
Information Needs and Automatic Queries

Experiments for the TREC 2004 Genomics AdHoc Retrieval Task

Richard M. Tong
Tarragon Consulting Corporation

1563 Solano Avenue, #350
Berkeley, CA 94707
rtong@tgncorp.com

Abstract

Tarragon Consulting Corporation participated in the
adhoc retrieval task of the TREC 2004 Genomics
Track. We used a standard deployment of the K2
search engine from Verity, Inc. in which we exploited
the free-text query parser to interpret the information
need statements provided in the task. The primary goal
of our participation was to establish a performance
baseline using “of-the-shelf” tools and then to explore
how knowledge-based extensions could enhance
performance. Time and resource constraints prevented
us from performing the knowledge-based experiments,
but our official submissions show that reasonable
performance can be achieved using just our baseline
strategy.

Overall Approach

In our approach, we emphasize the use of “off-the-
shelf” tools to provide a baseline capability and then
explore ways in which custom algorithms and
technologies can be used to enhance performance. For
the TREC 2004 Genomics AdHoc Retrieval Task, we
used Verity’s K2 search engine (see:
http//www.verity.com/ for basic information about the
K2 family of products) both to index the documents
and to provide a baseline interpretation of the test
topics.

To build the collection for the adhoc experiments, we
created a minimal XML variant of the PubMed records
in the test set (see Figure 1), and indexed them using
the standard K2 indexer.

To create the test queries, we use the standard K2 free-
text query parser to convert each element of the
statement of information need into a K2 query
fragment, and then combined these into an overall
query topic that used the components in different
ways. In particular, we experimented with giving
different importance weights to the three elements of
the topic.

For example, Topic 1 as provided by NIST is:

<TOPIC>
<ID>1</ID>
<TITLE>Ferroportin-1 in humans</TITLE>
<NEED>Find articles about Ferroportin-1,
an iron transporter, in humans.</NEED>
<CONTEXT>Ferroportin1 (also known as
SLC40A1; Ferroportin 1; FPN1; HFE4;
IREG1; Iron regulated gene 1; Iron-
regulated transporter 1; MTP1; SLC11A3;
and Solute carrier family 11 (proton-
coupled divalent metal ion transporters),
member 3) may play a role in iron
transport.</CONTEXT>
</TOPIC>

To process this into a K2 query, we first separate out
the <TITLE/>, <NEED/> and <CONTEXT/> elements.
Then for each element, we: (1) remove any leading
noise phrases that match entries in a library of pre-
built patterns developed from an analysis of previous
TREC topics; (2) add a period to the end if there is no
terminating punctuation; and, (3) map everything into
upper-case.

For Topic 1 this gives:

<TITLE>FERROPORTIN-1 IN HUMANS.</TITLE>

<NEED>FERROPORTIN-1, AN IRON TRANSPORTER,
IN HUMANS.</NEED>

<CONTEXT>FERROPORTIN1 (ALSO KNOWN AS
SLC40A1; FERROPORTIN 1; FPN1; HFE4;
IREG1; IRON REGULATED GENE 1; IRON-
REGULATED TRANSPORTER 1; MTP1; SLC11A3;
AND SOLUTE CARRIER FAMILY 11 (PROTON-
COUPLED DIVALENT METAL ION TRANSPORTERS),
MEMBER 3) MAY PLAY A ROLE IN IRON
TRANSPORT.</CONTEXT>

The next step is to pass the content of each element to
Verity’s free-text query parser. This does a minimal
amount of phrase detection and noise word removal,
and then automatically creates a query fragment that
models the various ways in which the words and
phrases might be expected to appear.

For example, in the <NEED/> element, the parser
recognizes that Ferrorportin-1 might appear as
“Ferroportin-1” or “Ferroportin 1”, detects “iron
transporter” as a phrase, and determines that “humans”
is a key term.

From this information, the free-text query parser
generates the fragment:

<Accrue>
* 0.55 <Many><Any>
** <Many><Stem>
 /wordtext = "FERROPORTIN-1"
** <Many><Phrase>
*** <Many><Stem>
 /wordtext = "FERROPORTIN"
*** <Many><Stem>
 /wordtext = "1"
** <Many><Phrase>
*** <Many><Stem>
 /wordtext = "FERROPORTIN"
*** <Many><Stem>
 /wordtext = "-"
*** <Many><Stem>
 /wordtext = "1"
* 0.55 <Many><Stem>
 /wordtext = "HUMANS"
* 0.55 <Sum>
** 0.40 <Many><Phrase>
*** <Many><Stem>
 /wordtext = "IRON"
*** <Many><Stem>
 /wordtext = "TRANSPORTER"
** 0.10 <Near/4>
*** <Many><Stem>
 /wordtext = "IRON"
*** <Many><Stem>
 /wordtext = "TRANSPORTER"
** 0.50 <Accrue>
*** 0.75 <Many><Stem>
 /wordtext = "IRON"
*** 0.75 <Many><Stem>
 /wordtext = "TRANSPORTER"
* 0.55 <Accrue>
** 0.55 <Many><Paragraph>
*** <Many><Any>
**** <Many><Stem>
 /wordtext = "FERROPORTIN-1"
**** <Many><Phrase>
***** <Many><Stem>
 /wordtext = "FERROPORTIN"
***** <Many><Stem>
 /wordtext = "1"
**** <Many><Phrase>
***** <Many><Stem>
 /wordtext = "FERROPORTIN"
***** <Many><Stem>
 /wordtext = "-"
***** <Many><Stem>
 /wordtext = "1"
*** <Many><Stem>
 /wordtext = "HUMANS"
** 0.55 <Many><Paragraph>
*** <Many><Stem>
 /wordtext = "HUMANS"

*** <Phrase>
**** <Many><Stem>
 /wordtext = "IRON"
**** <Many><Stem>
 /wordtext = "TRANSPORTER"
** 0.55 <Many><Paragraph>
*** <Many><Any>
**** <Many><Stem>
 /wordtext = "FERROPORTIN-1"
**** <Many><Phrase>
***** <Many><Stem>
 /wordtext = "FERROPORTIN"
***** <Many><Stem>
 /wordtext = "1"
**** <Many><Phrase>
***** <Many><Stem>
 /wordtext = "FERROPORTIN"
***** <Many><Stem>
 /wordtext = "-"
***** <Many><Stem>
 /wordtext = "1"
*** <Phrase>
**** <Many><Stem>
 /wordtext = "IRON"
**** <Many><Stem>
 /wordtext = "TRANSPORTER"
** 0.55 <Many><Paragraph>
*** <Many><Any>
**** <Many><Stem>
 /wordtext = "FERROPORTIN-1"
**** <Many><Phrase>
***** <Many><Stem>
 /wordtext = "FERROPORTIN"
***** <Many><Stem>
 /wordtext = "1"
**** <Many><Phrase>
***** <Many><Stem>
 /wordtext = "FERROPORTIN"
***** <Many><Stem>
 /wordtext = "-"
***** <Many><Stem>
 /wordtext = "1"
*** <Many><Stem>
 /wordtext = "HUMANS"
*** <Phrase>
**** <Many><Stem>
 /wordtext = "IRON"
**** <Many><Stem>
 /wordtext = "TRANSPORTER"

which is a complete description, in Verity’s OTL
format, of how to search for various combinations of
“Ferroportin-1”, “iron transporter” and “humans”.

The details of this structure are not as significant as the
fact that it is automatically generated, and makes use
of various operators in the Verity query language (e.g.,
<Accrue>, <Sum>, <Phrase>), as well as weights on
the major sub-components of the structure.

The final step in the automatic query generation
process is to combine the fragments into an overall K2
query to run against the collection. We experimented
with a number of ways of doing this.

For our official submissions, we used two methods. In
the first, labeled “tgnSplit”, we combined the
fragments using a simple summation model, giving
differential weights to the three elements. So using this
model, the top-level query for Topic 1 is:

tgn_Q1 <Sum>
* 0.50 _Q1_title <Accrue>
* 0.35 _Q1_need <Accrue>
* 0.15 _Q1_context <Sum>

In the second official submission, labeled
“tgnNecaux”, we used a more complex combination
strategy. In this model, we first assess whether the
<TITLE/> or <NEED/> query fragment matches, and
then, if it does, we check to see if the <CONTEXT/>
fragment matches. The scores from each fragment are
then combined in another weighted sum. However, if
neither of the <TITLE/> or <NEED/> fragments
match, then we ignore any contribution from the
<CONTEXT/> fragment.

The rationale for this general strategy is an assumption
that the <TITLE/> and <NEED/> elements are the
most indicative of the overall user information need,
and that the <CONTEXT/> element primarily provides
background and/or supporting information.

Results Analysis

The summary results for our official submissions are
shown in Table 1, together with a run, labeled
“tgnMerge”, that treats the <TITLE/>, <NEED/> and

<CONTEXT/> elements as a contiguous text, and that
we scored ourselves.

The first official run, tgnSplit, performs somewhat
above the average level, with a mean average
precision (MAP) of 0.2319 compared to the mean
MAP for automatic runs from the published results of
0.2227. This run produced individual topic results in
which 24 queries got an average precision score
greater than or equal to the published median, and 3
queries got the maximum average precision score.

The “precision at N” scores for tgnSplit show a similar
behavior. The mean P@10 score is 0.4860 compared
to the published mean for automatic runs of 0.4335;
and the mean P@100 score is 0.2926 compared to
0.2691.

The second official run, tgnNecaux, does substantially
worse, and the unofficial run, tgnMerge, is the worst
of the three.

Our failure analysis did not uncover any systematic
errors, so it seems clear from these results that all three
elements of the query are potentially useful for adhoc
retrieval, and also that a differential treatment of them
is better than a merged view.

Figure and Tables

<PubmedArticle>
<PMID>10636771</PMID>
<DCOM>20000110</DCOM>
<TI>Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio
harveyi.</TI>
<AB>Genes for the luciferase enzyme of Vibrio harveyi were isolated in Escherichia coli by a
general method in which nonluminous, transposon insertion mutants were used. Conditions
necessary for light production in E. coli were examined. Stimulation of transcription of the
genes for luciferase (lux A and lux B) was required for efficient synethesis of luciferase.
To enhance transcription bacteriophage promoter elements were coupled to the cloned lux gene
fragments.</AB>
<RN>EC 1.13.12.- (Luciferase)</RN>
<MH>Escherichia coli/enzymology/genetics/physiology</MH>
<MH>Genes, Bacterial</MH>
<MH>Luciferase/*biosynthesis/genetics</MH>
<MH>Luminescence, Bacterial</MH>
<MH>Support, U.S. Gov't, Non-P.H.S.</MH>
<MH>Vibrio/enzymology/*genetics/physiology</MH>
</PubmedArticle>

Figure 1: Example <PubmedArticle/> XML Format

Table 1: Summary Results for Official Submissions and Selected Alternate Experiment

 tgnSplit tgnNecaux tgnMerge

Docs Retrieved 50000 49290 50000

Docs Relevant 8268 8268 8268

Docs Rel_ret 3256 2884 2736

Interpolated R-P:

 at 0.00 0.7019 0.6367 0.6145

 at 0.10 0.5084 0.4178 0.3325

 at 0.20 0.3872 0.3065 0.2443

 at 0.30 0.3055 0.2530 0.1431

 at 0.40 0.2255 0.1902 0.1012

 at 0.50 0.1785 0.1528 0.0625

 at 0.60 0.1367 0.1302 0.0435

 at 0.70 0.1210 0.1205 0.0288

 at 0.80 0.1030 0.0911 0.0201

 at 0.90 0.0831 0.0637 0.0155

 at 1.00 0.0556 0.0331 0.0100

Average Precision 0.2319 0.1951 0.1201

Precision:

 at 5 docs 0.5120 0.4280 0.4160

 at 10 docs 0.4860 0.4080 0.3760

 at 15 docs 0.4600 0.3800 0.3627

 at 20 docs 0.4400 0.3690 0.3360

 at 30 docs 0.4113 0.3480 0.3067

 at 100 docs 0.2926 0.2358 0.1846

 at 200 docs 0.2091 0.1722 0.1332

 at 500 docs 0.1104 0.0958 0.0835

 at 1000 docs 0.0651 0.0577 0.0547

R-Precision 0.2801 0.2446 0.1599

