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Abstract

UIUC participated in the HARD track in TREC 2004 and
focused on the evaluation of a new method for identify-
ing variable-length passages using HMMs. Most existing
approaches to passage retrieval rely on pre-segmentation
of documents, but the optimal boundaries of a relevant
passage depends on both the query and the document.
Our new method aims at determining or improving the
boundaries of a relevant passage based on both the query
and topical coherence in the document. In this paper, we
describe the method and present analysis of our HARD
2004 evaluation results. The results show that the HMM
method can improve the boundaries of pre-segmented
passages in terms of overall passage retrieval accuracy and
recall, but at the price of precision sometimes. However,
due to the non-optimality of the relevance feedback proce-
dure and the poor ranking performance based on passage
scoring, the best of our passage runs is still worse than a
whole document baseline run. Further experiments and
analysis are needed to fully understand why the language
modeling approach did not work well on passage scoring.

1 Introduction

Most information retrieval systems return a ranked list of
whole documents as answers to a query. However, when
documents are long and have multiple topics, retrieval at
passage-level, i.e., returning relevant passages, rather than
whole documents, may be more useful to the user as the
user does not need to read through a whole document to
find the most relevant part. Passage retrieval also en-
ables an IR system to re-score documents based on their
relevant passages, and exploit feedback more accurately
based on passages rather than whole documents. Indeed,
previous work [9, 1, 12, 3, 6, 4] has shown that retrieval
performance can be improved by using passage-level evi-
dence.

Current passage retrieval methods usually pre-segment
documents into passages of fixed length [11]. A disad-

vantage of such kind of methods is that the passage length
is not adaptive to specific query and specific document.
However, as we would expect, the length of the most rel-
evant passage in a document depends both on the specific
query and the document itself. Therefore, ideally, a pas-
sage retrieval method should be able to retrievevariable-
lengtharbitrary passages from documents.

The difficulty of variable-length passage retrieval lies
on the large search space: for a document ofn-word long,
there areO(n2) possible passages to consider. It is not
practical to treat each of these passages as an individual
document and rank them. A method based onHidden
Markov Models(HMMs) can tackle this problem by us-
ing dynamic programming techniques. In this method,
a document is not modeled as a bag of words but as a
sequence of words generated from a probabilistic model
that involves transitions between a finite number of states.
Baum-Welch algorithm is used to set appropriate parame-
ters in the HMM, and Viterbi algorithm is used to detect
the most relevant passage in a document. The advantages
of the HMM-based passage retrieval methods are that the
passage can start from and end at any arbitrary word in the
document, and that the parameters that control the passage
length can be trained.

Mittendorf and Scḧauble first proposed to use HMMs
for passage retrieval [7]. However, their work focused
on using passage retrieval to improve document ranking
rather than to accurately detect the passage boundary as
we will explore. Moreover, they mapped words to a dif-
ferent domain to capture the similarity between each word
and the query, and used numbers in this domain as output
symbols of the HMM. The mapping inevitably introduces
additional computation and heuristic parameters, which
we avoid by using the words in a document directly as out-
put symbols. Denoyeret al. also used HMMs to identify
relevant passages in whole documents, but their passages
were of fixed length, and they focused on using scores of
passages for document classification and ranking [2].

HARD track in TREC 2004 provided a good test
bed for evaluation of our HMM-based passage retrieval



method. Twenty-five out of the fifty evaluation topics had
retrieval element set at the passage-level. We tested our
HMM-based passage retrieval method on these 25 topics.
A pre-segmentation-based passage retrieval method was
also used as a baseline for our evaluation.

The paper is organized as follows. In Section 2, we in-
troduce our HMM-based passage retrieval method in de-
tails. We then describe our HARD 2004 experiment setup
in Section 4 and discuss the results in Section 5. Finally,
we conclude with Section 6.

2 HMM-Based Passage Retrieval

In this section, we first briefly review Hidden Markov
Models, then describe the proposed HMM-based passage
retrieval method in details.

2.1 HMM Basics

A first order Hidden Markov Model (HMM) defines a dis-
crete stochastic process that generates a sequence of out-
put symbols from a sequence of hidden states. State tran-
sition occurs according to some transition probabilities,
and output generation occurs according to some output
probabilities. Formally, a first order HMM consists of the
following components:

1. A set of hidden statesS = {s1, . . . , sn}.
2. A set of observable output symbolsO =
{o1, . . . , om}.

3. An initial probabilitya0,i for each statesi. a0,i is the
probability that a state sequence starts from statesi.∑n

i=1 a0,i = 1.

4. A transition probabilityai,j for each pair of states
(si, sj). ai,j is the probability that the next state is
sj given that the current state issi.

∑n
j=1 ai,j = 1

for i = 1, . . . , n.

5. An output probabilitybi,k for each pair of a state and
an output symbol(si, ok). bi,k is the probability that
symbolok is generated from statesi.

∑m
k=1 bi,k = 1

for i = 1, . . . , n.

Given an HMM with all the parameters listed above
specified, the probability of getting a state sequence
sp1sp2 . . . spT , where spt is the state at timet, is∏T

t=1 apt−1,pt . Given that we know the state sequence
is sp1sp2 . . . spT , the probability of generating an out-
put sequenceov1ov2 . . . ovT , whereovt is the output sym-
bol at time t, is

∏T
t=1 bpt,vt . If we are only given the

observed output sequenceov1ov2 . . . ovT
without know-

ing the underlying state sequence, the most likely state
sequence that may have generated this output sequence
can be efficiently computed using Viterbi algorithm, a
dynamic programming algorithm. Given an HMM with
some or all parameters (the probabilities) unspecified,
these parameter values can be estimated based on some
observed sequences of symbols with or without their cor-
responding underlying state sequences. Baum-Welch al-
gorithm (essentially an Expectation-Maximization algo-
rithm) provides an efficient way for unsupervised training
of HMMs. A detailed tutorial on HMMs is given in [8].

2.2 An HMM Approach to Passage Re-
trieval

Our basic idea of applying HMMs to passage retrieval is
as follows. The set of all words in a document collection
forms the set of output symbols of the HMM. A document
is seen as a sequence of words (output symbols). A set of
hidden states generate these words. Each state has its own
word distribution, or what we call a language model. Each
state is either relevant or non-relevant to the query. By de-
coding the document, we get a most likely state sequence
that has generated the sequence of words. Words gener-
ated from those hidden states that are relevant to the query
form the relevant passage from the original document. As
we can see, the boundary of the relevant passage is au-
tomatically detected by the HMM. With such a method
for locating the relevant passage in a long, relevant docu-
ment, we can perform passage retrieval in two ways: (1)
first rank documents using any IR method, then extract a
relevant passage from each top-ranked document, and (2)
first extract possibly relevant passages from documents,
then rank the documents based on the relevant passages
they contain. In HARD 2004, we only explored the first
strategy.

2.3 Choices of HMMs

The simplest HMM for passage retrieval consists of 3
states connected linearly, as shown in Figure 1. The first
and the third states are non-relevant states, or what we call
background states. They generate words according to a
background language model. The second state is relevant
to the query, and it generates words according to some
relevant language model. This model assumes that a doc-
ument contains a single passage relevant to the query. A
document is generated by starting with some non-relevant
part, then switching to the relevant passage, and finally
switching back to some non-relevant part.
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We could use the collection language model as the
background language model for states B1 and B2. The
relevant language model for state R cannot be obtained
easily. Certainly it is related to the query. But simply
using query language model is not enough because a rel-
evant passage contains many non-query words. Without
relevance feedback, the best way is to smooth this lan-
guage model with a background language model.

B1 R B2

Figure 1: 3-State HMM

An improvement of the 3-state HMM is a 4-state HMM
as shown in Figure 2, where a last state that only gen-
erates a special end-of-document symbol is added to the
system. Our previous experiments on a different data set
showed that adding this special state can improve the per-
formance.

B1 R B2 E

Figure 2: 4-State HMM

A disadvantage of the 3-state and the 4-state HMMs
is that the smoothing factor needs to be fixed. Smooth-
ing can also be done automatically within the HMM if we
separate the query language model and the background
language model at R. Figure 3 shows the modified HMM.
State B1 and state B3 are considered non-relevant, while
state R and state B2 are considered relevant. Non-query
words in the relevant passage are now generated from B2
rather than from R, as B2 uses the background language
model. Thus, smoothing is achieved through the transi-
tions between R and B2. An advantage of this model is
that the smoothing factor, which is the transition proba-
bility between R and B2 in this case, can be estimated
through training rather than being heuristically set.

To incorporate feedback in this system, we could use
the feedback language model at state R. This modifica-
tion gives us the final HMM we used in our HARD 2004
experiments. This HMM is shown in Figure 4.

B1 R B3 E

B2

Figure 3: 5-State HMM

B1 FB B3 E

B2

Figure 4: 5-State HMM with Feedback

3 Preliminary Experiments on
HARD 2003

Prior to trying our HMM-based method on HARD 2004
data, we did some preliminary experiments on HARD
2003 data, mainly to test if HMM-based method can in-
deed detect variable-length passages better than fixed-
length passage retrieval methods.

We set up the experiments on HARD 2003 data as fol-
lows. We first extracted out the set of whole documents
that were judged to contain relevant passages to some
topic. This information was obtained according to the
passage-level judgment file for HARD 2003. For each
of these documents and its corresponding relevant topic,
we used two baseline methods and our HMM method
without pseudo-feedback (Figure 3) to extract the rele-
vant passage. The first baseline method is quite simple:
it extracts the passage that starts from the first occurrence
of a query word, and ends at the last occurrence of a
query word. This method is straightforward and compu-
tationally cheap. The second baseline method we used is
stronger: it uses a fixed-length sliding window to scan the
whole document, and picks the passage that has the most
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Strong Baseline (different window sizes)
Simple Baseline 200 400 600 HMM

Prec 0.631 0.525 0.491 0.476 0.525
Rec 0.705 0.692 0.888 0.941 0.976
F1 0.516 0.508 0.543 0.542 0.587

Table 1: Results from Simple Baseline, Strong Baseline, and HMM on HARD 2003

Prec Rec F1
Simple Baseline w/o FB 0.631 0.705 0.516

w/ FB 0.542 0.975 0.604
Strong Baseline w/o FB 0.525 0.692 0.508

(200) w/ FB 0.497 0.987 0.568
Strong Baseline w/o FB 0.491 0.888 0.543

(400) w/ FB 0.481 0.992 0.552
Strong Baseline w/o FB 0.476 0.941 0.542

(600) w/ FB 0.473 0.993 0.542
HMM w/o FB 0.610 0.749 0.532

w FB 0.525 0.976 0.587

Table 2: Comparison of Performance before and after
Pseudo Feedback on HARD 2003 data

occurrences of query words among all passages of the
fixed length. Passages extracted by this method can start
at arbitrary places in documents, but have fixed length.

We compared passage extracted from these methods
with the true passages indicated in the judgment file. We
used three measures to evaluate the performance. Preci-
sion is the number of words in the overlapping part be-
tween the extracted passage and the true passage divided
by the total number of words in the extracted passage. Re-
call is the number of words in the overlapping part be-
tween the extracted passage and the true passage divided
by the total number of words in the true passage. F1 is a
harmonic mean of the precision and recall. Table 1 shows
the performance measures of the two baseline methods
and the HMM method.

We then used these extracted passages for pseudo-
feedback in our HMM-based method, as illustrated in
Figure 4. The feedback language model is constructed
from the previously extracted passage using either one of
the baseline method or the simple HMM method without
feedback. Performance is shown in Table 2.

Our conclusions from our experiments on HARD 2003
and from our other experiments on a different data set
are that (1) HMM method using pseudo-feedback from a
simple method that has comparative high precision (such

as our simple method) gives better overall performance
(measured by F1) than our baseline methods, and that (2)
HMM method performs consistently well over a range
of passage lengths, while fixed-length passage retrieval
method cannot handle variable-length passages well.

4 HARD 2004 Experiment Setup

In this section, we describe our passage retrieval ex-
periments in HARD 2004. As the metadata “retrieval-
element” was not available for baseline runs, only our fi-
nal runs explored passage retrieval methods.

4.1 Baseline Run and Clarification Forms

For baseline run, we used Lemur toolkit to retrieve a
ranked list of whole documents from the corpus for each
topic. We used K-L divergence language model retrieval
method [5, 13] and pseudo-feedback with 5 documents.
This baseline run (“uiucHARDb0”) turned out to be our
best run.

For clarification forms, we presented to the user 6 doc-
uments for each topic. These were the gapped top-6 doc-
uments with gap set to 3. The gapped top-k is a simple
heuristic method proposed in [10] to increase the diversity
of the documents presented to the user. As 6 whole doc-
uments cannot fit in one screen, we used HMM method
to retrieve a passage from each of these documents, and
presented to the user the first 50 and the last 50 words of
each passage.

4.2 Final Runs – Passage Retrieval

First, we used the relevance feedback from the clarifica-
tion forms to expand the query models of the 50 evalua-
tion topics. For topics with retrieval-element set to doc-
ument, we used the K-L divergence method with the ex-
panded query models to retrieve top 1000 whole docu-
ments from the corpus. There results were returned in the
finals runs “uiucHARDf0” and “uiucHARDf1”, but only
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for the 25 topics that had “retrieval-element” set to “doc-
ument”.

For passage retrieval, we used two methods in our fi-
nal runs. In the first method, each document was first
pre-segmented into non-overlapping passages, each con-
taining 120 words. We chose 120 as the passage length
as this was the average passage length from HARD 2003
passage-level judgments. We then treated each fixed-
length passage as an individual document, and retrieved
top 1000 passages for each topic, using the K-L diver-
gence method. There results were returned in our final
run “uiucHARDf0”.

We used the 5-state HMM with pseudo-feedback for
passage retrieval in our second final run. The pseudo-
feedback was obtained as follows. We first pre-segmented
all documents into non-overlapping passages of 60-word
long. We then used the K-L divergence method to re-
trieve top 1000 passages from these 60-word long pas-
sages for each topic. For each retrieved passage, we ap-
plied the HMM-based method on the document where this
passage was extracted from. We used the 60-word long
passage to construct a feedback language model for the 5-
state HMM. The variable-length passage returned by the
HMM was then used to replace the original 60-word long
passage. There passages were returned in our final run
“uiucHARDf1” for the 25 passage-level topics. Essen-
tially, we were using a 60-word fixed length passage as
a “seed” passage to train the feedback language model in
the 5-state HMM and extract a new variable-length pas-
sage from the same document. Our hope was that HMM
could refine the boundary of the original 60-word long
passage, which is largely confirmed in our experiment re-
sults.

We chose 60 as the length of the pre-segmented pas-
sages because shorter passages usually have higher pre-
cision (but lower recall) than longer passages. From our
previous experiments, we learned that having a high preci-
sion of the feedback language model in the 5-state HMM
is more important than having a high recall.

5 HARD 2004 Experiment Results

5.1 Document-Level Results

Forty-five out of the original fifty topics were judged at the
document-level, as the other five topics did not have any
relevant documents. Our baseline run “uiucHARDb0” re-
turned whole documents for all topics. Our final runs
“uiucHARDf0” and “uiucHARDf1” returned whole doc-
uments to the 25 topics that are at document-level, and
passages to the other 25 topics that are at passage-level.

Run R Prec (Hard) R Prec (Soft-Hard)

uiucHARDb0 0.3574 0.3325
uiucHARDf0 0.2834 0.3145
uiucHARDf1 0.2690 0.3015

Table 3: Document-Level Average Precision (All Topics)

Run R Prec (Hard) R Prec (Soft-Hard)

uiucHARDb0 0.3590 0.3567
uiucHARDf0 0.3219 0.3575
uiucHARDf1 0.3219 0.3555

Table 4: Document-Level Average Precision (Doc-Level
Topics Only)

Table 3 shows the overall average precision for each run
on all topics. Table 4 shows the precision over only the
document-level topics for each run.

We see that baseline run b0 performed the best among
these three runs, though the Soft-Hard R-precision for
document-level topics is essentially the same for all the
three runs. From Table 4, we see that the baseline run
uiucHARDb0, which is a pseudo feedback run on whole
document index, somehow ranks documents more accu-
rately than the relevance feedback runs on pre-segmented
passage indices (i.e., uiucHARDf0 and uiucHARDf1),
suggesting that either our relevance feedback procedure
is not quite effective or the KL-divergence method does
not work well with short passages.

We were expecting that the relevance feedback runs
would outperform the baseline run because the final runs
incorporated relevance feedback. But the evaluation of
the results shows that the relevance feedback we exploited
did not improve the performance much. Thus we looked
into the relevance feedback procedure and discovered that
some parameter setting is apparently non-optimal, caus-
ing very conservative feedback, which may at least par-
tially explain the relatively poor performance of relevance
feedback. Some follow-up experiments indicate that our
relevance feedback (reflected in the trained query model
based on relevance judgments) does perform better than
without any feedback, but it somehow does not perform as
well as pseudo feedback. In addition to the non-optimal
parameter setting, another possible reason may be that the
user did not judge any document, or judged only one doc-
ument to be relevant for some topics, in which case we
have very limited information for feedback, whereas the
pseudo feedback always uses the top 5 documents.

Comparing Table 3 and Table 4, we see that while
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the baseline whole document scoring run has roughly
the same Hard R-precisions in both tables, the two feed-
back passage scoring runs have significantly worse R-
precisions on passage-level topics, which is worth further
examination.

5.2 Passage-Level Results

We are more interested in the passage-level evaluation as
our main focus was on passage-level retrieval. As our final
run f0 used a fixed passage length of 120 words, but our
HMM-based final run f1 was based on fixed-length pas-
sages of 60 words, in order to compare the HMM-based
method and the pre-segmentation-based method and see
the effect of using HMMs to improve the boundaries of a
pre-segmented passage, we evaluated another two runs us-
ing the scripts provided by NIST; they correspond to using
pre-segmented fixed-length passages, with a fixed-length
of 60 and 120 words, respectively.

Table 5 compares the fixed length passage results (for
both 60 words and 120 words) with the corresponding
HMM runs on several different performance measures.
To avoid any complication caused by multiple, poten-
tially overlapping passages, we filtered the results so that
there is at most one passage from each document (i.e.,
each document contributes at most one passage). As a
result, the absolute performance is lower than that with
the complete results. But since our official HMM results
(uiucHARDf1) are filtered, we also filtered other results
to make the results completely comparable.

The results show that for both 60-word passages and
120-word passages, the HMM method outperforms the
corresponding pre-fixed baseline by character-based mea-
sures. In particular, the HMM runs have better perfor-
mance in both cases in terms of BPref@12K characters,
which is the recommended major measure for passage re-
trieval. By passage-based measures, the HMM runs are
better in recall and F values, but worse in precision. Based
on these observations, we may conclude that HMMs can
improve the boundaries of fixed-length passages mostly
by increasing the recall and sometimes decreasing the pre-
cision, which is as we expected.

Table 6 shows the passage-level performance of our
three official runs. We see that although the HMMs gen-
erally improve the recall and combined measures such
as BPrec@12K over the fixed length passages, the of-
ficial run uiucHARDf1 (Fixed60+HMM) is worse than
uiucHARDf0 (Fixed120), suggesting that the improve-
ment from using HMMs is not that much as guessing
the right length of relevant passages. A somehow sur-
prising observation is that the baseline uiucHARDb0 per-

forms much better than both relevance feedback runs in
BPref@12K and recall at 10 passages, though it performs
worse in precision at 10 passages. To understand why,
we looked into specific differences between uiucHARDb0
and uiucHARDf1 and evaluated the performance of each
component. First, we looked at returning whole docu-
ments as passages. Ranking of the documents can be
based on original queries without feedback, with pseudo
feedback, or with relevance feedback. We then looked
at returning whole documents as passages but ranking the
documents based on the score of the best fixed-length pas-
sage from each document. Finally we compared those
runs with uiucHARDf1, which retrieved passages and was
based on fixed-length passage scoring. To ensure that all
components are comparable, we truncate the results so
that the evaluation is all performed only on the top 400
documents. The results are shown in Table 7.

From this table, we can make several interesting obser-
vations:

1. Pseudo feedback (with top 5 documents) improves
performance across all measures.

2. Relevance feedback (with gapped top-k) only im-
proves performance by passage-based measures but
decreasesperformance substantially for character-
based measures. This may be because the relevant
documents we obtained from the user are mostly
down on the list (due to the use of gapped top-k),
and using them for feedback may not help improve
the front-end precision which is what the character-
based measures emphasize.

3. Comparison between relevance feedback and pseudo
feedback indicates that the character-based measures
appear to favor high recall.

4. Passage-based scoring is generally much worse than
whole-document scoring by all measures; 60-word
passages are significantly worse than 120-word pas-
sages. This definitely needs further examination.
One possible reason may be the KL-divergence
method is not robust for scoring short passages.

5. Applying HMMs on top of 60-word passages slightly
improves the performance, but the performance im-
provement is insufficient to balance the loss of per-
formance due to the passage scoring.

6. Three factors have contributed to the large dif-
ference in BPref@12K between uiucHARDb0 and
uiucHARDf1: (1) Relevance feedback performs
worse than pseudo feedback. (2) Passage scoring
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Method BPref@12K Prec@12K CharRPrec Rec@10Psg Prec@10Psg F@10Psg PsgRPrec
Fixed60 0.1208 0.1623 0.0776 0.0412 0.169 0.0289 0.1154

Fixed60+HMM 0.1868 0.2143 0.1424 0.1494 0.1411 0.0706 0.1037

Fixed120 0.1738 0.2088 0.1043 0.0924 0.2056 0.051 0.133
Fixed120+HMM 0.2131 0.2265 0.1562 0.1698 0.1822 0.0764 0.1094

Table 5: “One passage pre document” evaluation of HMMs

Run BPref 12000 Chars Recall 10 PassagesPrec 10 Passages

uiucHARDb0 0.2710 0.2517 0.1570
uiucHARDf0 0.2080 0.1067 0.2391
uiucHARDf1 0.1860 0.1494 0.1411

Table 6: Passage-level performance of 3 official runs

is worse than whole document scoring. (3) Scoring
with 60-word passages is worse than scoring with
120-word passages. The first two appear to be the
dominating factors.

6 Conclusions

In this paper, we reported UIUC’s TREC 2004 Hard Track
experiments and results. We focused on the study of a
new HMM-based method for identifying variable-length
relevant passages from documents. The basic idea of this
method is to model a document as a sequence of words
generated from an HMM, which has two kinds of states –
relevant states and background states. One critical prob-
lem with constructing such an HMM is to estimate the
output probability from a relevant state (i.e., a unigram
language model or word distribution). In our HARD
2004 experiments, we used a fixed-length passage ob-
tained through pre-segmentation to estimate this relevance
language model. The idea is essentially to use HMMs on
top of a fixed-length passage to improve the boundaries of
the fixed-length passage.

We evaluated the HMMs for passages of two different
sizes (60 words and 120 words). Overall, the results show
that the HMMs can improve the passage retrieval perfor-
mance over fixed-length passages, mostly by increasing
recall and thus some combined measures. This is con-
sistent with what we observed in our preliminary experi-
ments. However, a few other factors, e.g., relevance feed-
back, scoring whole documents vs. scoring passages, ap-
pear to be more dominant in determining the performance.
Thus even though the HMM can improve performance
over fixed length passages, our best passage retrieval per-

formance is still much worse than our baseline perfor-
mance.

Further experiments are needed to clarify issues such as
the effectiveness of using the KL-divergence method for
scoring passages.
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