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Abstract 

Gene Ontology (GO) is a controlled vocabulary. Given a gene product, GO enables scientists to 
clearly and unambiguously describe specific molecular functions of the gene product, specific 
biological processes in which it is involved, and specific cellular components to which it is 
localized. In this paper, we present our approach to identifying which papers have experimental 
evidence warranting annotation with GO codes. The training data set contains 375 relevant 
full-text articles and 5,462 irrelevant ones, and the test data set contains 420 positive full-text 
articles and 5,623 negative ones. We regarded this problem as a binary classification problem, 
and employed Support Vector Machines (SVMs) to distinguish positive articles from negative 
ones. Title, abstract, figure/table captions, and three standard sections – Results, Discussion, and 
Conclusion were the targets of feature extraction. Without incorporating MeSH (Medical Subject 
Headings) terms as part of the features, our system achieved 0.381 in Normalized Utility 
measure. 

1 Introduction 

Gene Ontology (GO) [1] is a system of keywords hierarchically organized as a directed acyclic 
graph with three main categories – biological process, cellular component, and molecular 
function. It provides a unified set of terms for the annotation of gene products in different 
organisms. The assignment of a GO term requires supporting evidence. The main source of 
evidence comes from published biomedical articles which contain accurate and reliable 
experimental results. Usually, curators have to read newly published papers to update their 
databases, and obviously they can hardly keep up with the rapidly growing number of new 
biomedical papers. 

Efforts have been made to automatically annotate proteins with GO terms based on analysis 
of biomedical literature [6, 7, 10]. None of these works, however, exploited full-text articles, 
which have been shown to contain more information than abstracts [8]. The BioCreative 
workshop 2004 [16] initiated a GO annotation task, and provided 636 full-text documents from 
the Journal of Biological Chemistry. The evaluation was manually done by curators, and the 
overall results showed low performances which indicated a long way from practical application. 
Therefore, the categorization task in TREC 2004 genomics track [13] was simplified and limited 
to assignment of the three main categories. Also, full-text documents from three journals over two 
years were provided in this task. 

The categorization task tried to mimic two of the classification activities carried out by 
human annotators in the mouse genome informatics (MGI) [15] system: a triage task and two 
variants of MGI’s annotation task. Curators at MGI employ a three-step process to identify the 
papers most likely to describe gene function. First, articles from several hundred journals are 



searched for keywords mouse, mice, or murine. Second, confronted with articles from the first 
step, curators determine which articles should be sent for curation. The goal for this triage process 
is to limit the number of articles for more exhaustive analysis. Finally, curators identify genes for 
which there are experimental evidence supporting assignment of GO terms. 

Because of limited resources and time constraints, we did only the triage subtask. The goal of 
this task is to correctly identify which papers have been deemed to have experimental evidence 
warranting annotation of certain GO codes. Since this task can readily be regarded as a binary 
classification problem, we employed Support Vector Machines (SVMs) [9], which are especially 
suitable for binary classification problems. 

Feature extraction is the key to successful classification in the machine learning approach, 
and is even more important than the underlying classification algorithm. When it comes to text 
categorization, the simple bag-of-words representation is often the first choice. However, the 
performance of cross validation on this simple approach was only about 0.1 in normalized utility 
(NU) measure [13]. Therefore, we tried some other representations and settled down to the one 
adopted in this paper. First, we obtained a list of GO terms [11] annotated to MGI markers. Then, 
a document was represented by the similarities to those GO terms. The details of this approach 
are discussed in the Section 3. 

The rest of this paper is organized as follows. Section 2 presents the overview of our 
architecture. The basic idea and the experimental methods in this study are introduced in Section 
3. Section 4 shows the results and makes some discussions. Finally, Section 5 concludes the 
remarks and suggests some future direction. 

2 Architecture Overview 

Figure 1 shows the overall architecture of our method for the triage task. First, we obtained a list 
of N GO terms from the MGI website [11]. With M training documents available, we extracted a 
list of keywords for each document. Each document was then represented by the vector sum of 
similarity between each keyword and the list of N GO terms, forming an N-element vector. Detail 
of the conversion process is explained in Section 3. A SVM classifier was trained with the 
resulting M N-element vectors. Given a test document, it was converted to an N-element vector 
through the same process performed on those training documents. Afterwards, this test instance 
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Figure 1: System overview.



was sent to the trained SVM classifier to decide whether it is relevant or not. 
 
3 Methods 

3.1 Document Preprocessing 

Before performing classification, two document preprocessing operations were performed to 
extract more information from the full-text documents. The two operations were (1) acronym 
expansion and (2) keyword extraction. 

� Acronym expansion 

Once the combination of sections was decided, which is explained in Section 3.3, an operation 
was performed to substitute the long forms for the tagged acronyms, each of which referred to a 
glossary entry in the document. The reason for this operation is that acronyms are sometimes 
ambiguous, and their long forms obviously carry more information. An example of this operation 
is shown in Figure 2.  In Figure 2, an abbreviation “IP3” will be replaced with “inositol 
trisphosphase (IP3)”. 

 

� Keyword extraction 

After the acronym operation, the remaining SGML tags were removed from the documents for 
later keyword extraction. With the 554K-entry inflection table found in UMLS Knowledge 
Sources [5], the keywords were normalized and extracted from each document.  In this step, 
only words that occur in both the inflection table and the document were extracted and 
normalized. The normalization here refers to the transformation of words to their root forms. For 
example, a verb in the past tense like “demonstrated” is normalized to its base form 
“demonstrate”. Moreover, a plural noun like “receptors” is normalized to its singular form 
“receptor”. Then, stop words were removed in the next stage. An example of keyword extraction 
is shown in Figure 3. The upper left part of Figure 3 contains the target document for keyword 
extraction. The lower left part illustrates the inflection table found in UMLS. The right part shows 
the extracted and normalized list of keywords. 

It is presently unclear how these receptors 
could selectively mediate cAMP responses to 
sugars and <GLOSREF 
RID="G3">IP<INF>3</INF></GLOSREF> 
responses to artificial sweeteners. 

It is presently unclear how these receptors could 
selectively mediate cAMP responses to sugars and 
inositol trisphosphate (IP<INF>3</INF>) responses 
to artificial sweeteners. 

Figure 2: An example of acronym operation. 



3.2 Feature Extraction 

Under the bag-of-words representation, the feature vector of an article was 23K long and the 
resulting dataset severely suffered from the data sparseness problem. Therefore, we attempted to 
solve this problem by reducing the dimension of feature vector via a list of N GO terms. Given a 
keyword, the similarity vector Vk for this keyword is the similarity between this keyword and the 
N GO terms. The feature vector VD for a document is therefore the vector sum of the similarity 
vectors of all keywords it contains.  In our study, Classic Dice (CD) coefficient was adopted as 
the similarity measure, and stop words were ignored at this stage.  The formulas of computing 
the CD coefficient and similarity values are listed below. 
 

( , ) (2 ) /( )CD A B Z X Y= × + , where A, B are two strings, X is the number of tokens in A, Y is 
the number of tokens in B, and Z is the number of tokens occurring in both A and B.

1 2( , ) ( , ) ( , ) ... ( , ) t
k k k k k Nw CD w t CD w t CD w t= =V Sim T [ ] , where wk is a keyword and T

is the vector of N GO terms, t1, t2 and tN is the first, second and Nth GO term, respectively. 

D k
k D∈

=∑V V , where D is a document. 

3.3 Exploitation of Full Text Documents 

Which sections of an article should be the targets of feature extraction is also an important issue.  
In other words, we have to find out where the experimental evidence warranting annotation with 
GO codes resides in a document. The triage subtask is very much similar to the task 1 in KDD 
Cup 2002 [14], part of whose goal is to retrieve papers meeting the Flybase [12] gene-expression 
curation criteria. It was found in this competition that besides the title and abstract, much of the 
experimental evidence is contained in the figure captions. Hence, we started from the 

The study demonstrated a decreased level of glucocorticoid 
receptors ( GR ) in peripheral blood lymphocytes from 
hypercholesterolemic subjects , and an elevated level in patients 
with acute myocardial infarction. 

demonstrated | verb | demonstrate 
decreased | verb | decrease 
glucocorticoid | noun | glucocorticoid 
receptors | noun | receptor 
peripheral blood lymphocytes | noun | peripheral blood lymphocyte 
hypercholesterolemic | adj | hypercholesterolemic 
elevated | verb | elevate 
myocardial infarction | noun | myocardial infarction 
 …
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Figure 3: An example of keyword extraction and normalization. 



combination of the title, abstract, figure captions and table captions as the base combination, and 
gradually included some other sections of the article to the base combination. Two other 
combinations were therefore constructed. Unfortunately, none of them outperformed the base 
combination under the aforementioned feature extraction method. These two combinations are 
briefly described below. 

Some types of documents do not have the abstract part, and hence in this case, the body of the 
article is added to the simple combination, forming the second combination.  In other words, if 
the abstract is absent, the body of the article is added to form the second combination. For the 
third one, if the abstract is present, the result, discussion, and conclusion sections are included.  
While these sections are intuitively evidence-rich sections, the third combination did not stand out 
as expected. 

3.4 SVM Classification 

The software package LIBSVM [4] was employed to deal with SVM-related operations.  Radial 
basis function was adopted as the kernel function, and 4-fold cross validation was performed to 
select the model attaining the highest normalized utility, i.e., the best-performing parameters – C
and gamma, which are the penalty constant in optimization and the parameter for radial basis 
kernel, respectively. Under our feature extraction method, the selected values for C and gamma 
are around 64 and 3.81-6. Another issue worth addressing is the imbalance among the number of 
training and test examples. For the training data, there are 375 positive examples and 5462 
negative examples, the ratio of which is about 1 to 20. Therefore, we tried to put more weights on 
the positive examples, i.e., the positive examples received larger C in SVM training. As expected, 
setting Cpositive to 20Cnegative achieved the best performance in our cross validation. 

3.5 Normalization versus Stemming 

Due to time constrains, some of the methods simply followed our intuition without further 
verification or experience backup. The one in which we were interested the most is using 
normalization instead of stemming, which is a usual preprocessing operation in text 
categorization. Unlike stemming, normalization is more precise because it converts words to their 
base forms without losing too much information. As expected, further experiment displayed a 
0.03 NU drop in the stemmed version. 

4 Results and Discussions 

Table 1 lists the results of our three official runs, the results of two other top-performing teams, 
and the results of the median-performing run and the worst-performing run. As mentioned in 
Section 3.3, NTU2v3N1 used the base combination, NTU3v3N1 used the second combination, 
and NTU4v3N1416 used the third combination. It seems that adding other sections besides the 
title, abstract, and captions introduced more noise and less useful information. The results may be 
explained by Schuemie et al.’s finding [8] that the information density is higher in the abstract 
than in all the other four standard sections – Introduction, Methods, Results and Discussion. 
Therefore, some filtering techniques should be applied to these four sections to remove 
non-informative and noisy contents. 

The official run dimacsTfl9d was produced by Dayanik et al.’s system [2] which attained the 
best performance. Besides the title and abstract of an article, they used the MeSH terms attached 
to the article as the target of feature extraction. Bayesian logistic regression was adopted to 
perform classification. They also performed an interesting experiment which depended only on 



the MeSH term “Mice” to make the decision, and found that using this term alone can outperform 
all the other systems. Fujita’s system [3] achieved slightly lower performance of 0.5494 NU 
(pllsgen4t3). They used terms from full text, gene entities and MeSH terms as the targets of 
feature extraction, and used SVM as the classifier. It is obvious that MeSH terms played an 
important role in distinguishing positive documents from negative ones, especially the term 
“Mice”. Since this task aimed to assist curators at MGI, it is reasonable that articles attached with 
the MeSH term “Mice” are very likely to be positive. Therefore, we can ascribe the high 
performance of these two systems to the use of MeSH terms. 

As there are 375/420 positive examples and 5462/5623 negative examples in the training/test 
dataset, the curators at MGI will have to read about 15 papers to find a positive one if they do not 
get any hints in advance.  For the best official run (dimacsTfl9d), curators will have to read 
roughly 6 papers to find one useful, and around 88 percent of the positive papers can be retrieved.  
Using our approach, curators will have to read roughly 10 papers to find one useful and only 69 
percent of the positive papers can be retrieved.  To put it in another way, the best run reduced 
from 15 to 6 the number of papers that the curators have to read to get a positive one, losing 12 
percent of the useful papers.  In our opinion, the best official run greatly alleviated the burden of 
curators, and our approach didn’t seem to help a lot.  However, it is possible to combine our 
approach with others, making the filtering job even more effective. 

Table 1: Results of official runs in the triage task. 

 Normalized Utility F-score Recall Precision

dimacsTfl9d 0.6512 0.2681 0.8881 0.1579 

“Mice” run 0.6404 0.2572 0.8929 0.1502 

pllsgen4t3 0.5494 0.2496 0.769 0.149 

NTU2v3N1 0.3810 0.1752 0.6905 0.1003 

NTU3v3N1 0.3601 0.1673 0.6857 0.0953 

Median 0.3425 0.2345 0.469 0.1563 

NTU4v3N1416 0.3323 0.1650 0.6357 0.0948 

Worst 0.0114 0.0267 0.0143 0.2 

5 Conclusion 

We demonstrate our approach based on a list of GO terms in this paper. We tried three 
combinations of sections in an article as the target of feature extraction, and found the simplest 
one most useful. We hypothesize that filtering should be applied to sections other than Abstract 
before they can be used for feature extraction. Also, we found that normalization is a better 
preprocessing operation than stemming under our feature extraction approach. 

Without the use of MeSH terms, our system performed slightly better than the 
median-performing system. With our approach, 69 percent of positive papers were retained at the 
precision rate of 10 percent. Although we didn’t achieve the best performance, it is possible to 
incorporate other ideas into our method, and combine other types of features with the existing 
ones. 
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