
University of Glasgow at TREC2004:
Experiments in Web, Robust and Terabyte tracks with Terrier

Vassilis Plachouras, Ben He, and Iadh Ounis

University of Glasgow
G12 8QQ Glasgow, UK

Abstract

With our participation in TREC2004, we test Terrier, a modular and scalable Information Retrieval frame-
work, in three tracks. For the mixed query task of the Web track, we employ a decision mechanism for selecting
appropriate retrieval approaches on a per-query basis. For the robust track, in order to cope with the poorly-
performing queries, we use two pre-retrieval performance predictors and a weighting function recommender
mechanism. We also test a new training approach for the automatic tuning of the term frequency normalisation
parameters. In the Terabyte track, we employ a distributed version of Terrier and test the effectiveness of tech-
niques, such as using the anchor text, query expansion and selecting an optimal weighting model for each query.
Overall, in all three tracks we participated, Terrier and the tested Divergence From Randomness models were
shown to be stable and effective.

1 Introduction
With our participation in TREC2004, we test our Information Retrieval (IR) framework, Terrier, in a variety
of different settings. Terrier is a modular and scalable framework, for the rapid development of large-scale IR
applications. It provides indexing and retrieval functionalities, as well as a number of parameter-free weighting
models, based on the Divergence From Randomness (DFR) framework [2]. Terrier stands for TErabyte RetrIEveR,
and further information can be found at http://ir.dcs.gla.ac.uk/terrier.

We have submitted official runs to three tracks of TREC2004. For the Web track, we test the selective applica-
tion of different retrieval approaches on a per-query basis. In the Robust track, we employ two novel pre-retrieval
performance predictors in a weighting function recommender mechanism, in order to use the optimal weighting
functions/models for the poorly-performing queries. We also refine the automatic tuning of the term frequency
normalisation parameters, by creating samples of queries, instead of using relevance information. In both the Web
and Robust tracks, we use a centralised version of Terrier. For the Terabyte track, we use Terrier in a distributed
setting, in order to handle the test collection .GOV2, and evaluate retrieval techniques, which have been effective
in the context of previous ad-hoc and Web retrieval TREC tasks. In all three tracks we have participated, Terrier
performed extremely well and the tested DFR models were shown to be effective in different settings.

The remainder of the paper is organised as follows. Section 2 contains a description of the Terrier framework.
In Section 3, we describe our approach for the mixed query task of the Web track. Section 4 presents our exper-
iments for the Robust track. In Section 5, we describe our participation in the Terabyte track, and we close with
some concluding remarks in Section 6.



2 Terrier Information Retrieval Framework
Among its various features, Terrier offers a number of DFR-based models for document weighting, as well as
classical models, such as BM25 [19] and tf-idf, and recent models, such as Ponte-Croft’s language model [17].
Terrier also provides DFR-based and classical term weighting models for query expansion. The relevance score
of a document d for a particular query Q is given by:

score(d,Q) =
∑

t∈Q

(

qtfn · w(t, d)
)

(1)

where w(t, d) is the weight of the document d for a query term t and qtfn is the normalised frequency of term t
in the query. It is given by qtf/qtfmax, where qtf is the original frequency of term t in the query, and qtfmax is
the maximum qtf of all the composing terms of the query. In Table 1, we provide the formulas for the different
models w(t, d) we have used in our experiments for TREC2004.

Model Formula
BB2 w(t, d) = F+1

Nt·(tfn+1)

(

− log2(N − 1) − log2(e) + f(N + F − 1, N + F − tfn − 2) − f(F, F − tfn)
)

BL2 w(t, d) = 1
tfn+1

(

− log2(N − 1) − log2(e) + f(N + F − 1, N + F − tfn − 2) − f(F, F − tfn)
)

PB2 w(t, d) = F+1
Nt·(tfn+1)

(

tfn · log2
tfn

λ
+ (λ + 1

12·tfn
− tfn) · log2 e + 0.5 · log2(2π · tfn)

)

PL2 w(t, d) = 1
tfn+1

(

tfn · log2
tfn

λ
+ (λ + 1

12·tfn
− tfn) · log2 e + 0.5 · log2(2π · tfn)

)

I(n)B2 w(t, d) = F+1
Nt·(tfn+1)

(

tfn · log2
N+1

Nt+0.5

)

I(n)L2 w(t, d) = 1
tfn+1

(

tfn · log2
N+1

Nt+0.5

)

I(F)B2 w(t, d) = F+1
Nt·(tfn+1)

(

tfn · log2
N+1

F+0.5

)

I(F)L2 w(t, d) = 1
tfn+1

(

tfn · log2
N+1

F+0.5

)

I(ne)B2 w(t, d) = F+1
Nt·(tfn+1)

(

tfn · log2
N+1

ne+0.5

)

I(ne)L2 w(t, d) = 1
tfn+1

(

tfn · log2
N+1

ne+0.5

)

I(ne)C2 w(t, d) = F+1
Nt·(tfne+1)

(

tfne · log2
N+1

ne+0.5

)

Table 1: Terrier DFR-based document weighting models used in the experiments for TREC2004.

The notation in Table 1 is explained below:

• tf is the within-document frequency of term t in document d.
• F is the term frequency of term t in the whole collection.
• N is the number of documents in the collection.
• Nt is the document frequency of term t.
• ne is given by N ·

(

1 − (1 − Nt

N
)F

)

.
• λ is given by F

N
and F � N .

• The relation f is given by the Stirling formula:

f(n,m) = (m + 0.5) · log
2

( n

m

)

+ (n − m) · log
2
n (2)

• tfn is the normalised term frequency. It is given by the normalisation 2:

tfn = tf · log
2

(

1 + c ·
avg l

l

)

(3)

where c is a parameter, l is the document length, which corresponds to the number of tokens in a document,
and avg l is the average document length in the collection.



• tfne is the normalised term frequency, which is given by the modified version of the normalisation 2:

tfne = tf · loge

(

1 + c ·
avg l

l

)

(4)

The only free parameter of the DFR framework is the term frequency normalisation parameter c from Equa-
tions (3) and (4). The tuning of such a parameter is a crucial issue in IR, because it has an important impact on the
retrieval performance [7, 2]. A classical tuning method is the pivoted normalisation [21], which fits the document
length distribution to the length distribution of relevant documents. However, since the document length distribu-
tion is collection-dependent, the pivoted normalisation suffers from the collection-dependency problem. Indeed,
the optimal parameter settings of diverse document collections are different [7].

In our experiments with Terrier, the parameter c is automatically tuned, according to a method proposed by
He and Ounis [12]. This method assumes a constant optimal normalisation effect with respect to the document
length distribution of the collection, and it assigns the parameter value such that it gives this constant. Thus, it is a
collection-independent approach. The proposed method in [12] uses real queries and the corresponding relevance
information for training. Moreover, this tuning method can also be applied to Okapi’s BM25 [14].

Terrier provides various DFR-based models for query expansion, based on extracting the most informative
terms from a set of top-ranked documents. In Table 2, we present the term weighting models w(t) used in our
experiments for TREC2004.

Model Formula

KL w(t) = Px · log2
Px

Pc

Bo1 w(t) = tfx · log2
1+Pn

Pn
+ log2(1 + Pn)

Bo2 w(t) = tfx · log2
1+Pf

Pf
+ log2(1 + Pf )

CS w(t) = lx · D + 0.5 · log2(π · lx ·
1−tfx

tokenc
)

Table 2: Terrier DFR-based term weighting models used in the experiments for TREC2004.

The notation in Table 2, is explained below:

• lx is the sum of the length of the exp doc top-ranked documents, and exp doc is a parameter of the query
expansion methodology.

• tfx is the frequency of the query term in the top-ranked documents.
• tokenc is the total number of tokens in the whole collection.
• Pn is given by F

N
, where F is the term frequency of the query term in the whole collection and N is the

number of documents in the whole collection.
• Pf is given by tfx·lx

tokenc
.

• D is given by:

Px · log
2

Px

Pc

+ Px · log
2

1 − Px

1 − Pc

(5)

where Px = tfx/lx and Pc = F
tokenc

.

The normalised query term frequency qtfn of an expanded query term is given by:

qtfn =
w(t)

wmax(t)
(6)

where w(t) is the weight of term t and wmax(t) is the maximum w(t) of the expanded query terms.



3 Web Track
Our experiments for the Web track of TREC2004 continue the evaluation of a decision mechanism for the dynamic
application of appropriate retrieval approaches on a per-query basis. We use Terrier, a modular Information
Retrieval framework and its associated DFR-based weighting models, as described in Section 2.

We have submitted runs for the mixed query task of the Web track. In this task, there are 225 topics, which can
be either topic distillation, named page finding, or homepage finding topics. The queries are created from the title
of each topic. However, the system is not aware of the actual type of each query, during retrieval. This task is more
similar to the operational setting of a Web search engine, which receives user queries without explicit evidence of
the query type. Our aim is to use a decision mechanism for selecting an appropriate retrieval approach for each
query, based on evidence from the hyperlink structure and the anchor text of the set of retrieved documents. More
specifically, the decision mechanism is focused on identifying when to favour the entry points or homepages of
relevant web sites.

3.1 Decision Mechanism
The decision mechanism we use employs two characteristics of the set of retrieved documents, in order to select
an appropriate retrieval approach for each query.

The first characteristic is the usefulness of the hyperlink structure, which estimates whether there are non-
random patterns of hyperlinks within the set of retrieved documents [16]. If we detect such patterns, then we
assume that there are clusters of documents about the query topic. Therefore, it is preferred to favour the entry
points, or the central nodes of these clusters.

We define the usefulness of the hyperlink structure as the symmetric Jensen-Shannon divergence between
two different score distributions. The first one is the content analysis score distribution S = {si}, where si is
the content analysis score of the document di from the set of retrieved documents D. In order to reduce the
computational overhead, we consider only the set Dk of the top k ranked documents, according to the distribution
{si}. We define the second distribution U = {ui}, so as to favour the relevant documents that point to other
relevant documents in D:

ui = si +
∑

di→dj

sj , di ∈ Dk, dj ∈ D

where di → dj denotes that there is a hyperlink from document di to document dj . We normalise both distribu-
tions S and U , so that

∑

di∈Dk si =
∑

di∈Dk ui = 1 and obtain the distributions Sn = {sni} and Un = {uni},
respectively. The usefulness of the hyperlink structure is defined as the symmetric Jensen-Shannon divergence
L(Sn, Un) between Sn and Un, as follows:

L(Sn, Un) =
∑

di∈Dk

uni log
2

uni

uni

2
+ sni

2

+
∑

di∈Dk

sni log
2

sni

uni

2
+ sni

2

(7)

The second characteristic of the set of retrieved documents is a novel estimate of the number of potential
homepages with all the query terms in the anchor text of their incoming hyperlinks. We assume that if the user
submits a query, where all the terms appear in the anchor text of hyperlinks pointing to a homepage of a web site,
then it is more useful to favour the homepage as the entry point for the site.

The set of potential homepages H corresponds to the documents with root, subroot, or path URL types, as
defined by Westerveld et al. [23]. If we denote the anchor text terms of a document di by ai, and the set of query
terms by q, then the number phanchor of potential homepages with all the query terms in anchor text is defined as
follows:

phanchor = |{di|di ∈ (D ∩ H) ∧ q ⊆ ai}| (8)



phanchor ≤ tph phanchor > tph

L(Sn, Un) ≤ tL case I (do not favour entry points) case III (low confidence)
L(Sn, Un) > tL case II (low confidence) case IV (favour entry points)

Table 3: The decision mechanism that selects an appropriate retrieval approach for each query.

Our decision mechanism employs L(Sn, Un) and phanchor, as shown in Table 3. More specifically, if both
L(Sn, Un) and phanchor are lower or equal to the thresholds tL and tph respectively (case I), then we assume that
the query is specific and we do not favour the entry points or homepages of web sites. On the other hand, if both
L(Sn, Un) and phanchor are higher than the thresholds tL and tph respectively (case IV), then we assume that it is
more useful to favour the entry points or homepages of web sites, from the set of retrieved documents. For the two
other cases, we cannot say with confidence whether we should favour the entry points from the set of retrieved
documents. In these cases, we will decide about which approach to use, as described in Section 3.2.

3.2 Description of experiments and results
We have submitted five official runs for the mixed query task. For all submitted runs, we have indexed the
.GOV test collection by removing standard stop-words and applying Porter’s stemming algorithm. For the content
analysis, we have used the weighting model PL2, as described in Section 2 and Table 1. The term frequency
normalisation parameter was automatically set equal to c=1.28, using the approach described in Section 2.

We have used two different retrieval approaches. For the first one (CA), we extend the documents by adding
the anchor text of their incoming hyperlinks, and perform content analysis with PL2. For the second approach
(CAU150), we re-rank the top 150 documents retrieved with CA, using the score:

scorei = si ×
1

log
2
(urlpath leni + 1)

(9)

where si is the score assigned to document di by the approach CA, and urlpath leni is the length in characters
of the URL path of di.

For both retrieval approaches CA and CAU150, the content analysis scores of documents are increased by a
given percentage if the query terms appear either in the anchor text, or in the title of the documents. The percentage
of the increase was set experimentally, using training data from the TREC2003 topic distillation and named page
finding topics [8]. More specifically, if we apply CA and a query term t appears in the anchor text or in the title of
a document, then we increase the term’s weight in the document’s score by 8% or 7%, respectively. If we apply
CAU150 and a query term t appears in the anchor text of a document, then we increase the weight of t in the
document’s score by 20%.

The evaluation results of our official submitted runs for all topics, as well as for each type of topics, are shown
in Table 4. The evaluation measures are the mean average precision (MAP), success at 1 retrieved document
(Suc@1), success at 5 retrieved documents (Suc@5) and success at 10 retrieved documents (Suc@10). For the
named page finding and homepage finding topics, average precision is equivalent to the reciprocal rank of the first
relevant retrieved document, provided that there is one relevant document for the topic. The bold entries in Table 4
correspond to the run which resulted in the highest value of the respective evaluation measure.

The first two runs, uogWebCA and uogWebCAU150, correspond to our baselines, where we apply CA or
CAU150 for all queries, respectively. With respect to MAP from Table 4, CA is more effective for named page
finding queries, while CAU150 is more effective for topic distillation queries. Their performance is similar for
homepage finding queries, while CA is more effective than CAU150 over all queries.



Run MAP Suc@1 Suc@5 Suc@10 MAP Suc@1 Suc@5 Suc@10
All topics Topic distillation topics

uogWebCA 0.4325 0.3733 0.6889 0.7689 0.1280 0.1733 0.5200 0.6667
uogWebCAU150 0.3478 0.3378 0.7111 0.8444 0.1791 0.5067 0.7733 0.8933
uogWebSelAn 0.4576 0.4444 0.7600 0.8178 0.1655 0.3600 0.6800 0.7733
uogWebSelL 0.3895 0.3467 0.7289 0.8089 0.1625 0.3733 0.6933 0.7867
uogWebSelAnL 0.4569 0.4267 0.7422 0.8000 0.1521 0.2933 0.6267 0.7200

Named page finding topics Homepage finding topics
uogWebCA 0.6082 0.4933 0.7867 0.8400 0.5613 0.4533 0.7600 0.8000
uogWebCAU150 0.3324 0.1333 0.6133 0.8133 0.5318 0.3733 0.7467 0.8267
uogWebSelAn 0.6042 0.4933 0.7867 0.8400 0.6031 0.4800 0.8133 0.8400
uogWebSelL 0.4279 0.2400 0.6933 0.8000 0.5780 0.4267 0.8000 0.8400
uogWebSelAnL 0.6082 0.4933 0.7867 0.8400 0.6104 0.4933 0.8133 0.8400

Table 4: Evaluation of the official submitted runs to the mixed query task of the Web track.

phanchor ≤ 1 phanchor > 1

apply CA apply CAU150

Table 5: The decision mechanism used in run uogWebSelAn.

For the next three runs, we use the decision mechanism, where the thresholds are set after training with the
TREC2003 topic distillation and known item topics. More specifically, in the third run, uogWebSelAn, we use
only phanchor, as shown in Table 5, and apply CAU150 when there are more than tph = 1 potential homepages
with all the query terms in the anchor text, otherwise we apply CA. From Table 4, we can see that this run results in
the highest MAP, and success at 1 and 5 retrieved documents, over all queries. Moreover, it performs similarly to
the baselines for the topic distillation and named page finding queries, while it outperforms both CA and CAU150
for the homepage finding queries.

The fourth run, uogWebSelL, is based on a decision mechanism that employs the usefulness of the hyperlink
structure L(Sn, Un), computed from the top k = 150 retrieved documents (Table 6). If L(Sn, Un) is higher than
the threshold tL = 0.26, then we apply CAU150, otherwise we apply CA. Considering MAP from Table 4, we can
see that this approach works well for the topic distillation and the homepage finding topics, but it is not equally
effective for the named page finding topics. If we consider all queries, the run uogWebSelL performs similarly to
the baseline uogWebCAU150.

For the fifth run, uogWebSelAnL, we select an appropriate retrieval approach based on both phanchor and
L(Sn, Un), as shown in Table 7. More specifically, we apply CAU150 if L(Sn, Un) > 0.26 and phanchor > 1,
otherwise we apply CA. This run performs as well as the best one, uogWebSelAn, with respect to MAP from
Table 4. In addition, it is the most effective for the homepage finding topics and equally effective as applying CA
uniformly for named page finding topics.

Overall, we can see from the results in Table 4 that the selective application of different retrieval approaches
is more effective than the uniform application of one retrieval approach for all queries. The decision mechanism

L(Sn, Un) ≤ 0.26 L(Sn, Un) > 0.26

apply CA apply CAU150

Table 6: The decision mechanism used in run uogWebSelL.



phanchor ≤ 1 phanchor > 1

L(Sn, Un) ≤ 0.26 apply CA apply CA
L(Sn, Un) > 0.26 apply CA apply CAU150

Table 7: The decision mechanism used in run uogWebSelAnL.

that employs phanchor is the most effective over all queries. In addition, the decision mechanism that employs
both phanchor and L(Sn, Un) performs similarly well. Moreover, it is the most effective approach for both named
page and homepage finding queries. In both cases, the textual information from the anchor text is an important
source of evidence for selecting an appropriate retrieval approach on a per-query basis.

4 Robust Track
In our participation in the Robust Track, we aim to test a series of techniques, including two novel pre-retrieval
query performance predictors, a refined weighting function recommender (WFR) mechanism and an enhanced
term frequency normalisation parameter tuning method. In the remainder of this section, we introduce these
techniques in Sections 4.1, 4.2 and 4.3, respectively. We also provide the experimental setting in Section 4.4 and
describe our runs in Section 4.5.

4.1 Pre-retrieval Query Performance Predictors
For the query performance prediction, we follow a pre-retrieval approach, where the prediction does not involve
the use of relevance scores. We applied two newly proposed predictors, namely the average inverse collection
term frequency (AvICTF) and the standard deviation of idf (σidf ). Unlike the state-of-the-art predictors, such as
clarity score [9] and query difficulty [3], the computation of the proposed pre-retrieval predictors does not involve
the use of relevance scores. As a consequence, the cost of computing these predictors is marginal. The two applied
predictors are the following:

• Average inverse collection term frequency (AvICTF). Intuitively, the performance of a query can be
reflected by the average quality of its composing terms. To represent the quality of a query term, instead of
idf , we apply Kwok’s inverse collection term frequency (ICTF). In [15], Kwok suggested that ICTF can be
a good replacement for idf which indicates the quality of a query term t. In our work, we use the average
of the ICTF values of the composing query terms to infer the overall quality/performance of a query:

AvICTF =
log

2

∏

t∈Q ICTF

ql
=

log
2

∏

t∈Q
tokenc

F

ql
(10)

In the above formula, F is the number of occurrences of a query term in the whole collection and tokenc is
the number of tokens in the whole collection. ql is the number of tokens in a given query Q.

• Standard deviation of idf (σidf ). This predictor is defined as the standard deviation of the idf of the
composing query terms, where idf is given by the INQUERY’s idf formula [1]:

idf =
log

2
(N + 0.5)/Nt

log
2
(N + 1)

(11)



where Nt is the number of documents in which the query term t appears and N is the number of documents
in the whole collection.

The assumption behind this predictor is that the composing terms of a poorly-performing query tend to
have similar idf values. This indicates that idf fails to differentiate the informative query terms from the
non-informative ones, resulting in poor performance.

According to our work in [13], σidf has significant linear and Spearman’s correlations with average precision
on the collection used in this track.

4.2 Weighting Function Recommender Mechanism
The weighting function recommender (WFR) mechanism refines our last year’s model selection mechanism [11].
The idea of WFR is to cope with the poorly-performing queries by recommending the optimal weighting functions,
including document weighting and term weighting (query expansion) functions, from a set of candidate weighting
functions on a per-query basis. The mechanism follows the steps listed below:

1. Using a specific clustering algorithm, cluster a set of training queries into k clusters. The clustering process
is based on the above two proposed query performance predictors, i.e. AvICTF and σidf .

2. Associate the optimal document weighting and term weighting functions to each cluster of training queries
by relevance assessment (in this track, we use all the 11 document weighting functions and the 4 term
weighting functions, listed in Tables 1 and 2, as the candidate weighting functions).

3. For a given new query, allocate the closest cluster to the query, and apply the associated optimal weighting
functions of the allocated cluster.

For the query clustering, we adopt the CURE algorithm [10]. In the CURE algorithm, initially, each vector is
an independent cluster. The similarity between two clusters is measured by the cosine similarity of the two closest
vectors (having the highest cosine similarity), where the two vectors come from each cluster respectively. If we
have n vectors to be processed, we start with n clusters. Then, we merge the closest pair of clusters (according
to the cosine similarity measure) as a single cluster. The merging process is repeated until it results in k clusters.
Here the number k of clusters is the halting criterion of the algorithm. For the scaling of the elements in a vector,
we simply divide each element by the maximum value of the dimension to which the element belongs:

Es =
E

Emax

(12)

where Es is the scaled value for a given element E. Emax is the maximum value of all the elements in the
dimension that E belongs to.

4.3 Term Frequency Normalisation Parameter Tuning
As mentioned in Section 2, the term frequency normalisation parameter tuning method proposed in [12] uses a set
of real queries as training queries. In our participation in this year’s TREC, these training queries were obtained
using a novel query simulation method that follows the steps listed below:

1. Randomly choose a seed-term from the vocabulary.

2. Rank the documents containing the seed-term using a specific document weighting function.



3. Extract the exp term − 1 most informative terms from the exp doc top-ranked documents using a specific
term weighting/query expansion function. exp term is the required number of composing terms of the
generated query. exp doc is a parameter of the applied query expansion methodology, as described in
Section 2.

4. To avoid selecting a junk term as the seed-term, we consider the most informative one of the extracted terms
in step 3 as the new seed-term. Note that the original seed-term is discarded at this stage.

5. Repeat steps 2 and 3 to extract the exp term − 1 most informative terms from the exp doc top-ranked
documents, which are ranked according to the new seed-term.

6. The sampled query consists of the new seed-term and the exp term − 1 terms extracted in Step 5.

Adopting the above query simulation method, our tuning method does not involve the use of real queries.

4.4 Experimental Setting
In this track, there are 249 test topics in total. More specifically, there are 200 old topics used in last year’s Robust
Track and 49 new topics. Also, from the 200 old topics, 50 poorly-performing topics are chosen as the hard topics.

In our submitted runs, we experimented with three types of queries with respect to the use of different topic
fields. The three types of queries are:

• Short queries: Only the title field is used.
• Normal queries: Only the description field is used.
• Long queries: All the three fields (title, description and narrative) are used.

All the applied document weighting and term weighting (query expansion) functions were chosen from the
DFR models introduced in Section 2.

For the weighting function recommender (WFR) mechanism, all the 11 DFR document weighting functions
and the 4 DFR term weighting functions, listed in Tables 1 and 2, are used as the candidate weighting functions.

For the query simulation of our term frequency normalisation parameter tuning method described in Sec-
tion 4.3, we applied PL2 and Bo1 weighting functions. We simulated 200 queries to sample the document length
distribution of the collection. Using our automatic tuning method, the obtained parameter settings are c = 5.90
for short queries, c = 1.61 for normal queries and c = 1.73 for long queries.

In all our experiments, automatic stop-word removal and Porter’s stemming algorithm were applied.
Query expansion was applied in all our experiments. Using a given term weighting model, we extract the 40

most informative terms from the 10 top-ranked documents.

4.5 Description of Experiments
In the Robust Track, we submitted 10 runs. For each type of queries, the baseline corresponds to the DFR
document weighting and term weighting functions from Tables 1 and 2, respectively, that resulted in the highest
mean average precision for the 200 old queries. Among the submitted runs (see Table 8 for run ids and more
details):



• We submitted three runs for short queries. AvICTF is applied in all these runs for query performance
prediction. uogRobSBase is the baseline for short queries runs. The applied document weighting and
term weighting functions are PL2 and Bo1, respectively. Compared to this baseline, uogRobSWR5 and
uogRobSWR10 aim to test the weighting function recommender (WFR) mechanism. The threshold setting
of WFR, i.e. the number of clusters, is set to 5 for uogRobSWR5 and 10 for uogRobSWR10.

• Our experiments for normal queries are similar. uogRobDBase is the baseline, and WFR is applied in
uogRobDWR5 and uogRobDWR10 with the use of different threshold settings (i.e. 5 and 10 respectively).
However, I(n)L2 and CS are chosen as the baseline weighting models. AvICTF and σidf are applied in
uogRobDWR10 and the other two, respectively.

• For long queries, besides of WFR, our term frequency normalisation parameter tuning method is also tested.
According to our study in [12], this method outperforms the default setting for normal and long queries, and
provides comparable performance with the default setting for short queries. We compare the tuning method
to the use of a default setting that is applied in uogRobLBase. Note that the tuning method is applied in all
the runs except this baseline. uogRobLBase uses PL2 and Bo1, respectively. The use of the tuning method
differs uogRobLT from uogRobLBase. The other two runs, uogRobLWR5 and uogRobLWR10, are again
proposed to evaluate WFR.

Furthermore, in order to better evaluate our predictors, besides of the Kendall’s tau, we measure the Spear-
man’s correlation of the predictors with average precision. Moreover, since we apply query expansion in all our
submitted runs, we also measure the above two correlation measures without query expansion, in order to check
how query expansion affects the effectiveness of our predictors.

Run id docW function termW function c Predictor
Short Queries

uogRobSBase PL2 Bo1 c = 5.90 AvICTF
uogRobSWR5 WFR WFR c = 5.90 AvICTF
uogRobSWR10 WFR WFR c = 5.90 AvICTF

Normal Queries
uogRobDBase I(n)L2 CS c = 1.61 σidf

uogRobDWR5 WFR WFR c = 1.61 σidf

uogRobDWR10 WFR WFR c = 1.61 AvICTF
Long Queries

uogRobLBase PL2 Bo1 c = 1 AvICTF
uogRobLT PL2 Bo1 c = 1.73 σidf

uogRobLWR5 WFR WFR c = 1.73 σidf

uogRobLWR10 WFR WFR c = 1.73 AvICTF

Table 8: The submitted runs to the Robust track. Query expansion is applied for all the runs. docW function
and termW function stand for the applied document weighting function and term weighting function, respectively.
The applied setting of parameter c for run uogRobLBase, i.e. c = 1, is the default setting. WFR stands for the
weighting function recommender mechanism.

Tables 9, 10 and 11 summarise the experiment results for short, normal and long queries, respectively. Also,
Tables 12 and 13 provide the obtained Kendall’s tau and Spearman’s correlation of our predictors with average
precision, with and without query expansion, respectively. From the results, we have the following observations:



Run id pre@10 MAP MAP(X) #norel
Old queries

uogRobSBase .4400 .2826 .0087 32
uogRobSWR5 .4455 .2911 .0072 35
uogRobSWR10 .4605 .2961 .0097 32

New queries
uogRobSBase .4816 .3482 .0265 7
uogRobSWR5 .4571 .3272 .0176 8
uogRobSWR10 .4531 .3216 .0215 6

Hard queries
uogRobSBase .2640 .1237 .0030 14
uogRobSWR5 .2780 .1305 .0013 15
uogRobSWR10 .3160 .1360 .0025 13

All queries
uogRobSBase .4482 .2955 .0098 39
uogRobSWR5 .4478 .2982 .0075 43
uogRobSWR10 .4590 .3011 .0106 38

Table 9: Results of the official runs for short queries.

Run id pre@10 MAP MAP(X) #norel
Old queries

uogRobDBase .4305 .2732 .0062 38
uogRobDWR5 .4460 .2822 .0070 31
uogRobDWR10 .4535 .2861 .0072 32

New queries
uogRobDBase .5510 .3888 .0259 6
uogRobDWR5 .5408 .3834 .0234 6
uogRobDWR10 .5286 .3736 .0227 6

Hard queries
uogRobDBase .3000 .1230 .0033 15
uogRobDWR5 .3040 .1328 .0032 10
uogRobDWR10 .2960 .1308 .0019 14

All queries
uogRobDBase .4542 .2959 .0070 44
uogRobDWR5 .4647 .3021 .0079 37
uogRobDWR10 .4683 .3033 .0083 38

Table 10: Results of the official runs for normal queries.

• In general, WFR achieves higher mean average precision (MAP) than the baselines for the old queries,
including the hard queries, but not for the new queries. We suggest that this is due to the used scaling formula
(see Equation (12)), which simply divides a given element by the maximum value in the dimension that the
element belongs to. This formula implies that 0 is meaningful and does not take the actual distribution of
the values (i.e. AvICTF and σidf values). Therefore, we use the following alternate formula for the data
scaling:



Run id pre@10 MAP MAP(X) #norel
Old queries

uogRobLBase .4715 .2927 .0130 31
uogRobLT .4705 .2970 .0136 31

uogRobLWR5 .4800 .3028 .0134 26
uogRobLWR10 .4815 .3084 .0133 25

New queries
uogRobLBase .4939 .3586 .0325 3

uogRobLT .5000 .3776 .0390 2
uogRobLWR5 .5122 .3703 .0388 2
uogRobLWR10 .5143 .3679 .0295 3

Hard queries
uogRobLBase .3100 .1609 .0150 34

uogRobLT .3240 .1552 .0161 33
uogRobLWR5 .3180 .1608 .0158 28
uogRobLWR10 .3120 .1571 .0148 28

All queries
uogRobLBase .4759 .3056 .0150 34

uogRobLT .4763 .3128 .0161 33
uogRobLWR5 .4863 .3161 .0158 28
uogRobLWR10 .4880 .3201 .0148 28

Table 11: Results of the official runs for long queries.

Run id Predictor τ ρ

Short queries
uogRobSBase AvICTF 0.259 0.358
uogRobSWR5 AvICTF 0.257 0.365
uogRobSWR10 AvICTF 0.270 0.356

Normal queries
uogRobDBase σidf 0.258 0.317
uogRobDWR5 σidf 0.259 0.300
uogRobDWR10 AvICTF 0.240 0.298

Long queries
uogRobLBase AvICTF 0.163 0.213

uogRobLT σidf 0.166 0.194
uogRobWR5 σidf 0.172 0.200
uogRobWR10 AvICTF 0.176 0.219

Table 12: The Kendall’s tau (τ ) and the Spearman’s correlation (ρ) of the applied predictors with average precision
for the official runs in the Robust track. Query expansion is applied in all these runs.

Es =
E − Emin

Emax − Emin

(13)

where Es is the scaled value for a given element E. Emax and Emin are the maximum and minimum of all
the elements in the dimension that E belongs to, respectively.



Run id Predictor τ ρ

Short queries
uogRobSBase AvICTF 0.254 0.367
uogRobSWR5 AvICTF 0.265 0.387
uogRobSWR10 AvICTF 0.259 0.376

Normal queries
uogRobDBase σidf 0.233 0.338
uogRobDWR5 σidf 0.215 0.309
uogRobDWR10 AvICTF 0.240 0.319

Long queries
uogRobLBase AvICTF 0.193 0.282

uogRobLT σidf 0.163 0.235
uogRobWR5 σidf 0.158 0.229
uogRobWR10 AvICTF 0.176 0.280

Table 13: The Kendall’s tau (τ ) and the Spearman’s correlation (ρ) of the applied predictors with average precision
for the official runs in the Robust Track but without the use of query expansion.

We refine our WFR mechanism by using the above formula for the data scaling and run additional exper-
iments. Table 14 compares the obtained results with results obtained by the original WFR. The applied
threshold setting for both the original and refined WFR mechanisms is k = 5. Since the original WFR with
k = 5 results in consistently higher mean average precision than the original WFR with k = 10, we only
apply the refined WFR for k = 5. As we can see from the table, the refined WFR clearly outperforms the
original WFR and achieves comparable performance with the baselines. Indeed, by applying Equation (13),
we improved the WFR mechanism. We have also tried using the Ward algorithm [22] and the Support Vec-
tor Regression [6] instead of the CURE algorithm. Results show that these two algorithms do not improve
the WFR mechanism in terms of average precision.

• For the new queries, it is interesting to see that WFR leads to higher pre@10, but lower MAP than the
baselines, when we use normal and long queries.

• Our term frequency normalisation parameter tuning method outperforms the baseline in the experiments for
long queries. Compared with the baseline, i.e. uogRobLBase, uogRobLT achieves 5.30% of improvement
for the new queries, and 2.36% of improvement for all the 249 queries (see Table 11).

• According to the results in Tables 12 and 13, query expansion has no significant effect on the performance
prediction, except when Spearman’s correlation measure is used for long queries. Our predictors work better
for title and normal queries than for long queries. Moreover, in general, Spearman’s correlation measures
are significantly higher than Kendall’s tau measures. We suggest that it is due to the fact that the Kendall’s
tau compares only the ranking of a list of given values, while the Spearman’s correlation takes the actual
values into consideration.

To summarise, for the performance prediction, the computation of our pre-retrieval predictors does not involve
the use of relevance scores, and the correlations of the predictors with average precision is higher for the short
and normal queries than for long queries. Moreover, we have improved the WFR mechanism by changing the
data scaling formula, as shown in the additional experiments. Finally, our automatic term frequency normalisation
tuning method outperforms the empirical setting and optimises the retrieval performance.



Query type MAPb MAPWFR5 MAPr5

Short 0.3482 0.3272 0.3527
Normal 0.3888 0.3834 0.3862
Long 0.3776 0.3703 0.3712

Table 14: The mean average precision for the 49 new queries obtained by the baselines (MAPb), by the original
WFR mechanism (MAPWFR5), and by the refined WFR mechanism MAPr5. The applied threshold setting is k = 5
for both original and refined WFR mechanisms. The MAPb and MAPWFR5 values are taken from Tables 9, 10 and
11.

5 Terabyte Track
In the Terabyte track, we use Terrier in a distributed setting, inspired by our simulation study in [4]. We test the
effectiveness of techniques such as the use of anchor text, query expansion, and the automatic parameter tuning
of term frequency normalisation, for an ad-hoc retrieval task and the .GOV2 test collection. Moreover, we use a
selection mechanism, which allocates the optimal document ranking and query expansion models on a per-query
basis. In the remainder of this section, we describe the indexing process and our retrieval experiments.

5.1 Indexing
In order to index the .GOV2 test collection, we employ a local inverted file approach [18]. We split the collection
in a number of disjoint sets of documents and index them separately. While indexing, we remove standard stop-
words and apply the first step of Porter’s stemming algorithm. For each disjoint set of documents, we create the
following data structures:

• a direct file that contains all the terms of each document. The direct file is used for the query expansion
models, given in Table 2.

• an inverted file that contains all the document identifiers, in which a term appears.
• a lexicon that contains the vocabulary of the indexed documents.
• a document index that contains information about the indexed documents.

The direct and inverted files are compressed using gamma encoding for the differences of term and document
identifiers respectively, and unary encoding for the within-document and within-collection frequencies. The sizes
of the data structures on disk are shown in Table 15. Although we index the full text of all documents, the use of
compression results in great savings of disk space. More specifically, when we index the content of documents
only, the total size of the data structures on disk is 17.48GB, which corresponds to 4.10% of the collection size.
In the same index, the total size of the inverted files is 7.77GB, or 1.82% of the collection size. In order to apply
query expansion efficiently, we also build a global lexicon for the whole collection, the size of which is 0.60GB.

Using the same indexing approach, we index the collection a second time, after adding to the documents the
anchor text of the incoming hyperlinks. We have added the anchor text from 361,379,741 hyperlinks, without
using the information about duplicate documents, or redirects between documents. From Table 15, we can see
that the total size of the data structures on disk is 18.29GB, or 4.29% of the collection size, while the total size of
the inverted files only is 8.47GB (1.99% of the collection size).

For indexing the collection, we used one AMD Athlon 1600 processor, running at 1.4GHz and one Intel Xeon
processor, running at 2.8GHz. The total cumulative CPU time required for indexing the content of documents, and
the content and anchor text of documents, was 12,037 minutes and 30,104 minutes, respectively. The indexing



without anchor text with anchor text
Total size 17.48GB 18.29GB
Inverted file size 7.77GB 8.47GB
Direct file size 7.00GB 7.70GB
Lexicon size 1.84GB 1.25GB
Document index size 0.87GB 0.87GB

Table 15: The total size on disk of the data structures (inverted files, direct files, lexicons and document indexes),
with or without anchor text.

Run Description Query Type MAP pre@10 bpref
Time to retrieve
20 documents

uogTBBaseS PL2 content retrieval T 0.2709 0.5306 0.3026 4 sec
uogTBBaseL PL2 content retrieval TDN 0.3054 0.6327 0.3356 28 sec
uogTBQEL Query expansion TDN 0.3075 0.6163 0.3359 46 sec

uogTBAnchS
PL2 content and anchor
text retrieval

T 0.2690 0.5245 0.3025 3 sec

uogTBPoolQEL Weighting model selection TDN 0.2311 0.5592 0.2589 46 sec
median 0.1427 0.4102 0.2015

Table 16: Description and evaluation results of our official submitted runs to the Terabyte track. For running the
experiments, we used 4 machines with 8 processors and 6GB of RAM in total.

time corresponds to the time required to build both the direct and the inverted files, even though the inverted file
is sufficient for performing retrieval and the direct file is only used for applying query expansion. Note that the
indexing time can be improved by using more processors.

5.2 Description of Experiments
For our experiments in the ad-hoc retrieval task of the Terabyte track, we have used a distributed version of Terrier.
In this system, a central broker receives the queries and submits them to several independent query servers. The
query servers assign scores to documents and send the partial lists of results back to the broker. The broker
collects all the partial lists of results and merges them in order to create a final ranked list of retrieved documents.
The scores of documents are computed using global statistics, collected by the broker from the query servers.
Therefore, the results of our distributed retrieval system are equivalent to the results we would obtain if we used
Terrier in a centralised setting.

We have tested both short and long queries. The short queries were created from the title field of the topics
(T), while the long queries were created from all fields of the topics (TDN).

In Table 16, we present an overview and the evaluation results of our official submitted runs. We report the
values of mean average precision (MAP), precision at 10 retrieved documents (pre@10) and bpref. For all five
runs, the only parameter of the system, related to the term frequency normalisation, was automatically set to
c = 15.34 for short queries and c = 2.16 for long queries, using the approach described in Section 2, with the
sampling of queries described in Section 4.3.

Our first run, uogTBBaseS is a content-only baseline, where we employ short queries and assign scores to
documents using the weighting model PL2 from the DFR framework, as described in Section 2 and Table 1. For
the second run, uogTBBaseL, we use the weighting model PL2 with long queries. In the third run, uogTBQEL, we



employ query expansion. More specifically, we expand the original query by adding the 20 most informative terms
from the 5 top-ranked documents, using the term weighting model Bo1 from Table 2. Both runs uogTBBaseL
and uogTBQEL, where we employ long queries, significantly improve the retrieval effectiveness over the baseline
uogTBBaseS, where we employ short queries. The run with the highest MAP and bpref is uogTBQEL. In addition,
the run uogTBBaseL, where we use long queries, achieves the highest pre@10.

In the fourth run, uogTBAnchS, we extend documents by adding the anchor text of their incoming hyperlinks,
and use short queries for retrieval with PL2. Although anchor text has been shown to be very effective for topic
distillation and known-item finding tasks (see Section 3), it does not affect the retrieval effectiveness for this
ad-hoc task. For the last run, uogTBPoolQEL, we used a simple pooling technique to select the appropriate
weighting models on a per-query basis. We consider 8 document weighting models from Table 1 (i.e. all the
weighting models apart from BB2, PB2 and I(F)B2), and the 4 term weighting models from Table 2, in order
to create the pool. Thus, we have 8 × 4 = 32 pairs of document weighting and term weighting models. For a
given query, we create a pool, which contains documents retrieved among the top 15 ranks by at least 28 pairs of
models. Then, we apply the weighting models that retrieve most of the documents in the pool. Compared to the
baseline uogTBBaseL, the run uogTBPoolQEL does not improve retrieval effectiveness, and further investigation
is needed in order to refine it.

Regarding the hardware setting, for all official submitted runs, we used 4 machines, with 8 processors and
6GB of memory in total. The configuration of the machines is the following:

• one machine with 2GB of memory and 4 Intel Xeon processors at 2.8GHz.
• one machine with 2GB of memory and 2 AMD Athlon processors at 1.4GHz.
• two machines with 1GB of memory and one Intel Pentium 4 at 2.4GHz.

All the data structures were saved on a 1.6TB RAID disk, mounted on the first machine. The time to retrieve the
top 20 documents for each of the five runs is shown in Table 16. It should be stressed that a better throughput
could be achieved by using more query servers, as suggested in [4].

Overall, we have found that the retrieval approaches that generally work effectively for ad-hoc retrieval from
smaller collections, are still very effective for ad-hoc retrieval with the .GOV2 collection. All our official submitted
runs are significantly more effective than the median. In addition, applying query expansion with long queries
achieves the highest mean average precision, while our baseline that uses long queries performs similarly well.

5.3 Additional Experiments
In addition to the official submitted runs, we have performed several unofficial experiments, in order to evaluate the
effectiveness of our tuning method for the term frequency normalisation parameter. We also investigate different
settings for applying query expansion.

In Table 17, we present the results for different values of the parameter c for the DFR weighting model PL2.
We can see that the tuning method performs very well for long queries. The estimated value c = 2.16 is very close
to the manually best-obtained setting c = 2. For short queries, the tuning method estimates the value c = 15.34,
while the manually best-obtained setting is c = 5. This results in a difference of 4% in mean average precision.

We have also conducted experiments using Okapi’s BM25 [19] with different settings for its term frequency
normalisation parameter b, including the setting obtained using our tuning approach described in Section 2. The
other parameters, k1 and k3, are set by default to 1.2 and 1000, respectively [19]. As we can see from Table 18,
the performance obtained using our tuning method is very close to the performance of the manually best-obtained
setting.



Short queries (T)
c 0.1 0.5 1 2 5 10 15.34 16
MAP .0978 .1968 .2374 .2659 .2822 .2772 .2709 .2703

Long queries (TDN)
c 0.1 0.5 0.8 1 2 2.16 3 4
MAP .1390 .2530 .2812 .2903 .3058 .3054 .3017 .2951

Table 17: Results for short and long queries, using PL2 and different values of the parameter c. The value in
bold is the highest mean average precision (MAP) and the underlined value is the MAP obtained using our tuning
method.

b 0.2 0.34 0.40 0.50 0.65 0.75 0.80 0.90
MAP .2660 .2771 .2785 .2764 .2626 .2478 .2362 .2098

Table 18: Results for short queries, using BM25 and different parameter settings. The value in bold is the highest
mean average precision (MAP) and the underlined value is the MAP obtained using our tuning method.

Instead of Equation (6), we can employ alternate mechanisms to determine the qtfn for an expanded query
term. The first one is inspired by Rocchio’s relevance feedback [20] and introduces the Rocchio’s β to adjust the
qtfn in Equation (6) [2]:

qtfn = β ·
w(t)

wmax(t)
(14)

where w(t) is the weight of term t, wmax(t) is the maximum w(t) of the expanded query terms and β is a
parameter. All our official runs with query expansion can be seen as having β = 1.0. We can also employ a
second parameter-free mechanism of Terrier, where the qtfn for the expanded query terms is set automatically
according to the distribution of the expanded query terms in the top ranked documents.

Short queries (T)
expdoc expterm β = 0.1 β = 0.2 β = 0.5 β = 1.0 parameter-free
3 10 .2807 .2826 .2919 .2532 .2772
5 20 .2842 .2822 .2991 .2901 .2660
10 40 .2857 .2826 .2935 .2808 .2680

Long queries (TDN)
expdoc expterm β = 0.1 β = 0.2 β = 0.5 β = 1.0 parameter-free
5 20 .3145 .3180 .3168 .3075 .3175
10 40 .3206 .3257 .3195 .3024 .3210

Table 19: Results using PL2 with Bo1 query expansion model for different settings of Rocchio’s β and the
parameter-free query expansion of Terrier.

In Table 19, we present results using different settings for the number of expanded query terms (expterm)
from the expdoc top returned documents, with the query expansion parameter β (see Equation (14)), and with the
parameter-free mechanism of Terrier. The applied setting for parameter c is the same as that in our official runs,
i.e. c = 15.34 for short queries and c = 2.16 for long queries. As shown by the results, compared with the results
obtained without query expansion (see Table 17), the query expansion does improve retrieval performance, if an



appropriate setting is applied.
From our additional experiments, we have seen that the automatic setting of the term frequency normalisa-

tion parameter c, without employing relevance assessments, has been particularly effective for long queries. In
addition, query expansion is beneficial for both short and long queries, provided that an appropriate setting is
applied.

6 Conclusions
We have participated in the Web, the Robust and the Terabyte tracks of TREC2004, using our retrieval system,
Terrier, in both a centralised and a distributed setting.

In our experiments for the Web track, we have used a decision mechanism that identifies the queries for which
to favour the entry points of relevant web sites and applies an appropriate retrieval approach. From our results, we
can see that using the decision mechanism results in important improvements over the uniform application of one
retrieval approach for all queries.

For the Robust track, we have proposed two novel pre-retrieval performance predictors. We employ these
predictors in a weighting function recommender mechanism that selects the optimal weighting function for the
poorly-performing queries in an effective way. Furthermore, we have employed a refined approach for automati-
cally setting the value of the term frequency normalisation parameters, without the need of real user queries in the
tuning process.

With our participation in the Terabyte track, we have evaluated the scalability of a distributed version of Terrier
in handling very large test collections, such as the .GOV2. We have seen that even with very limited resources, we
can use Terrier to index and experiment with .GOV2. Our results show that the retrieval methods that generally
work well for ad-hoc retrieval from smaller collections, are still very effective for the larger collection .GOV2.
In both our official and additional experiments, we show that using long queries and query expansion is very
effective. Moreover, the automatic term frequency normalisation tuning performs very well for retrieval with long
queries, without the need of relevance assessments.

Overall, we have seen that Terrier is a scalable and modular framework, which provides parameter-free base-
lines and it can be used effectively in a variety of different retrieval settings.

Acknowledgements
This work is funded by a UK Engineering and Physical Sciences Research Council (EPSRC) project grant, num-
ber GR/R90543/01. The project funds the development of the Terrier Information Retrieval framework (url:
http://ir.dcs.gla.ac.uk/terrier).

References
[1] J. Allan, L. Ballesteros, J. Callan, and W. B. Croft. Recent experiments with INQUERY. In NIST Special

Publication 500-236: The Fourth Text REtrieval Conference (TREC-4), pages 49–63, Gaithersburg, MD,
1995.

[2] G. Amati. Probabilistic Models for Information Retrieval based on Divergence from Randomness. PhD thesis,
Department of Computing Science, University of Glasgow, 2003.



[3] G. Amati, C. Carpineto and G. Romano. Query Difficulty, Robustness, and Selective Application of Query
Expansion. In Lecture Notes in Computing Science, Proceedings of the 26th European Conference on Infor-
mation Retrieval (ECIR’04), pages 127–137, Sunderland, UK, 2004.

[4] F. Cacheda, V. Plachouras, and I. Ounis. A case study of distributed information retrieval architectures to
index one terabyte of text. Information Processing & Management, article in press, 2004.

[5] J. Callan and M. Connell. Query-based sampling of text databases. In ACM Transactions on Information
Systems (TOIS), Volume 19(2), pages 97 – 130, April, 2001.

[6] C. Chang and C. Lin. Training nu-support vector regression: theory and algorithms. Neural Computation,
14(2002), pages 1959–1977, 2002.

[7] A. Chowdhury, M. C. McCabe, D. Grossman, and O. Frieder. Document normalization revisited. In Proceed-
ings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 381–382. ACM Press, 2002.

[8] N. Craswell, D. Hawking, R. Wilkinson, and M. Wu. Overview of the TREC 2003 Web Track. In NIST
Special Publication 500-255: The Twelfth Text REtrieval Conference (TREC 2003), pages 78–92, 2003.

[9] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query performance. In Proceedings of the 25th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages
299–306, Tampere, Finland, 2002.

[10] S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algorithm for large databases. In Proceed-
ings of the ACM SIGMOD Conference, Seatltle, WA, pages 73–84, 1998.

[11] B. He and I. Ounis. University of Glasgow at the robust track – a query-based model selection approach for
the poorly-performing topics. In NIST Special Publication 500-255: The Twelfth Text REtrieval Conference
(TREC 2003), pages 636–645, Gaithersburg, MD, 2003.

[12] B. He and I. Ounis. A study of parameter tuning for term frequency normalization. In Proceedings of
the 12th International Conference on Information and Knowledge Management (CIKM), pages 10–16. ACM
Press, 2003.

[13] B. He and I. Ounis. Inferring query performance using pre-retrieval predictors. In Proceedings of the 11th
Symposium on String Processing and Information Retrieval (SPIRE 2004), pages 43–54. Springer Verlag,
2004.

[14] B. He and I. Ounis. Term Frequency Normalisation for BM25 and DFR Model. In Lecture Notes in Com-
puting Science, Proceedings of the 27th European Conference on Information Retrieval (ECIR’05). Santiago
de Compostela, Spain. March, 2005.

[15] K. L. Kwok. A new method of weighting query terms for ad-hoc retrieval. In Proceedings of the 19th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages
187–195. ACM Press, 1996.

[16] V. Plachouras and I. Ounis. Usefulness of hyperlink structure for query-biased topic distillation. In Pro-
ceedings of the 27th Annual International SIGIR Conference on Research and Developement in Information
Retrieval, pages 448–455. ACM Press, 2004.



[17] J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and Development in Information Retrieval,
pages 275–281. ACM Press, 2004.

[18] B. A. Ribeiro-Neto and R. A. Barbosa. Query performance for tightly coupled distributed digital libraries.
In Proceedings of the third ACM conference on Digital libraries, pages 182–190. ACM Press, 1998.

[19] S. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC-7: Automatic Ad hoc, Filtering, VLC and
Interactive. In NIST Special Publication 500-242: The Seventh Text REtrieval Confereence (TREC-7), pages
253–264, Gaithersburg, MD, 1998.

[20] J. Rocchio. Relevance Feedback in Information Retrieval. In The SMART Retrieval System–Experiments in
Automatic Document Processing, pages 313–323. Englewood Cliffs, NJ, Prentice Hall, Inc., 1971.

[21] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In Proceedings of the 19th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages
21–29. ACM Press, 1996.

[22] J. Ward. Hierarchical Grouping to optimize an objective function. Journal of American Statistical Associa-
tionm, 58(301), pages 236–244, 1963.

[23] T. Westerveld, D. Hiemstra, and W. Kraaij. Retrieving Web Pages Using Content, Links, URLs and Anchors.
In NIST Special Publication 500-250: The Tenth Text REtrieval Conference (TREC 2001), pages 663–672,
Gaithersburg, MD, 2001.


