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ABSTRACT 
This paper reports our knowledge-ignorant machine 
learning approach to the triage task in TREC2004 
genomics track, which is actually a text categorization 
problem. We applied Support Vector Machine (SVM) and 
found that information-gain based feature selection is 
helpful. Although we achieved decent performance in 
leave-one-out cross-validation experiments, the evaluation 
result on the test data turned out to be surprisingly poor. 
Further experiments revealed that there is a chasm 
between the training and test data distributions. It seems 
that more aggressive feature selection can partially 
alleviate the trouble caused by distribution change. 
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1. INTRODUCTION 
In this year’s TREC conference, we have only tried to 
attack the triage task of the genomics track1. The goal of 
this task is to correctly identify which mouse-related 
papers have been deemed to have experimental evidence 
warranting annotation with GO 2  codes by MGI 3 .  It is 
exactly a text categorization [11] problem. Since we do not 
have any biological or medical background, we just took a 
knowledge-ignorant machine learning [8] approach.  

Support Vector Machine (SVM) [1, 10] is generally 
regarded as one of the most powerful machine learning 
methods. It has shown very promising performances in a 
number of recent text categorization studies [2, 6, 12]. An 
                                                             
1 http://medir.ohsu.edu/~genomics/2004protocol.html 
2 http://www.geneontology.org/ 
3 http://www.informatics.jax.org/ 

efficient SVM implementation, SVMlight4 [5], was used 
throughout our experiments.  

In fact, we achieved decent performance in leave-one-out 
cross-validation experiments. However, to our surprise, the 
evaluation result on the test data is quite poor. We present 
our approach in section 2, and investigate the reason of 
failure in section 3.  

2. OUR APPROACH 

2.1 Data 
The given document collection consists of mouse-related 
articles from three journals (JBC, JCB and PNAS) over 
two years (2002 and 2003). The first year's (2002) 
documents comprise the training data, while the second 
year's (2003) documents make up the test data. The 
training data include 375 positive examples and 5462 
negative examples. The test data include 420 positive 
examples and 5623 negative examples. 

Each example corresponds to a journal article which can 
be uniquely identified by its PMID. The SGML format 
full-text information of each example was provided. 
Furthermore, we fetched the XML format bibliographic 
information of each example from the PubMed5 server. 

We obeyed the “separate” strictness of data usage:  no 
information from any test example is allowed to affect the 
processing of any other test example. 

2.2 Features 
To apply SVM, the data need to be represented as vectors. 
Inspired by the traditional bag-of-words [6] representation 

                                                             
4 http://svmlight.joachims.org/ 
5 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi 



of text documents, we converted each example into a bag-
of-features through the feature extraction and selection 
process explained later. Then we constructed a vector for 
each example based on its bag-of-features: the 
entries/dimensions of the vectors correspond to all distinct 
features, and the value of each entry is the weight of its 
corresponding feature. Here we used the SMART [9] 
word-vector-weighting6 scheme ltc. Finally all vectors are 
normalized to have unit length. 

For each example, the features are extracted from the 
following fields of its semi-structured bibliographic and 
full-text information: MESH, JOURNAL, CHEMICAL, 
GRANT, AUTHOR, AFFILIATION, TITLE, ABSTRACT, 
ST (section title) and CAPTION (table/figure caption). 
Especially the CAPTION fields have been reported to be 
quite useful for a similar task [14].  

MESH 7  (Medical Subject Headings) is a controlled 
vocabulary produced by the National Library of Medicine 
and used for indexing, cataloging, and searching for 
biomedical and health-related information and documents. 
All MESH descriptor are organized in a tree structure. 
Each MESH descriptor can be mapped to a specific node 
in the MESH tree. For each MESH descriptor of the given 
example, we found its corresponding node in the MESH 
tree. Then we would generate a feature for every node in 
the path from the root to that node. If the MESH descriptor 
is modified by a qualifier (subheading), we would generate 
a new feature identified by that descriptor plus that 
qualifier. If the MESH descriptor/qualifier is considered 
describing the major topic of the document, we would 
generate another new feature indicating that it is a major 
MESH term. For example, the MESH term  

<MeshHeading> 
<DescriptorName MajorTopicYN="N"> 

Transcription Factors 
</DescriptorName> 
<QualifierName MajorTopicYN="Y"> 

physiology 
</QualifierName>  

</MeshHeading> 
would be converted into a set of features:  

MESH_D12,  
MESH_D12_776,  
MESH_D12_776_930,  
MESH_D12_776_930_Q000502,  
MESH_D12_776_930_Q000502_MAJOR, 

where “D12.776.930” indicates the position of the 
MESH descriptor “Transcription Factors” in the 
MESH tree, and “Q000502” is the ID of the qualifier 
“physiology”. 

                                                             
6 http://people.csail.mit.edu/people/jrennie/ecoc-svm/smart.html 
7 http://www.nlm.nih.gov/mesh/meshhome.html 

For the JOURNAL, CHEMICAL, GRANT, AUTHOR and 
AFFILIATION fields, every specific entity would be 
treated as a feature. For example, such kind of features of 
the example with PMID 11677243 would include: 
JOURNAL_0021_9258, CHEMICAL_Plasmids, 
GRANT_ID_HL_4518, and AUTHOR_WM_Canfield, 
etc. 

For the TITLE, ABSTRACT, ST and CAPTION fields, 
the contained texts would be extracted and canonicalized 
by the UMLS SPECIALIST lexical tool LuiNorm8, then 
we would generate two features for every specific term in 
the texts: one is the term itself, the other is the term tagged 
by its occurring field. For example, such kind of features of 
the example with PMID 11677243 would include: clone, 
TITLE_clone, mouse, ABSTRACT_mouse,  rna, 
CAPTION_rna, etc. 

The feature selection criterion we used is the information-
gain, since it has been shown to work well for various text 
categorization tasks [3, 13]. The decline of information-
gain across features is very sharp, as shown in Figure 1. 

 
It is generally believed that SVM requires no or very little 
feature selection for text categorization [6].  However, we 
have found that aggressive feature selection is very helpful 
to SVM for this specific problem. We think the reason is 
that a large number of features generated by the above 
feature extraction method are irrelevant or redundant. This 
finding is consistent with a recent study [3]. 

2.3 Runs 
We used linear kernel and accepted the default values for 
all parameters of SVMlight except C and J. The parameter 
C determines the trade-off between training error and 
margin, while the parameter J specifies the cost-factor by 
                                                             
8 http://umlslex.nlm.nih.gov/lvg/2003/index.html 
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Figure 1: Distribution of features by information-gain. 

 



which training errors on positive examples outweight 
errors on negative examples. Another variable parameter 
is the feature selection threshold. 

Our tactic for parameter tuning is pretty much like that of 
[7]. We trained SVM classifiers with different parameter 
settings and estimated their performance by leave-one-out 
cross-validation (LOOCV). SVMlight can compute 
LOOCV performances very efficiently using a clever 
algorithm that prunes away cross-validation folds that do 
not need to be explicitly executed [4]. In addition, we 
found that a faster approximate version of pruning (the 
options “-x 1” and “-o 1”) gave almost identical estimates 
as the exactly correct version of pruning (options “-x 1” 
and “-o 2”). A minor complexity was that SVMlight only 
outputs LOOCV estimates of error-rate, precision and 
recall, but the official performance measure is the utility 
score defined as 

raw r nr
norm

max r

U u TP u FP
U

U u AP

+= = i i

i

, 

where ur = 20 is the relative utility of a relevant document, 
and unr = -1 is the relative utility of a non-relevant 
document. The solution is to calculate the utility score 
based on the precision and the recall:   

1
( 1)nr
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r
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recall recall
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= − −i i . 

Our experiments showed that heuristically setting C = 1 / 
20 and J = 20 * (#neg / #pos) generated optimal LOOCV 
performances, where #pos and #neg represents the number 
of positive and negative training examples respectively. 
For the SVM with this parameter setting, the relationship 
between the LOOCV utility score and the number of 
selected features is shown in Figure 2. The optimal 
LOOCV performance was achieved using about 20,000 
features, which is only 8% of all features.  

We submitted four runs with slight different feature 
selection levels: nusbird2004a, nusbird2004b, 
nusbird2004d, and nusbird2004e. The best performing run 
among these four submissions is nusbird2004a that used 
20,192 features. Its LOOCV utility score on the training 
data is 0.8892. However, its utility score on the test data is 
only 0.2302, even worse than the baseline run that 
classifies all examples as positive. Such a large 
discrepancy is surprising.  

In addition to these four regular runs, we also submitted 
another run nusbird2004c, using extra positive training 
examples from the ground-truth MGI database. On the 
MGI website, there is a database report file named 

go_refs.mgi9, which is supposed to contain all “references 
used in GO annotations to mouse Markers”. There were 
3,817 examples in the go_refs.mgi file (dated on Aug 28, 
2004) after removing those contained in the training and 
test data. We took those examples as extra positive 
examples, and used them to augment the training data. 
The run nusbird2004c set the parameter C = 1, J = 20 * 
(#neg / #pos), and used 9,162 features. Its LOOCV utility 
score on the training data is 0.8968, and its utility score on 
the test data is 0.4440. This is our best official evaluation 
result. Note that the extra positive training examples did 
not include any test example. A few extra positive training 
examples were published after 2002. We also did 
experiments with those “future” examples removed from 
the augmented training data and found that the 
performance was not affected. 

 

3. DATA DISTRIBUTION CHANGE 
Why did the classifiers with high LOOCV performance on 
the training data worked so poorly on the test data? We 
suspect that this strange phenomenon is due to the data 
distribution change. Most machine learning algorithms, 
including SVM, make the  assumption that all training 
and test examples are independently and identically 
distributed. The data distribution change could make the 
basis of SVM invalid. 

To scrutinize this problem, we model the training and test 
data as two multinomial probability distributions and 
employ KL-divergence (also known as relative entropy) to 
measure their dissimilarity. Note that this can only be done 
with the availability of the test instances although it does 
not require the test labels. At this stage, we only used the 

                                                             
9 ftp://ftp.informatics.jax.org/pub/reports/index.html#go 
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Figure 2: LOOCV performance on the training data at 
different feature selection levels. 



official training data, and stuck to the SVM parameters C 
= 1 / 20 and J = 20 * (#neg / #pos).  

One possible reason for the data distribution change is that 
we have chosen many inappropriate features. Therefore we 
tried to apply more aggressive feature selection to improve 
the performance of SVM. With the feature set used by 
nusbird2004a, the KL-divergence between the training and 
test data distributions was 0.0236. We first unconditionally 
removed all features that occurred less than 3 times in the 
training data. The KL-divergence dropped to 0.0136. 
Meanwhile, the utility score on the test data dramatically 
increased from 0.2302 to 0.4935, although the LOOCV 
performance became worse. Then we performed more 
aggressive feature selection based on information-gain. 
The KL-divergence decreased while fewer features were 
selected, as shown in Figure 3. If 1,000 features were 
selected, the KL-divergence would be 0.0121 and the 
utility score on the test data would be 0.5779. 

 
Another factor that could be partially responsible for the 
data distribution change is the labeling error (noise). We 
compared the training data with the ground-truth positive 
data, go_refs.mgi (dated on Aug 8, 2004). There were 233 
examples in their intersection, while 52 of them were 
labeled negative, i.e., mis-labeled. Therefore the positive 
noise rate (the fraction of mis-labeled positive examples 
among all positive examples) was roughly at the scale of 
22.32% (52/233). Such a high level positive noise rate was 
not negligible, especially when using a utility score 
dominated by recall to measure performance. 

4. CONCLUSION 
This triage task is simply a binary text categorization 
problem, yet it has some interesting properties: the 
documents are semi-structured, the evaluation measure is a 
utility score that puts very high weights on true positive 
examples, the number of positive examples is small and 

the training and test data distributions have a noticeable 
difference. Our preliminary finding is that feature selection 
plays an important role to help SVM achieve good 
classification performance for this task. Its effect is twofold: 
removing irrelevant/redundant features and coping with 
distribution change. 

Our best submitted run got the utility score 0.4440, with 
the help from information-gain based feature selection and 
extra positive training examples. Through more aggressive 
feature selection, we can achieve the utility score as high 
as 0.5779. How far can we expect a knowledge-ignorant 
approach to go for this task? 
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