Table 3: The Passage Retrieval Results of using
“tiles” as atomic units

gotiation process in our last year’s HARD ex-
periment (He and Demner-Fushman, 2003). Our
work demonstrated that such interaction can be
used to elicit several types of information, includ-
ing relevance feedback, extra information about
user’s need, user’s characteristics and user’s pref-
erences (He and Demner-Fushman, 2003). This
year we mainly concentrated on just two of them
– relevance feedback and extra information of the
need, since they were found to be the most useful
information last year.

As stated, the effectiveness of our passage re-
trieval module depends on the quality of the docu-
ment returned, the query terms for finding the pas-
sage locations, and the extent of the passage. The
passage extent problem was mainly addressed in
section 2.2, however, we also took the chance of
the interaction in clarification forms to ask user’s
performance of the passage length. One of the clar-
ification question was

You expect your information need
to be fulfilled in/by:

1. One or two sentences in a
paragraph

2. One or two paragraphs

3. Several paragraphs in a
document

4. Several paragraphs in
several documents

Eliciting named entities was demonstrated to be
an effective approach for improving the search re-
sults in our last year experiment (He and Demner-
Fushman, 2003), we, therefore, employed similar
questions in this year clarification forms for name
entities. We specifically worked on three types
of named entities – personal names, organization
names, and locations, all of which would give us
phrases or other unique content words.

Our named entities related questions included
relevance feedback questions, in which the terms
were first identified by BBN IdentiFinder (bbn, ),
then selected based on the phrase’s TFIDF scores
from the top 10 returned documents. To satisfy the



space restrictions, we only selected top 5 ranked
phrases for personal names, organization names,
and locations respectively. The questions also in-
cluded elicitation of extra terms in the same type.

The majority of clarification questions were
dedicated to relevance feedback to returned pas-
sages if the users wanted passages as the preferred
result format, or returned documents if otherwise.
We knew from the topic metadata about the users’
preference.

No matter which preference, we based the gen-
eration of clarification questions on the outcomes
of our 2003 passage retrieval module. This was
decided when we want to show the passages them-
selves if passages are to be judged since there
would be some information lost no matter how
good the summarization is, and our passage in gen-
eral was short to be fit into the clarification forms.
We identified that there is the screen space to up
to five passages. If documents are to be judged,
we are forced to use the surrogates, which are the
concatenation of all the passages from those docu-
ments that are ranked within top 1000.

We had a choice of selecting top five ranked
passages, or selecting top five passages from dif-
ferent sub-topic areas. We designed our clarifica-
tion forms around the latter to let the user to view
as many sub-topic areas as possible, and to maxi-
mize the possibility that some displayed passages
are relevant even when the returned results were
in poor quality. We designed a Maximum Mar-
ginal Relevance (MMR) like selection scheme to
achieve the purpose.

Zhai defined MMR as a scheme that is capable
of considering both the relevance and the novelty
of returned documents (Zhai, 2002). Our MMR
like selection scheme reflects this thinking. To
maintain the relevance of the selected passages, we
only chose passages that were ranked at top 200.
Our selection of the number 200 was essentially
ad-hoc, but it is a big number to include adequate
number of different passages, and at the same time
these passages are relative top ranked to maintain
some relevance.

The novelty in our scheme was defined as the
adequate difference between a passage and all pre-
vious selected passages. The difference was cal-
culated based on the content terms in the pas-
sages. The weight of the terms was defined based
on TFIDF. By starting the selection from the top
ranked passages, our scheme identifies top five dif-

ferent passages.
We elicited two types of judgments from users.

One type of judgments were related to the rel-
evance of the passages/documents. The pas-
sage/documents could be “not relevant”, “on
topic” (i.e., soft relevant), or “relevant” (i.e., hard
relevant). When the passages were displayed, the
users were also asked to judge the length of the
passages. Is the passage “too short”, at the “right
length”, or “too long”. We used the second type of
information to fine tune the passage extent model
for individual topics.

4 Experiments

4.1 Resources

The document retrieval system we used was In-
Query text retrieval system (version 3.1p1) from
the University of Massachusetts. The collection
was the full HARD 04 collection, which con-
tains 652,710 documents from eight different news
sources. All the documents were stemmed using
InQuery’s own stemmer before indexing.

Before generating search questions, we pre-
processed the topic statement. We marked up
the named entities in the topic statement by using
BBN’s IdentiFinder, and treated them as phrases in
queries. We also list the terms in the phrases as in-
dividual words in the queries for the case where
only part of the phrases appearing in the docu-
ments.

4.2 Experiment Runs and Clarification
Forms

We ran several baseline runs by using title only
(run TITONL), title and description only (run TIT-
DES), title plus phrases and top weighted (us-
ing TFAIDF) terms from description and narra-
tive (run TFIDF), and the blind relevence feedback
on top of the previous three runs (each is marked
as run TOLBRF, TDABRF, and TIDBRF respec-
tively in this report).

We generated two sets of clarification forms.
CF1 was based on results from run TFAIDF plus
utilizing the passage retrieval module to generat-
ing passages. CF2 was based on the BRF run of
run TFAIDF (i.e., run TIDBRF), and it used the
same passage retrieval module. We obtained users’
answers for both sets.

Automatic query expansion was performed
based on the answers from both CF1 and CF2
respectively. Highly representative content terms



were extracted based on TFIDF scheme from all
the selected passages/documents for each topic.
These terms combined with users provided NEs
through clarification forms and the original queries
became the expanded queries. The combination
was weighted linearly with more weights to orig-
inal queries and elicited NEs. Two document
retrieval runs were generated based on the ex-
panded queries obtained through this query expan-
sion scheme, each of which corresponds to CF1
and CF2 respectively. They are marked as runs
EXPCF1 and EXPCF2.

These document runs were then used as the in-
put for both JHU passage retrieval models and
our UMD passage retrieval models. Therefore,
we generated three passage retrieval results run
CF1JHU1, CF1JHU2, and CF1UMD, each of
which corresponds to JHU model 1, JHU model
2 and UMD passage model.

5 Experiment Results and Discussion

5.1 Passage Results
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Figure 2: R-Precision difference between run
JHUDOC1 and the medians of all the submitted
runs on passage preferred topics.

As shown in Figure 2, both our runs CF1JHU1
(official run id UMAREXPR1) and CF1UMD
(official run id UMAREXPR5) achieved rea-
sonable well performance with most topics’ re-
sults (measured by R-Precision) above the medi-
ans of all submitted runs. The run CF1JHU1,
which uses JHU passage retrieval model Score
1, achieved 0.1468 average R-Precision. Our
slightly improved UMD 2003 passage retrieval
model achieved 0.0872 in average R-Precision.

The difference between these two runs is 0.0586,
and the difference is statistically significant, al-
thought it is just underP < 0.05 using t-test.

To establish the potential of our passage re-
trieval model, we used the document golden truth
as the input for our JHU passage retrieval model.
As what we found in our training, the passage re-
trieval results improved dramatically. When mark-
ing passage extent in only relevant documents for
the 2004 topics, the model based on Score 1 yields
an R-Precision of 0.57, and that on Score 2 yields
0.55. This is an upper bound on passage extent per-
formance with perfect document retrieval on Hard
2004 data.

5.2 Interactive Clarification

In our result analysis, we established two base-
lines for the comparison. The run TFAIDF men-
tioned above, which was used to generated CF1,
does not have any feedback, so it was treated as a
low baseline, whereas the blind relevance feedback
run (run TIDBRF) is treated as a high baseline.
The experimental runs are run CF1DOC, which is
the expanded document run based on CF1, and run
CF2DOC, which is the expanded document run
based on CF2.

Our expanded runs achieved improvement over
both baselines. Run CF1DOC obtained 21.20over
the low baseline run TFAIDF, and the improve-
ments is statistically significant (t-testP < 0.05).
The improvement of run CF2DOC over the high
baseline TIDBRF is 23.95(0.31 vs 0.2501), and the
improvement is significant (t-testP < 0.05) too.
The first improvement is similar to our last year’s
results (He and Demner-Fushman, 2003), but the
second improvement is encouraging, it means that
the clarification interaction can be combined with
blind relevance feedback, and the improvement
might be even bigger than performing interactive
relevance feedback without blind relevance feed-
back first.

We then further explored the effectiveness of
eliciting terms and relevance feeback on pas-
sage/documents seperately. As shown in Table 4,
asking users to select relevant passages/documents
yielded better improvement than elicting terms
from users (0.2665 vs 0.2481 in CF1, 0.3188 vs
0.2671 in CF2), and the improvement achieved by
the former runs over their corresponding runs that
do not have clarification are statistically significant
(t-testP < 0.05), whereas that of the latter runs



are not.

R-Precision

no-exp ask terms feedback all
CF1 0.2212 0.2481 0.2665 0.2681
CF2 0.2501 0.2671 0.3188 0.3166

Table 4: The effect of different approaches in in-
teractive clarification measure by R-Precision.

6 Conclusion

In this report, we discussed our effort in explor-
ing design options for interactive passage retrieval
systems. We had two research questions to ad-
dress: 1) how we might better approximate hu-
man determination of passage extent? and 2) how
we could optimize the utility of a limited opportu-
nity for user interaction? Our preliminary analysis
of the results demonstrates that our newly devel-
oped passage retrieval model based on statistical
modeling achieved significant improvement over
our 2003 passage retrieval model, which was one
of the best passage retrieval model in 2003. Our
analysis also indicates that our design of interac-
tions through clarification forms generated signif-
icant improvement over the baseline runs without
the interaction, no matter whether or not the base-
line employed blind relevance feedback. We also
identified that aksing relevance feedback on docu-
ments/passages yield more improvement.

Our future work include further analyzing the
experiment results, integrating users feedback on
the passage length of individual topics into our
passage retrieval model, and comparing the stud-
ies of interactive clarificaiton in both HARD 2003
and 2004.
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