
 
  

ABSTRACT 
We approached the problem of classifying papers for the 
TREC 2004 Genomics Track triage task as a four step 
process: feature generation, feature selection, classifier 
training, and finally, classification. Section specific binary 
features that discriminated significantly between positive 
and negative training samples were chosen using the Chi-
square statistic. Three classifiers were trained on this 
feature set: a simple Naive Bayes classifier, the SVMLight 
support vector machine implementation, and a voting 
perceptron extended to support variable learning rates. 
Comparing the classifiers on the training data we found 
that neither Naive Bayes nor SVMLight was able to 
adequately account for the factor of 20 in the utility 
function. The voting perceptron classifier performed much 
better at this. The performance on the test collection was 
lower for all classifiers, although consistent with the 
relative values of the training cross-validation. Feature 
subsetting showed no significant differences in precision 
or recall, implying that there was some redundancy among 
the features. We also examined how well the feature set 
derived from the 2002 training collection represented the 
papers in the 2003 test collection, and found a low level of 
similarity between feature sets derived from the two 
collections. This supports the hypothesis that important 
classification terms change quickly over time. 

1 INTRODUCTION 
The 2004 Text Retrieval Conference (TREC) Genomics 
track was divided into two main tasks: categorization, and 
ad-hoc retrieval. The categorization task was composed of 
a document triage subtask and an annotation subtask to 
detect the presence of evidence in the document for each 
of the three main Gene Ontology (GO) code hierarchies. 
Our work focused on the document triage subtask. We 
also participated in the ad-hoc retrieval task 

2 BACKGROUND 
Document classification is a common problem in 
biomedicine. Training a support vector machine (SVM) 
on vectors created from stemmed and/or stopped 
document word counts has proven to be a basic and 
typically successful approach (Yeh et al., 2003).  
However we believed that the triage problem posed here 
had several distinctive features that would require 
modification to the basic approach.  

First, the number of true positives in both the training 
and test collection was known to be small, between 6-7%. 
Second, the utility function chosen as the metric of record 
was heavily weighted to reward recall and not precision. 
This was based on an analysis of the current working 
procedures of the annotators at the Mouse Genome 
Institute (MGI), and an approximation of how they 
currently value false negative and false positive 
classification. The official utility function weights a false 
negative as twenty times more serious than a false 
positive. By this measure the current work practice of 
MGI, which is read all documents in test collection, has a 
utility of 0.25. 

Additionally, the training and test collections were not 
randomly drawn from the same sample but instead were 
collected from documents published in two sequential 
years.  While this is a more realistic simulation of a 
system as it would be put into use at MGI, it raises the 
issue of how well the feature set derived from one year of 
literature represents the literature of subsequent years.  

Because of these issues our approach included a rich set 
of feature types, statistically based feature selection, 
several classifiers, and an analysis of how well the feature 
set derived from the year 2002 corpus represented the 
documents in the 2003 corpus. 

3 SYSTEM AND METHODS 
We approached the triage problem in four stages: Feature 
generation, feature selection, classifier selection and 
training, and finally, test document classification.  The 
first three steps were performed using only the training 
set. The final step was performed on the test collection to 
generate the submitted results.  

During system development we used ten-fold cross-
validation on the training set to compare approaches and 
set system parameters. This entailed performing the first 
two steps on the entire training collection. Then 90% of 
the training data was used to train the classifiers which 
were then applied to the remaining 10% of the training 
data. This was repeated nine more times, so that all of the 
training data was classified once. The results were then 
aggregated to compute cross validation metrics on the 
training corpus. Figure 1 presents this process 
diagrammatically.  
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Fig. 1. Step-wise approach to text classification 

3.1 Feature generation 
The full text corpus with SGML mark-up provided 
opportunity to investigate the use of many types of 
features. While many text classification approaches treat 
the text as a “bag-of-words”, we chose to use the 
information contained in the SGML mark-up to generate 
section type specific features. Because we combined 
features that could occur multiple times in a single 
document with features that could occur only once, after 
some initial testing we choose to treat each feature as 
binary, that is, each feature was either present in a 
document or it was absent. 

One type of feature that we generated consisted of pairs 
of section names and stemmed words, using the Porter 
stemming algorithm. After applying a stop list of the 300 
most common English words, individual parts of the 
document processed were processed to include sections 
for the abstract, body paragraphs, captions, and section 
titles. We also created similar combination section, 
stemmed word features using the stopped and stemmed 
section title in combination with the stopped and stemmed 
words within the named section. 

In addition we downloaded the corresponding 
MEDLINE records from PubMed. The corresponding 

MeSH headings were extracted for each article. We 
included MeSH-based feature types based on the full 
MeSH headings, the MeSH main headings, and the MeSH 
subheadings. 

Finally we included feature types based on information 
in the references section of each document. The main 
author of each reference was taken as a feature type. We 
also included long form of references as a feature type, by 
including the primary author, the journal name, volume, 
year, and page number. 

Running the feature generation process on the full set of 
5837 training documents produced over 100,000 
potentially useful features along with counts of the 
number of documents containing each feature. 

3.2 Feature selection 
We chose to use the Chi-square selection method to select 
the features that best discriminated between positive and 
negative documents in the training corpus. The 2x2 Chi-
square table is constructed as shown in Table 1, using the 
document counts obtained in the previous step. During 
system tuning it was found that an alpha value of 0.025 
produced the best results. Using this value as a cut-off, 
1885 features were selected as the most significant. The 
number and type of each feature found significant and 
used in the following steps are shown in Table 2. 

3.3 Classifier selection and training 
We applied three different classifiers to the problem: 
Naive Bayes, SVM, and Voting Perceptron. While it is 
commonly thought that the best classifiers are based on 
the SVM approach of Vapnik (Vapnik, 2000), the 
distinctive aspects of the current classification problem 
discussed above motivated us to apply three different 
classifiers. By using the same feature set with each of the 
classifiers, this allowed us to compare the effectiveness of 
the classifier algorithms for the particular requirements of 
the triage task.  

Table 1. 2x2 arrangement for testing feature significance 

 

 Feature is the one under test? 

 Yes No 

Yes 

Number of times 
feature seen in 
positive 
documents  

Number of times 
other features 
seen in positive 
documents  

Training 
document 
is triage 
positive? 

No 

Number of times 
feature seen in 
negative 
documents  

Number of times 
other features 
seen in 
negative 
documents  

Test Corpus 

Training Corpus 

Document Classification 

Classifier Selection 
& Training 

Feature Generation 

Feature Selection 



 

Table 2. Number and type of features used 

 
Neither Naive Bayes, nor the implementation of SVM 

we used, SVMLight (Joachims, 2004), provided adequate 
means of adjusting for the low frequency of positives and 
the high utility of true positives relative to false positives. 
For Naive Bayes, we used our own implementation. 
Naive Bayes provides a classification probability 
threshold that can be used to trade off between precision 
and recall. However, this is an indirect means of 
compensation, and in practice for this classification task, 
we found adjusting the probability threshold did not have 
a significant effect. 

We fully expected SVMLight to perform better than 
Naive Bayes, since it included a cost factor parameter that 
can be adjusted to allow unequal penalties for false 
positives and false negatives. However, we found that the 
amount of influence this parameter has is small, and was 
inadequate to compensate for the factor of 20 difference 
between the cost of false positives and negatives. Since 
neither Naive Bayes nor one of the most popular 
implementations of SVM addressed our requirements, 
something else was needed. 

A review of the classification literature shows 
significant work in modifying the classic Perceptron 
algorithm of Rosenblatt (Rosenblatt, 1958) to achieve 
performance at or near that of SVM for many problems. 
One algorithm in particular, the Voting Perceptron 
algorithm (Freund and Schapire, 1999), has very good 
performance, is quite fast, and is easy to implement. 
While the algorithm as published does not include a 
means of compensating for asymmetric false positive and 
negative penalties, we have created a modification to the 
algorithm that does. 

A perceptron is essentially an equation for a linear 
combination of the values of the feature set. There is one 
term in the perceptron for each feature in the feature set, 
plus an optional bias term. A document is classified by 
taking the dot product of a document’s feature vector with 
the perceptron, and adding in the bias term. If the result is 

greater than zero, then the document is classified as 
positive, if less than or equal to zero, then the document is 
classified as negative. 

Rosenblatt’s original algorithm trained the perceptron 
by applying it to each sample in the training data. If the 
sample was incorrectly classified, the perceptron was 
modified by adding or subtracting the a sample back into 
the perceptron, adding when the sample was a true 
positive, and subtracting when the sample was a true 
negative. Over a large number of training samples the 
perceptron converges on the solution that best 
approximates the separation between positive and 
negative documents in the training set. 

Freund and Schapire improved the perceptron’s 
performance by modifying the algorithm to produce a 
series of perceptrons, each which makes a prediction on 
the class of each document and gets a number of “votes” 
depending upon how many documents that perceptron 
classified correctly in the training set. The class with the 
most votes is the predicted class assigned to the 
document. 

Our extension to this algorithm is based upon adjusting 
the learning rate of the perceptron differently for false 
negatives and false positives. While in the typical 
implementation, incorrectly classified samples are directly 
added or subtracted back into the perceptron, we first 
multiply the sample by a factor known as the learning 
rate. Furthermore, we use different learning rates for false 
positives and false negatives. Given the definition of the 
utility function, we expected that the optimal learning rate 
for false negatives to be about 20 times that of false 
positives. This is indeed what we found during training. 
We used a learning rate of 20.0 for false negatives, and 
1.0 for false positives. 

Each of the three classifiers was applied to the training 
corpus. Ten-fold cross-validation was used to optimize 
any free parameters. The Naive Bayes classifier had one 
free parameter, the probability classification threshold. 
This was left at the default value of 0.50. The SVM-Light 
classifier settings chosen used the linear kernel and a cost 
factor of 20.0. The Voting Perceptron classifier was used 
with a linear kernel, and the learning rates were given 
above. This created a trained classifier model for each of 
the three methods. 

3.4 Classification of test documents 
Finally, the models created by the Naive Bayes, SVM, 
and Voting Perceptron classifiers were applied to the test 
corpus. This is done in two steps. First the documents in 
the test corpus were analyzed for the presence or absence 
of the significant features found during the feature 
selection step. This created a feature vector for each test 
document. Then the documents were classified by 
applying each of the three trained classifiers. 

Feature type Number 
significant 

Abstract stemmed words 127 
Body paragraph stemmed words 778 
Caption stemmed words 291 
MeSH full headings 15 
MeSH main headings 52 
MeSH subheadings 5 
Author of referenced work 35 
Reference 4 
Section title stemmed words 69 
Section title with stemmed section words 509 
Total number of features significant features 1885 



 

Table 3. Performance of classification system on test and training corpi 

3.5 Evaluation of conceptual drift 
One important issue in applying text classification 
systems to documents of interest to curators and 
annotators is how well the available training data 
represents the documents to be classified. When 
classifying a biomedical text, the available training 
documents must have been written before the text to be 
classified. However, by its very nature the field of science 
changes over time, as does the language used to describe 
it. How rapidly the written literature of science changes 
has a direct influence on the development of biomedical 
text classification systems in terms of how features are 
generated and chosen, how often the systems need to be 
retrained, how large the training increment should be, and 
may effect the maximum performance that can be 
expected out of these systems. 

We wanted to begin to understand this important issue 
of conceptual drift in the biomedical literature. In order to 
measure how well the features chosen from the training 
collection represented the information important in 
classifying the document in the test collection, we 
performed additional steps of feature generation and 
selection on the test collection. The exact same system 
and parameters were applied to the test collection as the 
training collection. Then we measured how well the 
training collection feature set represented the test 
collection feature set by computing similarity metrics 
between the two sets (Dunham, 2003). 

4 RESULTS 

4.1 Classification performance 
The results of applying our classification systems to both 
the training and test collections are presented in Table 3. 
As previously stated, ten-fold cross validation was used to 
evaluate performance on the training data. The results on 
the test data were created blindly, running the algorithms 
on the test corpus and sending the results in for evaluation 
by the TREC 2004 Genomics Track staff. 

As can be seen in the table, the Voting Perceptron 
algorithm had the best utility of 0.6600, Naive Bayes 
next, and SVMLight worst on both the training and test 
corpi. The highest recall obtained was 0.8453 by the 
Voting Perceptron algorithm on the training collection. 
The highest precision of 0.3140 was obtained by 
SVMLight on the training collection, and the highest 
overall F-score was obtained by SVMLight also on the 
training collection. 

The same relative performance was obtained for all 
three algorithms for precision, recall, F-score, and utility 
on the test collection, however the actual numbers are 
much lower. Voting Perceptron utility fell to 0.4983, and 
recall fell to 0.6571. SVMLight’s precision and F-score 
fell to 0.2309 and 0.2790 respectively. Also the F-score of 
the Voting Perceptron algorithm on the test data was 
0.2719, almost equal to that of SVMLight. 

Figure 2 presents the results of applying the Voting 
Perceptron classifier to the training data using ten-fold 
cross validation and leaving out feature types. Each 
vertical row shows the recall and precision obtained when 
leaving out one type of feature. For comparison, the 
leftmost column shows the performance of the full feature 
set. No significant differences in recall or precision were 
found by leaving out single feature types. This may 
indicate that there is redundancy in the feature set. In fact 
there is some textual overlap between the body paragraph 
stemmed words feature type and the section title with 
stemmed section words feature type, and also between the 
author of referenced work and reference feature types. 

4.2 Conceptual drift 
Because the metrics on the test collection are much lower 
than the cross validation on the training set, it useful to 
understand how well the feature set extracted from the 
training collection represents the test collection. We 
performed the same process of feature generation and 
selection on the test collection. The process generated a 
set of 1899 significant features, a quantity very close to 
the 1885 features extracted from the training collection.

 

Corpus Classifier Precision Recall Fscore Utility 

Naive Bayes 0.1556 0.7650 0.2587 0.5577 

SVMLight 0.3140 0.5550 0.4010 0.4940 

Training  
corpus 

Voting Perceptron 0.1857 0.8453 0.3045 0.6600 

Naive Bayes 0.1290 0.6548 0.2155 0.4337 

SVMLight 0.2309 0.3524 0.2790 0.2937 

Test  
corpus 

Voting Perceptron 0.1714 0.6571 0.2719 0.4983 



 

Fig. 2. Precision and recall when leaving out feature types

We computed similarity measures between these two 
sets of features. The Dice similarity coefficient was 
0.2489, the Jaccard similarity was 0.1422, cosine 
similarity was 0.2489, and the overlap measure was 
0.2499. All similarity measures showed a low level of 
similarity between the two sets. 

This conceptual drift is not simply a reflection of a 
wholesale change in vocabulary. We performed 
equivalent similarity measures on the individual word 
frequencies in the training and test collection, filtered out 
common English words as before, and sorted the words 
most frequent to least frequent for both sets. Computing 
similarity measures between the top 100, 1000, and 
10,000 words in both sets showed consistently high 
similarity measures, with the maximum being the Dice 
similarity coefficient of 0.9618 at 100 words, and the 
minimum being a Jaccard similarity of 0.9232 at 10,000 
words. 

5 DISCUSSION 
These results show that document classification can be a 
useful technique to aid the MGI curators in screening 
documents for annotation. The utility of the Voting 
Perceptron system on the test collection is about twice 
that of the estimate of the current work practice of MGI, 
and is ~14% better than the next best classifier. Clearly it 
is important for biomedical document classifiers to be 
able to flexibly incorporate utility measures specific to the 
task, as we have done here with the Voting Perceptron 
classifier. 

Nevertheless, the performance measures on the test 
collection are significantly lower than those on the 
training set. One possible explanation for this can be 
found in the low similarity between the two sets of 
significant features extracted for the two text corpi. The 
maximum similarity metric, the overlap measure, only 
shows about 25% overlap between the two sets. 
Therefore, many of the features found significant during 
training were in fact not significant for triaging the test 
collection. 

There may be many factors influencing why this is so. 
As the vocabulary similarity measures show, it is not 
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simply a wholesale change in the language used in journal 
articles. The cause is something more subtle, and more 
specific to the terms and concepts that are important in the 
classification of these documents for annotation triage. 

One possible explanation is that the important words 
and concepts that signify inclusion in the positive triage 
set changed between the years during which the 
documents in the test and training sets were written, 2002 
and 2003 respectively. This may be due to authors using 
new concepts or different language. It may also signify 
that the criteria used by the annotators when triaging a 
document has changed. 

Clearly this issue needs more study if we are to apply 
text classification in a manner that best addresses the 
needs of annotators. Document triage systems may need 
to be re- trained more frequently, or even continuously 
trained. It may also be important to develop methods of 
extracting sets of features that have greater longevity than 
the Chi-square method used here. 

6 CONCLUSIONS 
Automated document triage as presented here can be a 
useful aid to the MGI triage process. The current state of 
the art provides a notable increase in utility above the 
current work process. However, more work needs to be 
done to verify that the utility metric used here actually 
represents value as perceived by the MGI curators. 
Furthermore, the best means of deriving and updating the 
classification feature set over time is an open question and 
needs further study. 

7 AD-HOC INFORMATION RETRIEVAL 
TASK 

OHSU also took part in the ad hoc retrieval task of the 
Genomics Track.  For the task, we decided to see how 
known simple but effective indexing and retrieval 
strategies would fare with the test collection.  As such, we 
used the Lucene system, which is part of the Jakarta open 
source distribution of Web tools. Lucene implements a 
variant of TF*IDF term weighting that includes additional 
parameters for query term boosting and document length 
normalization (Apache Software Foundation, 2004).  We 
did not use boosting and manual inspection showed length 
normalization to be detrimental.  Therefore our runs were 
based on TF*IDF term weighting for document ranking. 

We submitted two official runs, one that used just the 
information needs statement of the query (OHSUNeeds) 
and the other, which used all of the text, including the 
title, information need, and context (OHAUAll).  Both of 
these runs performed above the median in mean average 
precision (MAP), with the OHSUNeeds run scoring 
slightly better. Determining why these simple approaches 
worked better than many others requires further analysis, 

but could be due to more elaborate methods having 
detrimental effects.  
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