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1. INTRODUCTION 
The CMU Distributed IR group’s experiments for the 
TREC 2004 Terabyte track are some of the first to use 
Indri, a new indexing and retrieval component developed 
by the University of Massachusetts for the Lemur Toolkit 
[2].  Indri combines an inference network with a language-
modeling approach and is designed to scale to terabyte-
sized collections. 
Our goals for this year’s Terabyte track were modest: to 
complete a set of simple baseline runs successfully using 
the new Indri software, and to gain more experience with 
Indri’s retrieval model, the track’s GOV2 corpus, and 
terabyte-scale collections in general. 

2. COLLECTION AND TASK SUMMARY 
The Terabyte track this year used the GOV2 corpus, which 
is made up of about 25 million Web documents crawled 
from the .gov Web domain, comprising about 426 Gb of 
document source. 
The task for the Terabyte track is ad-hoc retrieval.  There 
are 50 queries or ‘topics’.  Each topic is presented in the 
usual TREC format, as a tagged document with three fields 
that summarize the information need at different levels of 
detail: a short ‘title’ consisting of just a few terms, a longer, 
more detailed ‘description’ field, and a multi-sentence 
‘narrative’ field. 

3. INDEXING ENVIRONMENT 
We indexed all of the GOV2 corpus documents, submitting 
complete documents to the indexer.  We did no special 
processing for titles or other document structure.  After 
running each document through Indri’s HTML parser and 
stripping out tags, terms were normalized by removing 
punctuation, converting to lowercase, and performing 
Krovetz stemming [6].  Indri has a utility to extract anchor 
text, but a working version of this was not available at the 
time of our experiments, so no anchor text (or other link-
derived features) was included.  We did not use an index-
time stop list or acronym list. 

We partitioned the GOV2 corpus into six roughly equal-
sized pieces and built a separate index for each subset.  
There were two reasons for doing this.  First, it was our 
intent to distribute retrieval for the corpus across multiple 
machines: Indri has a facility for transparently federating 
retrieval results across the network.  Second, it helped 
reduce the time to find and fix problems with interim Indri 
releases (typically, pathological HTML cases that would 
cause the parser to crash). 
For various reasons, we ended up using a single PC for 
both indexing and retrieval (though not at the same time).  
The PC had dual Xeon 3.2GHz CPUs with 2Gb RAM 
running Red Hat Linux release 9.  The file system used an 
ACNC SATA Raid array, specifically Jetsor III 
Raid/150869 with 128mb dual SCSI host 16 slots, with 
8x250GB RAID-5 drives in the box and 6x146GB RAID-5 
disks internal to the PC.  All disks were 7200 RPM. 
We used a modified version of Indri build 20040830-1620 
to build the index set.  (The changes were to work around 
various parsing bugs which have since been fixed.)  Total 
indexing time was 20.1 hours and the resulting index files 
were 138 Gb in size.  The index referenced 25,205,168 
documents. Indri also generated a compressed version of 
the tokenized collection, which for the GOV2 corpus was 
107 Gb in size. 

4. RETRIEVAL ENVIRONMENT 
4.1 Topic Processing and Query Formation 
We converted topics to Indri structured queries as follows. 

For title-only runs, we parsed each title field into its 
constituent unigrams and removed stop words using a stop 
list of 447 words derived from the standard list used with 
INQUERY [5].  The remaining terms were simply 
combined using the Indri #weight operator, with all terms 
given equal weight.  (These prior weights are in addition to 
any term weighting done by the retrieval model.) 

For runs using all three topic fields, we tried a very simple 
heuristic term matching scheme to identify unigrams, 



bigrams, and trigrams that recurred across fields – the idea 
being that concepts occurring in multiple fields would be 
more likely to be central to the information need.  There 
were three phases: 1) extracting candidate terms (unigrams, 
bigrams, and trigrams) from each field, 2) matching up 
candidates across fields while computing a weighted score 
for each candidate, and 3) selecting the top N candidates 
with scores above an empirically derived threshold.  For 
scoring, fields were associated with weights giving a rough 
prior estimate of their importance, as follows: title: 0.50, 
narrative: 0.35, and description: 0.15.  The combined score 
for a candidate term was obtained by summing the weights 
for the fields in which it occurred.  Scores for all 
candidates were then normalized so that the highest-scoring 
candidate(s) were given a weight of 1.0.  We used the same 
term selection threshold of 0.200 for all our experiments, 
since this value seemed to give the best relative 
performance in most cases.  While our algorithm here was 
simplistic, it may be easily generalized to a more powerful 
translation model in which approximate term matching is 
done with scores obtained via a translation cost function. 

The final all-field structured queries were formed by 
combining the selected candidate terms and their scores 
with the #weight operator.  Within the #weight operator, 
phrases were mapped to proximity operators.  We tried 
different window sizes ranging from 3 words up to 20 
words.  We settled on an unordered proximity window of 8 
words for both bigrams and trigrams since this appeared to 
give slightly better accuracy in the cases we tried.  An 
example of the resulting query is shown in Figure 1. 

<top> 
<num> Number: 452 
<title> do beavers live in salt water 
<desc> Description: 
Describe the normal habitat for 
beavers; note exceptions, if any. 
<narr> Narrative: 
Relevant documents describe the 
habitat range as well as references to 
specific areas and bodies of water. 
</top> 
 
#weight(  

1.000 beavers  
0.695 habitat  
0.571 water  
0.305 #uw8(beavers live) 
0.305 #uw8(live salt water) 
0.305 #uw8(beavers live salt) 
0.305 #uw8(live salt) 
0.305 #uw8(salt water) 
0.305 salt  
0.305 live 
) 
 

Figure 1:  Original TREC topic 452 (top), and corresponding 
structured query (bottom) 

4.2 Language Model Smoothing 
We used Dirichlet smoothing [8] for all submitted runs, 
with µ = 2500, using the WT10g collection [3] to estimate 
optimal values for µ and other retrieval parameters.  Indri 
allows different smoothing settings for term and window 
language models, but for our baseline we used the same 
setting for all language models.  We also looked briefly at 
learning query-specific µ values (see Section 5). 
More details on the Indri retrieval model are available in 
the UMass TREC 2004 paper [1]. 

4.3 Query Expansion 
We used the default pseudo-relevance feedback algorithm 
in the Indri runquery utility (as of build 20040909-1720) to 
perform query expansion.  This algorithm is a variant of a 
language-modeling approach to pseudo-feedback described 
by Lafferty and Zhai [7].  The final query is a weighted 
combination of the original and expanded queries, which in 
our experiments were weighted equally.  We filtered the 
expansion terms by using a modified stop list that included 
Web-specific noise terms such as ‘pdf’, ‘http’, ‘www’, and 
so on.  The best performance on WT10g given the other 
query processing parameters was obtained using the 
document count (‘docs’) and term count (‘terms’) 
parameters shown in Table 1. 

5. EXPERIMENTS 
We submitted two title-only runs, with and without pseudo-
relevance feedback (cmutufs2500 and cmutuns2500 
respectively), and one run using all topic fields with 
feedback (cmuapfs2500).  A summary of the runs and their 
performance is given in Table 1.  Our best performing run 
was cmuapfs2500, which ranked 3rd overall out of 71 runs 
in terms of MAP, R-precision, and bpref [4] scores. 

Results for the WT10g collection on topics 451-550 are 
also given, in Table 2, showing the effects of adding 
various enhancements to the baseline method.  The most 
significant improvements came from switching to Dirichlet 
smoothing with tuned µ parameter, and using terms from 
all fields instead of just the title.  The best performing run 
used all fields, unigram terms, Dirichlet smoothing, and 
pseudo-feedback and obtained a MAP of 0.2524.  Our 
heuristic phrase selection algorithm appeared to give 
slightly worse results than using unigrams.  Investigating 
the reasons for this and finding improvements to our topic 
analysis, is the subject of future work. 

We did some preliminary investigation into varying µ for 
each query as a function of simple features such as number 
of non-stopwords and mean log frequency of the query 
terms in general English, but the results were inconclusive. 



Run Fields 
Used Terms QE 

parameters 
 

MAP 

cmutuns2500 Title Unigrams No 
expansion 0.2071 

cmutufs2500 Title Unigrams docs=5, 
terms=10 0.2481 

cmuapfs2500 All Phrases docs=5, 
terms=20 0.2843 

 
Table 1: Submitted runs for the GOV2 corpus using TREC 

topics 701-750 and top 10,000 documents.  All runs used 
Dirichlet smoothing with µ = 2500. 

 

We also calculated an oracle run for the all-field topics by 
selecting the individual values for µ giving the best 
performance for each query.  (µ was varied from 500 to 
5000 in increments of 500.)  This oracle run obtained a 
MAP of 0.2618.  The comparable run with best fixed 
µ=2500 obtained a MAP of 0.2304. 

6. CONCLUSIONS 
The GOV2 collection was the largest processed by the 
CMU DIR group to date.  We achieved our main goal for 
this track, which was to obtain a set of baseline results with 
Indri, a new indexing and retrieval component in the 
Lemur Toolkit [2].  These results made basic use of Indri’s 
combined language modeling-based retrieval and inference 
network features.  Indri provides a much richer set of query 
operators than we used for our experiments.  For example, 
it has the ability to build language models for arbitrary 
fields, including fields for document structure.  This should 
prove quite useful for many IR tasks and future work. 

The only significant problem we encountered was the slow 
speed of long, expanded queries on a collection of this size, 
with such queries taking several minutes to complete.  We 
believe this problem had two causes: first, because of 
system constraints, we ended up using an inefficient 
configuration, i.e. federated retrieval with multiple 
collection partitions on a single machine instead of multiple 
machines.  Second, some significant speed improvements 
have since been made in Indri’s query processing. We 
expect speed to be less of an issue in future experiments.  
Other problems, such as handling the wide range of HTML 
in such a large corpus, were relatively minor and an 
expected part of adopting early builds of complex software. 

Overall, Indri proved to be reliable and scalable for this 
task, and we believe it represents a promising new tool for 
future large-scale retrieval experiments. 

 

 Title All 
fields 

Baseline:  Unigrams, no QE, 
Jelinek-Mercer smoothing, 
(λ = 0.4) 

0.1290 0.1734 

+ Dirichlet smoothing 
  Best fixed µ = 2500 0.2016 0.2376 

+ Phrases (bi-grams, tri-grams) 0.1988 0.2188 
+ QE (docs = 5, terms = 10) 
  w/ Unigrams 0.2162 0.2506 

   QE (docs = 5, terms = 20) 
  w/ Phrases 0.2102 0.2304 

   QE (docs = 5, terms = 20) 
  w/ Unigrams 0.2160 0.2524 

 

Table 2: Mean average precision results on WT10g, using 
TREC topics 451 – 550 and top 1000 documents.  
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