
DIMACS AT THE TREC 2004 GENOMICS TRACK

Aynur Dayanik†, Dmitriy Fradkin†, Alex Genkin†, Paul Kantor†,
David D. Lewis‡, David Madigan†, Vladimir Menkov*

{aynur,dfradkin,agenkin,paul.kantor,dmadigan}@rutgers.edu,

trec2004@daviddlewis.com, vmenkov@cs.indiana.edu

DIMACS, Rutgers University †
David D. Lewis Consulting ‡

Aqsaqal Enterprises, Penticton, BC, Canada*

ABSTRACT
DIMACS participated in the text categorization and ad hoc
retrieval tasks of the TREC 2004 Genomics track. For the
categorization task, we tackled the triage and annotation
hierarchy subtasks.

1. TEXT CATEGORIZATION TASK
The Mouse Genome Informatics (MGI) project of the

Jackson Laboratory1 provides data on the genetics, genomics,
and biology of the laboratory mouse. In particular, the
Mouse Genome Database (MGD) contains information on
the characteristics and functions of genes in the mouse, and
on where this information appeared in the scientific litera-
ture. Human curators encode this information using con-
trolled vocabulary terms from the Gene Ontology2 (GO),
and provide citations to documents that report each piece of
information. GO consists of three structured networks: Bi-
ological Process (BP), Molecular Function (MF), and Cellu-
lar Component (CC)) of terms describing attributes of genes
and gene products.

The TREC 2004 Genomics track defined a categorization
task with three subtasks based on simplified versions of this
curation process. DIMACS participated in two of those sub-
tasks, triage and annotation hierarchy, but not in the anno-
tation hierarchy plus evidence subtask. We discuss our two
subtasks below, and full details are available in the track
overview paper [4].

1.1 Triage Subtask
To find information on mouse genes, MGI first automat-

ically scans new scientific literature for records containing
one or more of the words “mouse”, “mice”, and “murine”.
In a triage step, MGI personnel then check each article to see
if it contains information appropriate for inclusion in MGD.
(The triage step also identifies articles for other purposes,
but we can ignore that here.)

The TREC 2004 triage subtask is intended to simulate
the problem faced by triage personnel. Full text articles
published in 2002 and 2003 by three major journals were
obtained. Those articles containing “mouse”, “mice”, or
“murine” were identified and separated into a training set
(5837 documents from 2002) and a test set (6043 documents
from 2003).

The goal for subtask participants was to identify which of

1http://www.informatics.jax.org
2http://www.geneontology.org

the articles from the test set had, during MGI’s operational
manual triage process, been chosen for sending to GO cu-
rators. (Whether curators had or hadn’t actually linked to
this document from any MGD entry was not an issue.) We
can view this as a binary text classification problem, with
articles chosen for curation during the triage process being
positive examples, and those rejected during triage being
negative examples. Logs from MGI were used to produce
relevance judgments for the subtask data. Subtask partic-
ipants were given the relevance judgments for the training
set, which showed that 375 of the training set articles were
positive examples (had been selected for curation) and 5462
training articles were negative examples. The test set rele-
vance judgments, revealed after official runs were submitted,
showed 420 positive and 5623 negative test examples.

The official effectiveness measure for the triage subtask
was this normalized linear utility:

T13NU =
T13U

T13Umax

where

T13U = 20 ∗ TP − FP

T13Umax = 20 ∗ (TP + FN).

TP, FP, and FN are defined in the confusion matrix in Table
1. Table 2 shows the values of T13NU for the boundary cases
on the test data set.

1.2 Annotation Hierarchy Subtask
Articles that pass MGI’s triage process are examined by

GO curators. They identify mouse genes and gene products
mentioned in the article, claims that they have certain char-
acteristics, and the type of evidence for those characteristics.
These characteristics are recorded using the appropriate GO
terms, type of evidence is recorded using other codes, and
the document is recorded as the source of the evidence.

The annotation hierarchy subtask is a very simplified ver-
sion of this curation process. A system is given a pair (D,
G), where G is a gene discussed in document D. The system
must decide whether D’s discussion of G contains informa-
tion appropriate for coding with GO terms and, if so, in
which of the three GO hierarchies those GO terms would
fall. Systems are not required to identify the particular GO
terms.

The subtask provides a set of 1418 document/gene pairs
(representing 504 distinct documents and 1291 distinct genes)
for training and 877 pairs for testing (378 documents and 773



Relevant Not relevant
Retrieved True positive (TP) False positive (FP)
Not retrieved False negative (FN) True negative (TN)

Table 1: Confusion table.

Situation T13NU - Test
Completely perfect prediction 1.0
Predict using MeSH term “Mice” 0.64
Best submitted run 0.65
Triage everything 0.33
Triage nothing 0
Completely imperfect prediction -0.67

Table 2: Boundary cases for T13NU on triage subtask test set.

distinct genes). These sets of pairs were formed by roughly
this process:

1. A set of GO records were found that had links to doc-
uments from the track data set. One can think of the
records as tuples of the form (G, GO term, evidence,
D). These tuples were mapped to the form (D, G, XY )
by replacing the GO term with the label for the hier-
archy it falls in (BP , CC, or MF ). Redundant tuples
were discarded. This resulted in the records in the
files pgd+train.txt and pgd+test.txt. The presence of
a tuple (D, G, XY ) in, say, pgd+train.txt means that
pair (D, G) is a positive example for class XY . If
some (D, G, XY ) is present in one of these files, but
(D, G, WZ) is not present for some WZ 6= XY , then
(D, G) is a negative example for class WZ.

2. A set of documents from the track data set were found
that were selected during triage for purposes other
than GO curation. For each such document, and one
or more genes identified in that document, a record
of the form (D, G) was included in pg-train.txt or pg-
test.txt. Each pair (D, G) in pg-train.txt and pg-test.txt
is viewed as a negative example for all three of BP ,
CC, and MF .

Note that there are two sources of negative examples, but
only one of positive examples. All examples, both positive
and negative, are listed in pgtrain.txt and pgtest.txt. Thus,
the goal of a system was to identify for each pair (D, G) in
pgtest.txt, whether or not it should be assigned each of BP,
CC, and MF.

We treated this decision as three separate binary classi-
fication problems. This meant we created three copies of
the training and test vectors, one for each of GO hierar-
chy labels. A document/gene pair (D,G) became a positive
example for label XY (where XY is BP, CC or MF) if a
record of the form (D G XY) is present in pgd+train.txt or
pgd+test.txt, and a negative example for XY otherwise. Ta-
ble 8 shows the number of positive instances for each topic
in training and test data.

The official effectiveness measure for the annotation hier-
archy subtask is F1 (F-measure with equal weight on recall

and precision) [10, 9, 5] where

Precision (p) = TP/(TP + FP )

Recall (r) = TP/(TP + FN)

F1 =
2 ∗ r ∗ p

r + p
=

2 ∗ TP

2 ∗ TP + FP + FN

2. BAYESIAN LOGISTIC REGRESSION FOR
THE TEXT CATEGORIZATION TASK

Logistic regression models estimate the probability that
an example belongs to a class using this formula:

p(yi = +1|β, xi) =
exp(βT xi)

1 + exp(βT xi)
=

exp(
∑

j βjxi,j)

1 + exp(
∑

j βjxi,j)

where yi encodes the class of example i (positive/relevant
= +1, negative/nonrelevant = −1) and xi,j is the value of
feature j for example i. The model parameters β are chosen
by supervised learning, i.e. by optimizing some function de-
fined on a set of examples for which manually judged values
of yi are known.

In our work, we adopt a Bayesian framework and choose
the β that maximizes the posterior loglikelihood of the data,

l(β) = (−
n∑

i=1

ln(1 + exp(−βT xiyi)) + ln p(β),

where p(β) is, for each β, the prior probability that β is the
correct parameter vector. The prior p(β) encodes what we
believe are likely values of β before seeing the training data.

Our experiments use the BBR (Bayesian Binary Regres-
sion) software.3 BBR supports two forms of priors: a sepa-
rate Gaussian prior for each βj or a separate Laplace prior
for each βj . (The overall prior is the product of the individ-
ual priors for feature parameters.) The key difference be-
tween the two is that Gaussian priors produce dense param-
eter vectors with many small but nonzero coefficients, while
Laplace priors produce sparse feature vectors with most co-
efficients identically equal to 0.

We describe BBR and Bayesian logistic regression in detail
elsewhere [3]. Here we review only a few details necessary
to interpreting our results.

3http://www.stat.rutgers.edu/∼madigan/BBR/



2.1 Choice of Hyperparameter
The Gaussian and Laplace priors have two hyperparam-

eters for each model parameter βj : a modal value µj (the
most likely prior value of βj), and a regularization hyperpa-
rameter (σ2

j for Gaussian and λj for Laplace) that indicates
how close to µj we expect βj to be. For simplicity, our
TREC work assumes all µj ’s are 0, and that the regulariza-
tion hyperparameter is the same for all features. This leaves
a single regularization hyperparameter to be chosen for the
whole model.

Rather than specifying this regularization hyperparame-
ter manually based on our prior beliefs, we use an empirical
Bayes approach [2], and choose it by cross-validation on the
training set. We consider a fixed set of hyperparameter val-
ues, and choose the one that maximizes the 10-fold cross-
validation estimate of mean posterior log-likelihood on the
training data. The values considered were

1, 2.25, 4, 6.25, 9, 12.25, 16, 20.25, 25, 30.25, 36,
42.25, 49, 56.25, 64, 100, 10000, 1000000, 100000000

for Gaussian, and

1.41, 0.943, 0.707, 0.566, 0.471, 0.404, 0.354, 0.314,
0.283, 0.257, 0.236, 0.218, 0.202, 0.189, 0.177, 0.141,
0.014, 0.00141, 0.00014

for Laplace. Both these sets correspond to this set of prior
standard deviations

1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7,
7.5, 8, 10, 100, 1000, 10000

2.2 Threshold Selection
Logistic regression models estimate the probability that

the example is a positive/relevant example. We then must
convert this probability to a binary class label. The simplest
approach is to define a threshold value that the estimated
probability must exceed for the test example to be predicted
to be relevant.

We tested two approaches to choosing a threshold for a
categorization problem:

• MEE (Maximum Expected Effectiveness): Choose the
threshold that maximizes the expected value of the
subtask effectiveness measure on the test set, under
the assumption that the estimated class membership
probabilities are correct and independent [5].

• TROT (Training set Optimization of Threshold): Choose
the threshold that maximizes the subtask’s effective-
ness measure on the training set.

Both TROT and MEE were tested by cross-validation
on the triage subtask training data. MEE was found con-
sistently better and so was used for all our triage runs.
The MEE threshold for the T13NU effectiveness measure
is p(yi = +1) >= 1/21 = 0.0476 on a probability scale.

TROT was used for all annotation runs. Computing the
MEE threshold for F1 requires processing test examples as
a batch [5], something not allowed by the track guidelines.

2.3 Two-Stage Classifiers
The importance of the MeSH term “Mice” in the triage

subtask (see Section 4.2) was apparent in our experiments on

the training set. Therefore, in addition to one-stage thresh-
olded logistic regression models, we also tested the following
two-stage classifier on the triage task:

1. IF a document does NOT contain the MeSH term
“Mice” classify it as negative.

2. ELSE classify it using a thresholded logistic regression
model.

The logistic regression models used in the two-stage classi-
fier were trained only on training examples containing the
MeSH term “Mice”. The hope was that this would train
the model to focus less on whether the document was about
mice, and more on distinguishing whether evidence about
gene characteristics was present.

2.4 Upweighting of Positive Examples
The proportion of positive examples in the annotation hi-

erarchy subtask was low, and for that subtask we experi-
mented with upweighting positive training examples relative
to negative ones. This was done by making w−1 extra copies
of each positive training example. The weights tried were:
w = 1 (no upweighting), w = 5, and w = 6. The replicated
examples were used both when fitting model parameters and
when tuning the threshold.

3. TEXT REPRESENTATION FOR
TEXT CATEGORIZATION SUBTASKS

The track provided the full text of the journal articles
in both SGML and XML form. We used the XML ver-
sions from train.xml.zip and test.xml.zip. We also made
use of additional descriptions of each article. The track
files train.crosswalk.txt and test.crosswalk.txt specified the
PubMed ID for each article. We used these IDs to obtain
the MEDLINE record for each article either from the ad hoc
track data, or by downloading from PubMed.4

The MEDLINE records for 536 of the training articles and
408 of the test articles contain GenBank accession numbers
for genes discussed in the article. While this is done for
only a subset of genes mentioned, it is a useful clue when
present, because the GenBank entry specifies the organism a
gene was studied in. Using the accession number, we down-
loaded the corresponding GenBank5 record, and extracted
the organism name field.

These materials gave several alternative sources of repre-
sentations for the training and test articles:

• Full Text: The union of text from the title (<atl>),
subject (<docsubj>), abstract (<abs>), and body (<bdy>)
XML elements of the article.

• Abstract: The union of text from the subject, title,
and abstract of the article.

• MEDLINE: The MeSH terms, Medical Subject Head-
ings, from the MEDLINE record (lines starting with
“MH - ” in ASCII text format), plus the union of text
from the title (<ArticleTitle>) and abstract (<Abstract>)
elements of that record. MeSH terms were converted
to single tokens (Section 3.1) and so were kept distinct
from the two text fields.

4http://eutils.ncbi.nlm.nih.gov/entrez/query.fcgi
5http://www.ncbi.nlm.nih.gov/entrez/batchentrez.cgi?db=
Nucleotide



• MeSH: Only the MeSH terms from the MEDLINE
record.

• GenBank: The organism name from the GenBank
record, converted to a single token (Section 3.1).

Various combinations of these representations were tried
on the training data and a subset were selected for the sub-
mitted runs.

3.1 Text processing
For the full text articles, we extracted the contents of the

specified XML elements for the particular representation
(see above), concatenated those contents, and deleted all
the internal XML tags. Text processing was done using the
Lemur6 utility ParseToFile, in combination with the Porter
stemmer [6] supplied by Lemur and the SMART [7] sto-
plist.7 This parser performed case-folding, replaced punc-
tuation with whitespace, and tokenized text at whitespace
boundaries. The Lemur utility BuildBasicIndex was used
to construct Lemur index files, which we then converted to
document vectors in BBR’s format.

MEDLINE records were handled the same way, except
that MeSH terms were converted to single tokens (e.g. re-
placing “Mice, Knockout” with “MHxxxMicexxxKnockout”)
before Lemur processing to force them to have a separate
term ID than words. GenBank organism names were sim-
ilarly converted to single terms (e.g. “Mus musculus” to
“GenBankxxxMusxxxmusculus”).

3.2 Term Weighting
BBR requires text to be represented as vectors of numeric

feature values. For both annotation and triage subtasks we
used TFxIDF (term frequency times inverse document fre-
quency) weighting [8], with IDF weights computed on the
training instances only.

We describe our weighting methods using Cornell triple
notation [8], i.e. TCN, where

• T = Term Frequency Component:

– b : binary, 1.0 if term is present, 0.0 if not

– l : “log tf”, i.e. 1+ loge(tf) if term is present, 0.0
if not

• C = Collection Frequency Component:

– x : 1 for all terms

– L = “lookahead IDF”: loge
(N+1)
(nj+1)

.

• N = Normalization Component:

– x : no normalization

– c : Cosine normalization, i.e. the feature vector
is normalized to have a Euclidean norm of 1.0.

Here N is the number of documents from which IDF weights
are computed (the categorization training set, so N = 5837
for the triage subtask and N = 1418 for the annotation

6http://www-2.cs.cmu.edu/∼lemur
7ftp://ftp.cs.cornell.edu/pub/smart/english.stop or
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
lyrl2004 rcv1v2 README.htm

hierarchy subtask), and nj is the number of documents con-
taining term j. Lookahead IDF (which we indicate by non-
standard symbol “L”) is a version of IDF weighting that
defines a value even for terms that do not occur in the train-
ing corpus. It can be viewed as including a future document
being weighted in the set of documents used to define term
weights for it, thus the name “lookahead”.

Note that different representations of documents or doc-
ument/gene pairs will produce different IDF weights, and
thus different final term weights.

Test set terms that do not occur in the training set in-
troduce a question about how to do cosine normalization.
Terms that are unique to the test set can never contribute to
a document’s score. These test set terms can, however, de-
press the within-document weights of other terms in test set
documents, through their impact on cosine normalization.
We therefore tested two variants of cosine normalization:

• Normalize & Project (N&P) : Terms that occur only
on the test set are included in the test set vectors dur-
ing cosine normalization, and then removed (for effi-
ciency).

• Project & Normalize (P&N) : Terms that occur only
on the test set are removed from test set vectors before
cosine normalization.

3.3 Document Representation for the Annota-
tion Hierarchy Subtask

We have so far discussed representations that capture the
entire contents of a document at some level of granularity.
Such approaches were used to represent documents in all
our triage runs, and to represent document/gene pairs for
three of our submitted annotation runs (dimacsAabsw1, di-
macsAl3w, and dimacsAg3mh).

For the annotation subtask, we also tested representations
of document/gene pairs that take the gene into account. In
particular, we attempted to identify portions of the docu-
ment that discussed the particular gene. Two gene-specific
representations were tried:

• Paragraphs: We separated the body text (<bdy> el-
ement) of the article into paragraphs (<P> elements).
We then retained in the representation of the pair only
those paragraphs that contained at least one term from
the “gene description” (see below).

• Windows: For each term in the gene description, we
extract from the document all windows of half-size k
(i.e. 2k+1 terms per window, except at the beginning
and end of the document) centered at an occurrence of
that term. The document/gene pair is represented by
the union of these windows. Note that windows some-
times overlap if multiple terms from a gene description
occur near each other. This increases the frequency of
words that occur close to many gene terms. In some
cases a term can even have a higher frequency in the
document/gene description than it has in the full doc-
ument.

We computed term weights from the resulting representa-
tions of document/gene pairs as if each document/gene pair
was a document.

Biomedical articles, unfortunately, may refer to a gene
using any of several, possibly nonstandard, symbols and/or



names for the gene and/or its products [12]. We therefore
tested several approaches to producing gene descriptions:

• Symbol: The description consisted solely of the MGI
gene symbol which pgtrain.txt or pgtest.txt lists for the
document/gene pair.

• Name: The description included the MGI gene name
which gtrain.txt or gtest.txt lists for the gene. The
Name description is produced by replacing the char-
acters

[]().,+

in those names with whitespace, downcasing the text,
and separating the result into terms at whitespace
boundaries. No stemming was used.

• Locuslink: We downloaded a copy of LocusLink8, a
database linking disparate information on genes, on 20
July 2004. For each gene symbol, we found the corre-
sponding LocusLink record, extracted the contents of
the OFFICIAL GENE NAME and ALIAS SYMBOL
fields, and separated the contents into terms.

Combinations (e.g. Symbol + Name, Symbol + Name
+ LocusLink) of these representations were also tested,
with duplications of terms across representations removed.

For example, pgd+train.txt contains the record

12213961 Map2k6 BP.

This reflects an MGD record stating document 12213961
presents evidence of one or more biological processes (BP)
that gene Map2k6 is relevant to. In our Symbol represen-
tation, the gene description was thus simply

Map2k6.

In the Symbol + Name representation, the gene descrip-
tion was:

Map2k6 mitogen activated protein kinase ki-
nase 6,

and in the Symbol + Name + LocusLink representation
it was:

Map2k6 mitogen activated protein kinase ki-
nase 6 MEK6 MKK6 Prkmk6 SAPKK3.

4. TRIAGE SUBTASK EXPERIMENTS
After submitting our official triage subtask runs we dis-

covered a few software bugs, and so re-ran each run with
the corrected code. The corrected runs also allowed us to
to clarify our techniques by omitting CPU-saving shortcuts
used in our official runs (e.g. fractional cross-validation and
reduced sets of hyperparameter values). We present effec-
tiveness data on both the official and corrected runs. Re-
sults were similar, so we give detailed descriptions only of
the corrected runs.

Our triage runs used the following techniques:

• dimacsTfl9d : Representation: MEDLINE. Weighting:
lLc (N&P). Classifier form: two-stage. Prior: Laplace.
Hyperparameter: 0.404.

8ftp://ftp.ncbi.nlm.nih.gov/refseq/LocusLink

• dimacsTfl9w : Representation: Full-text. Weighting:
lLc (N&P). Classifier form: two-stage. Prior form:
Laplace. Hyperparameter: 0.354.

• dimacsTl9md : Representation: MEDLINE. Weight-
ing: lLc (N&P). Classifier form: one-stage. Prior:
Laplace. Hyperparameter: 0.354.

• dimacsTl9mhg : Representation: MeSH + GenBank.
Weighting: bxx. Classifier form: one-stage. Prior:
Laplace. Hyperparameter: 1.41.

• dimacsTl9w : Representation: Full-text. Weighting:
lLc (N&P). Classifier form: one-stage. Prior: Laplace.
Hyperparameter: 0.404.

All of the triage runs, both submitted and corrected, runs
used MEE thresholding (a threshold of 0.0476 on a prob-
ability scale). All corrected runs used full 10-fold cross-
validation on the training set to choose a hyperparameter
(shown above for each run) from the values listed in Section
2.1.

The combinations of techniques submitted were chosen by
cross-validation experiments on the training data. Not all
combinations were exhaustively tried.

4.1 Results
Our official triage subtask results are summarized in Table

3. Run dimacsTfl9d was our best scoring run, and indeed
was the best among all submitted runs (Table 5). Table
4 shows the corrected runs that correspond to each official
triage run.

Looking at the above runs, and others we do not have
space to include, shows that Laplace priors were consistently
more effective than Gaussian priors. This is not surprising,
given that a very small feature set was able to give high effec-
tiveness (see next Section). MEE thresholding was consid-
erably more effective than TROT thresholding, which sug-
gests a benefit to this approach when the desired tradeoff
between false positives and false negatives is extreme. In
contrast to the annotation subtask, P&N and N&P cosine
normalization gave almost identical effectiveness.

4.2 Data Set Issues
Run dimacsTfl9d, the subtask’s best run, uses only the

MEDLINE record, not the full text document. This is dis-
turbing, since it suggests participating systems were not suc-
cessfully making judgments about the presence of experi-
mental evidence in the document text.

The news gets worse. We show in Table 3 a hypothetical
run where a test document is classified positive if its MED-
LINE record contains the MeSH term “Mice”, and negative
otherwise. This run would have beaten all runs submit-
ted by other groups! As far as we can tell from the results,
no system successfully distinguished documents that discuss
mice in general, from documents that contain GO-codable
information appropriate for MGD.

On the other hand, the problem might be in the track
data. MGD is a database of facts about genes, not facts
about documents. Pointers to documents are included to
provide citations for these facts, but providing comprehen-
sive access to the scientific literature is not the goal of the
database. It seems plausible that, in making the triage de-
cision, MGI personnel may be less likely to designate for



annotation documents that appear to report already well-
known facts about mouse genes. This would have little rele-
vance to GO users, but could play havoc with classification
experiments. More discussions with MGI personnel, and
interindexing consistency studies, would be desirable.

An additional minor problem with the track data, which
we and other groups detected only after official submissions,
was that 4 of 420 positive test documents were omitted in
6043 test set documents (i.e. in test.crosswalk.txt file) and
some documents given as negative documents were found to
be positive after the submissions.

5. ANNOTATION HIERARCHY SUBTASK
EXPERIMENTS

For each of our annotation hierarchy subtask runs we
trained three thresholded logistic regression classifiers, one
for each of the BP, CC, and MF hierarchies. As with our
triage runs, we found some bugs after submission and so
re-ran each run with the corrected code. Our runs were:

• dimacsAabsw1: Representation: Abstract. Weighting:
lLc (P&N). Prior: Gaussian. Upweighting of positive
examples: no (w = 1).

• dimacsAg3mh: Representation: MeSH. Weighting: bxx.
Prior: Gaussian. Upweighting of positive examples:
no (w = 1).

• dimacsAl3w: Representation: Full text. Weighting:
lLc (P&N). Prior: Laplace. Upweighting of positive
examples: no (w = 1).

• dimacsAp5w5: Representation: Paragraphs, selected
using Locuslink information. Weighting: lLc (P&N).
Prior: Gaussian. Upweighting of positive examples:
yes (w = 5).

• dimacsAw20w5: Representation: Windows with half-
window size 20, selected using LocusLink information.
Weighting: lLc (P&N). Prior: Gaussian. Upweighting
of positive examples: yes (w = 5).

All submitted, and corrected, annotation runs chose a
threshold based on optimizing the training set F1 (TROT
approach). All corrected runs used full 10-fold cross-validation
on the training set to choose hyperparameter values from
those listed in Section 2.1.

The results of our 5 official runs are given in Table 6.
NIST statistics on all official runs are given in Table 7.

All submitted runs (except the binary representation di-
macsAg3mh) used the P&N variant of cosine normalization.
Tables 9 and 10 compare corrected runs with the P&N ver-
sus the N&P variants. Run dimacsAg3mh is not normalized,
and so appears identical in the two tables.

5.1 Discussion
The effectiveness of our annotation submissions varied

considerably, with the best (dimacsAl3w) a respectable F1 =
0.49. Disappointingly, our runs using gene-specific represen-
tations of pairs (dimacsAp5w5 and diamcsAw20w5) scored
substantially worse than runs using document-based repre-
sentations. Gene-specific representations had higher preci-
sion than document-based methods, but much lower recall.

One problem with gene-specific representations was that
some documents discussing a gene contain few or no terms
from the gene description, even with gene descriptions ex-
panded using LocusLink. (The use of LocusLink to expand
the gene descriptions did improve effectiveness slightly, as
shown in Table 11.) Even with the richest gene descrip-
tions (Symbol + Name + LocusLink), there were 54
training document/gene pairs and 80 test document/gene
pairs with empty vectors for the paragraph-based represen-
tation. Similarly, there were 38 training pairs and 67 test
pairs with empty vectors for all window-based representa-
tions. (The paragraph and window representations differ
because the paragraph representation did not use the title
or abstract of the document, while the window representa-
tion did.) A weighted combination of the full document and
the gene-specific passages might improve the situation.

For weighted representations, the P&N variant of cosine
normalization was substantially more effective than the N&P
variant. This is somewhat surprising. Cosine normalization
is meant to compensate for unequal document lengths, and
there seems little reason that it should matter how many
terms in a test document also occurred in the training set.
We suspect that the rich vocabulary of technical documents,
and the relatively small training set, is causing test docu-
ment vectors to have many novel terms. Our lookahead IDF
weighting gives these terms large weights, thus reducing (via
cosine normalization) the weights of all other terms under
N&P normalization, but not P&N normalization. The ben-
efit for the counterintuitive P&N normalization is likely to
disappear if we remove IDF weights from the document rep-
resentation (where they arguably do not really belong) and
instead take them into account in our Bayesian prior.

As for variations on the learning approach, Gaussian pri-
ors were almost always more effective than Laplace priors
for this task. This is not surprising given the very large
vocabulary implied by a full GO hierarchy. Gaussian pri-
ors usually gave better precision than Laplace priors, but
worse recall, though this may simply be a problem with
choosing thresholds for F1. Upweighting positive examples
improved effectiveness on document-based representations,
but not with gene specific ones. Again, we hope to elimi-
nate the need for this with better thresholding and choice
of regularization parameters.

Training data results suggested that the 3 annotation hi-
erarchy classification problems (BP, CC, MF) would have
benefited from different machine learning and representa-
tion approaches. Due to time and resource constraints we
did not take advantage of this in our runs, but doing so
would be important in the operational setting.

5.2 Data Set Issues
The test set had a substantially higher proportion of rel-

evant pairs than the training set (Table 8). This increase
would not have affected the best threshold for a linear util-
ity effectiveness measure (like T13NU), but does change the
best threshold for a nonlinear effectiveness measure such as
F1. Our test set results were substantially lower than we ex-
pected from cross-validation runs on the training data, and
this change may be one reason.

While the annotation subtask does not have a smoking
gun analogous to the triage subtask’s MeSH “Mice” classifier
(Section 4.2), we have similar concerns about the consistency
of relevance judgments for the annotation task as well. It is



Run TP FP FN TN Precision Recall F-score T13NU
dimacsTfl9d 373 1990 47 3633 0.1579 0.8881 0.2681 0.6512
dimacsTfl9w 371 2018 49 3605 0.1553 0.8833 0.2642 0.6431
dimacsTl9md 334 1597 86 4026 0.1730 0.7952 0.2841 0.6051
dimacsTl9mhg 376 2108 44 3515 0.1514 0.8952 0.2590 0.6443
dimacsTl9w 279 1637 141 3986 0.1456 0.6643 0.2389 0.4694

“Mice” run 375 2121 45 5627 0.1502 0.8929 0.2572 0.6404

Table 3: Our official triage subtask results, plus a hypothetical test set run using only MeSH term “Mice”.

Run TP FP FN TN Precision Recall F-score T13NU
dimacsTfl9d 373 2072 47 3551 0.1526 0.8881 0.2604 0.6414
dimacsTfl9w 373 2080 47 3543 0.1521 0.8881 0.2597 0.6405
dimacsTl9md 355 1751 65 3872 0.1686 0.8452 0.2811 0.6368
dimacsTl9mhg 359 1798 61 3825 0.1664 0.8548 0.2786 0.6407
dimacsTl9w 314 1974 106 3649 0.1372 0.7476 0.2319 0.5126

Table 4: Test set results from rerunning our triage submissions with corrected software.

Best Median Worst
Precision 0.2309 0.1360 0.0713
Recall 0.9881 0.5571 0.0143
F-score 0.2841 0.1830 0.0267
T13NU 0.6512 0.3425 0.0114

Table 5: NIST-supplied statistics on effectiveness of official triage submissions (59 triage runs, 20 partici-
pants).

Run TP FP FN TN Precision Recall F-score
dimacsAabsw1 113 76 382 501 0.5979 0.2283 0.3304
dimacsAg3mh 225 196 270 381 0.5344 0.4545 0.4913
dimacsAl3w 162 161 333 416 0.5015 0.3273 0.3961
dimacsAp5w5 96 81 399 496 0.5424 0.1939 0.2857
dimacsAw20w5 83 55 412 522 0.6014 0.1677 0.2622

Table 6: Our official annotation hierarchy subtask results.

Best Median Worst
Precision 0.6014 0.4174 0.1692
Recall 1.0000 0.6000 0.1333
F-score 0.5611 0.3584 0.1492
T13NU 0.7842 0.5365 0.1006

Table 7: NIST-supplied official annotation hierarchy results (36 runs, 20 participants).

easy to imagine that GO curators are less likely to include
a link to the 10th document mentioning a particular fact
about a gene than they are to the first document.

6. AD HOC RETRIEVAL TASK
The ad hoc retrieval task assessed text retrieval systems

on information needs of real biomedical researchers. The
detailed description of the task is given in the track overview
paper [4]. Here we give a brief summary.

Document Collection. The document collection con-
sisted of 10-year subset (from 1994 to 2003) of the MED-
LINE database of the biomedical literature. The DCOM

field of the MEDLINE records was used to define “date”
for selecting this 10-year subset. The collection included
4, 591, 008 MEDLINE records (about 10 gigabytes in size).

Topics. The track supplied 5 sample topics with incom-
plete relevance judgments so participants would know what
to expect. The test data consisted of 50 topics. All 55 topics
(sample and test) were constructed from information needs
of the real biomedical researchers. Each topic was repre-
sented with a title, need and context field. A sample topic is
shown in Table 12.

Relevance Judgements. All relevance judgments were
done by two people with backgrounds in biology, but not the
creators of the original information needs. A pool of doc-



Training Test
Topic # Relevant Pairs % Relevant Pairs # Relevant Pairs % Relevant Pairs
BP 228 0.161 170 0.194
CC 163 0.115 131 0.149
MF 198 0.140 194 0.221

Total 589 0.138 495 0.188

Table 8: Number of relevant pairs in the training and test sets for the annotation hierarchy subtask.

Run TP FP FN Precision Recall F-score
dimacsAabsw1 113 93 382 0.5485 0.2283 0.3224
dimacsAg3mh 201 186 294 0.5194 0.4061 0.4558
dimacsAl3w 242 248 253 0.4939 0.4889 0.4914
dimacsAp5w5 92 61 403 0.6013 0.1859 0.2840
dimacsAw20w5 90 58 405 0.6081 0.1818 0.2799

Table 9: Test set results from rerunning our annotation submissions with corrected software. Weighted
representations use P&N normalization, as in our submitted runs.

Run TP FP FN Precision Recall F-score
dimacsAabsw1 41 21 454 0.6613 0.0828 0.1472
dimacsAg3mh 201 186 294 0.5194 0.4061 0.4558
dimacsAl3w 157 149 338 0.5131 0.3172 0.3920
dimacsAp5w5 33 31 462 0.5156 0.0667 0.1181
dimacsAw20w5 55 42 440 0.5670 0.1111 0.1858

Table 10: Test set results from rerunning our annotation submissions with corrected software. Weighted
representations use N&P normalization, unlike the submitted runs.

TOPIC ID: 52
TITLE: Wnt signaling pathway
NEED: Find information on model organ system where Wnt
signaling pathway has been studied.
CONTEXT: Need to retrieve literature for any computer
modeled organ system that has studied Wnt.

Table 12: A sample topic.

uments to judge for each topic was built by combining the
top 75 documents from one run of each of the 27 groups par-
ticipating in the track. Duplicates were eliminated leaving
an average pool size of 976 documents. Judges did not know
which systems submitted each document. Each document
in the pool was judged as definitely relevant (DR), possibly
relevant (PR), or not relevant (NR) to the topic it belongs.
Since the task requires binary relevance judgments, DR and
PR labeled documents were considered relevant.

7. TEXT RETRIEVAL FOR AD HOC TASK
We used the ASCII text version of the MEDLINE records,

provided to the track participants in five separate files.9 We
uncompressed and concatenated these five files to create a
single file for the document collection.

For the ad hoc retrieval task, we employed both the MG
text retrieval system10, version 1.2.1, [11], and the full text

92004 TREC ASCII MEDLINE {A-E}.gz
10http://www.cs.mu.oz.au/mg/

capability of MySQL database system11, version 4.0.16. We
were able to create a single MG full text index for the entire
collection of MEDLINE records. We used MySQL to create
an index from each document ID to the position of the doc-
ument record in the approximately 10GB concatenated file
of records. However, an attempt to build a full text index
using MySQL failed due to the large size of the collection.

Our retrieval methods therefore first employed MG to re-
trieve the top-ranked 5000 documents for each topic, and
then did MySQL specific processing on this subset. For the
initial MG retrieval, we prepared queries by concatenating
title words and nouns from need statements. Nouns from
need statements were obtained by running a rule-based part-
of-speech tagger [1]. Any word tagged with “NN”, “NNP”,
“NNS” and “CD” were included in the query. Then we is-
sued this query to MG as a ranked query to retrieve the top
5000 documents. MG retrieved at least 5000 documents for
all topics except test topic 37, for which only 825 documents
were retrieved.

We now describe our two variants on post-processing the
top 5000 documents:

Method 1: The MEDLINE abstracts corresponding to
the retrieved set of MEDLINE articles (5000 articles) were
stored in a table in MySQL (title, abstract, chemical names
and MeSH terms fields) by creating a full index on all four
fields. This process is quite fast; it took less than a second
to insert the results into a table and create a full text index.
Next a boolean type query, specifically designed for MySQL
boolean search, was constructed from the topic statement

11http://www.mysql.com



Prior Weight Gene-Specific
No Domain Knowledge Locus Link

Par 5 10 20 Par 5 10 20
G 1 0.280 0.224 0.178 0.220 0.307 0.204 0.174 0.189
G 5 0.288 0.315 0.290 0.321 0.284 0.326 0.259 0.280
G 6 0.281 0.313 0.305 0.253 0.279 0.331 0.191 0.187
L 1 0.441 0.393 0.410 0.390 0.442 0.434 0.439 0.451
L 5 0.372 0.298 0.298 0.342 0.367 0.335 0.343 0.371
L 6 0.369 0.298 0.305 0.346 0.368 0.336 0.346 0.365

Table 11: Gene-specific representation results (F1 Measure), P&N normalization, on the test set.

and the need statement. Note that MySQL can perform
boolean full text searches using the IN BOOLEAN MODE
modifier. A ’+’ sign preceeding a word in a query indicates
that this word must be present in every result returned. The
> operator increases a word’s contribution to the relevance
score that is assigned to a result. By default, when no ’+’
is specified, the word is optional, but the rows that contain
it will be scored higher. A phrase that is enclosed within
double quote characters matches only rows that contain the
phrase. Our MySQL queries were of this form: topic title
as a phrase preceeded by “>” to increase the score if topic
title appears as a phrase, topic title as a subexperession
preceeded by “>”and all words preceeded by “+”, all title
words each preceeded by “>” and all noun words from the
need statement. For instance, for the sample topic 52 given
in Table 12, the MySQL query became:

>“wnt signaling pathway” >(+wnt +signal-
ing +pathway) >wnt >signalling >pathway in-
formation model organ system wnt pathway.

The boolean query was executed using MySQL and top
1000 results were obtained. MySQL scores the retrieved
documents for a boolean query for relevance ranking, and
we used its scores for ranking. MySQL returned 1000 doc-
uments for all topics except topic 37. Only 822 documents
were returned for topic 37.

Method 2: The second method was based on MG rank-
ing and the use of phrases for topic titles. Our goal was to
favor documents that contained the topic title as a phrase.
For example, for the sample topic 52, a document having a
phrase “wnt signalling pathway” should get a better rank-
ing than a document with only “signalling pathway”. We
retrieved the MEDLINE abstracts corresponding to the re-
trieved set of articles (top 5000 results) from the initial re-
trieval step, using our external index. Then we postprocess
these MEDLINE abstracts to find the ones which include
the topic title as a phrase by matching (ignoring case). We
order the results starting from the documents which contain
the topic title as a phrase and then the ones which do not
include it. In each case, we ranked the results by MG scores.

8. TEXT REPRESENTATION FOR
AD HOC TASK

We extracted the title, abstract, chemical names and MeSH
terms from the MEDLINE records. (Note that 1,209,243
(26.3%) of the records had no abstract.) Text from chem-
ical names and MeSH terms were processed the same way
text from titles and abstracts were processed. We used MG
to parse and build indices. All of the stopwords are in-
dexed by MG, however, we eliminated stop words from the

queries. We used the stoplist from SMART system as for the
text categorization tasks. We did not use stemming. Doc-
ument parsing performed case-folding and replaced punctu-
ation with whitespace. Tokenization was done by defining
a term as a maximal-length contiguous sequence of up to
15 alphanumeric characters. Query parsing was done iden-
tically to document parsing.

9. AD HOC TASK RESULTS

9.1 Approach
We constructed queries using the words in title fields,

eliminating stop words, and the “noun” words in need sec-
tions of the topics. Brill’s rule-based part of speech tagger,
version 1.14 obtained as part of KeX protein name tagger
tool12, was used [1]. We eliminated duplicate words and
stopwords from the queries. The MG system includes sup-
port for ranked queries, where similarity is evaluated using
the cosine measure. We used the MG system’s default TFx-
IDF term weighting and cosine similarity measure. First
we issued ranked queries to MG. Then, using the top 5000
results, we applied Method 1 and Method 2 for reranking
them to obtain top 1000 results as discussed in Section 7.
We submitted one run obtained using Method 1 ranking
method: rutgersGAH1, and another run using Method 2:
rutgersGAH2.

9.2 Results
The effectiveness measure for the ad hoc task was mean

average precision (MAP). Table 13 shows the MAP results
for our official runs computed over 50 test topics. Our rut-
gersGAH1 run performed better. Partipicants were pro-
vided the best, median, and worst average precision results
for each topic. On the 50 test topics, compared to 37 auto-
matic runs, our rutgersGAH1 run’s average precision score
was greater than the median 24 times, was less than the
median 26 times, and never achieved the best result.

Run Mean Average Precision
rutgersGAH1 0.1702
rutgersGAH2 0.1303

Table 13: Summary results of our ad hoc runs.

12http://www.hgc.ims.u-tokyo.ac.jp/service/tooldoc/KeX/
intro.html



Acknowledgements
The work was partially supported under funds provided by
the KD-D group for a project at DIMACS on Monitoring
Message Streams, funded through National Science Foun-
dation grant EIA-0087022 to Rutgers University. The views
expressed in this article are those of the authors, and do not
necessarily represent the views of the sponsoring agency.

10. REFERENCES
[1] E. Brill. Some advances in rule-based part of speech

tagging. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94),
Seattle, WA, 1994.

[2] Bradley P. Carlin and Thomas A. Louis. Bayes and
Empirical Bayes Methods for Data Analysis. Chapman
& Hall, London, 1996.

[3] Alexander Genkin, David D. Lewis, and David
Madigan. Large-scale bayesian logistic regression for
text categorization. Technical report, DIMACS, 2004.

[4] William Hersh. Trec 2004 genomics track overview. In
13th Text Retrieval Conference, 2004. To appear.

[5] David D. Lewis. Evaluating and optimizing
autonomous text classification systems. In Edward A.
Fox, Peter Ingwersen, and Raya Fidel, editors, SIGIR
’95: Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 246–254,
New York, 1995. Association for Computing
Machinery.

[6] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, July 1980.

[7] G. Salton, editor. The SMART Retrieval System:
Experiments in Automatic Document Processing.
Prentice-Hall, 1971.

[8] Gerard Salton and Christopher Buckley.
Term-weighting approaches in automatic text
retrieval. Information Processing and Management,
24(5):513–523, 1988.

[9] C. J. van Rijsbergen. Information Retrieval.
Butterworths, London, second edition, 1979.

[10] Cornelis Joost van Rijsbergen. Automatic Information
Structuring and Retrieval. PhD thesis, King’s College,
Cambridge, July 1972.

[11] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, San Francisco, CA, 2
edition, 1999.

[12] H. Yu and E. Agichtein. Extracting synonymous gene
and protein terms from biological literature.
Bioinformatics, 19:340–349, 2003.


