
Phrasal Queries with LingPipe and Lucene:

Ad Hoc Genomics Text Retrieval

Bob Carpenter
Alias-i, Inc.

carp@alias-i.com

October 26, 2004

Abstract

The hypothesis we explored for the Ad Hoc task of the Genomics track
for TREC 2004 was that phrase-level queries would increase precision
over a baseline of token-level terms. We implemented our approach us-
ing two open source tools: the Apache Jakarta Lucene TF/IDF search
engine (version 1.3) and the Alias-i LingPipe tokenizer and named-
entity annotator (version 1.0.6). Contrary to our intuitions, the base-
line system provided better performance in terms of recall and precision
for almost every query at almost every precision/recall operating point.

Thesis

We hypothesized that including phrasal terms would improve preci-
sion of TREC-style ad hoc queries. To explore this hypothesis, we
submitted two systems for the ad hoc query task of the genomics track
of the 2004 TREC Conference. The first was a baseline system im-
plementing standard TF/IDF-based search over a tokenized document
collection. The second included quoted phrase-level queries extracted
automatically using statistical models.

Topics and Documents

As with other ad hoc tasks in TREC, the input for evaluation was
a list of topics of a fairly detailed variety. These were gathered from
practicing research biologists and were meant to cover a range of topics.
The first of the fifty used for the 2004 ad hoc genomics task is shown in
Figure 1 (with line breaks inserted in place of some spaces and around
XML text content segments for human readability).

1



<TOPIC>
<ID>1</ID>
<TITLE>Ferroportin-1 in humans</TITLE>
<NEED>

Find articles about Ferroportin-1, an iron
transporter, in humans.

</NEED>
<CONTEXT>
Ferroportin1 (also known as SLC40A1; Ferroportin 1;
FPN1; HFE4; IREG1; Iron regulated gene 1; Iron-regulated
transporter 1; MTP1; SLC11A3; and Solute carrier family 11
(proton-coupled divalent metal ion transporters), member 3)
may play a role in iron transport.

</CONTEXT>
</TOPIC>

Figure 1: Topic 1 for 2004 TREC Ad Hoc Genomics Task

The goal of the evaluation was to find relevant “documents”, in
this case among a ten year subset of completed MEDLINE citations.
These documents were down-converted to ASCII fro the UTF-8 of the
originals. Roughly 4.6 million completed citations were used as the
data set, comprising roughly 9.6 million bytes of data. An example of
a citation is shown in Figure 2.

The fields we indexed are shown in Figure 3. Two of these fields
were assigned by hand by curators at the (United States) National
Library of Medicine (NLM) before marking a citation as completed.
Only completed citations were part of the TREC task. The MeSH fields
contain terms drawn from NLM’s Medical Subject Heading index, a
standardized nomenclature for medicine. The MeSH terms preceded
by asterisks are central topics for the article. The chemical identifiers
and names are drawn from a couple of standardized sources.

Other available information that we did not index includes dates,
journal titles and issues broken out (not shown), dates of labeling and
status of labeling (not shown), names of authors, ISSN of journals, type
of publication, place of publication, etc. We did not use any external
resources such as thesauri or ontologies; only the MeSH terms found
in citations were used as part of documents.

2



PMID- 14757427
TI - The ferroportin disease.
AB - A new inherited disorder of iron metabolism, hereafter

called "the ferroportin disease," is increasingly recognized
worldwide. The disorder is due to pathogenic mutations in the
SLC40A1 gene encoding for a main iron export protein in mammals,
ferroportin1/IREG1/MTP1, and it was originally identified as
an autosomal-dominant form of iron overload not linked to the
hemochromatosis (HFE) gene. It has distinctive clinical features
such as early increase in serum ferritin in spite of low-normal
transferrin saturation, progressive iron accumulation in organs,
predominantly in reticuloendothelialmacrophages, marginal anemia
with low tolerance to phlebotomy. Ferroportin mutations have
been reported in many countries regardless of ethnicity. They may
lead to a loss of protein function responsible for reduced iron
export from cells, particularly reticuloendothelial cells. Now,
the disorder appears to be the most common cause of hereditary
iron overload beyond HFE hemochromatosis.

FAU - Pietrangelo, Antonello
LA - eng
PT - Journal Article
PT - Review
PT - Review, Tutorial
PL - United States
RN - 0 (Cation Transport Proteins)
RN - 0 (metal transporting protein 1)
RN - 9007-73-2 (Ferritin)
SB - IM
MH - Cation Transport Proteins/*genetics
MH - Ferritin/blood
MH - Human
MH - Iron Metabolism Disorders/diagnosis/*genetics/pathology
MH - Iron Overload/diagnosis/etiology/genetics/pathology
MH - Metal Metabolism, Inborn Errors/diagnosis/*genetics/pathology
MH - Support, Non-U.S. Gov’t
SO - Blood Cells Mol Dis 2004 Jan-Feb;32(1):131-8.

Figure 2: Relevant Fields of MEDLINE Citation 14757427

3



Field Desc Boost
PMID PubMed Identifier -
TI Title 4
AB Abstract 1
MH MeSH 2
MH *MeSH 4
RN Chemical Identifiers and Names 1

Figure 3: Citation Fields

Tokenization and Filters

Tokenization for biomedical literature is notoriously problematic, as
illustrated nicely by the three forms taken by the gene in the of-
ficial text of topic 1: “Ferroportin-1”, “Ferroportin1”, and “Ferro-
portin 1”. We employed LingPipe’s default tokenizer for English, the
IndoEuropeanTokenizer. This tokenizer employs a fine-grained tok-
enization that breaks on just about any non-number-internal punctua-
tion, but leaves alpha-numeric sequences intact. For instance, “Ferroportin-
1” becomes three tokens, “Ferroportin”, “-”, and “1”. In contrast,
“Ferroportin1” generates a single token, whereas “Ferroportin 1” gen-
erates two tokens. In retrospect, given the prevalence of this space/no-
space problem, we should have broken on alpha-numeric boundaries,
turning “Ferroportin1” into two tokens.

The Lucene search engine supports tokenization through extensions
of the class lucene.analysis.Analyzer. An analyzer returns a token
stream given a string and the name of a field. We used the same
tokenization for every field of the citation, producing a single field of
results. In so doing, we repeated the content the number of times
specified by the boost column in Figure 3. This is a cheap-and-dirty
way of massaging term frequencies; a cleaner implementation would’ve
worked with a fielded index and fielded queries. The results would
be identical up to some phrasal overlap at boundaries; to avoid such
spurious phrases, we inserted dummy tokens between repetitions of
content, and between the distinct MeSH and chemical terms.

We applied two LingPipe filters to the token streams. First, we
used the LowerCaseFilterTokenizer to convert all characters to low-
ercase in both queries and the index. Second, we applied LingPipe’s
standard stop list using EnglishStopListFilterTokenizer. The full
list of stop terms is available in the documentation.1 We also filtered

1A good candidate for a stop list can be found on the NIH PubMed help page at:
http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html

4



out query tokens consisting only of punctuation. But, we left the punc-
tuation in the index and left the punctuation in compound terms.

Extracting Queries

The topics consist of three distinct sections: title, need and context.
We tokenized each section, and boosted the scores of needs by a factor
of 2 and of the title by a factor of 4. Like the boosting for documents,
these values were chosen using the “wild guess” method, which to its
advantage, requires no training data. We have no idea if fiddling with
the weights helped or hurt performance.

The Lucene query facility allows arbitrary terms to be boosted.
These boost numbers are multiplied into TF-IDF scores before ranking
outputs.

We constructed our Lucene queries programatically, constructing a
Query object out of Term objects. The query object was constructed
without a detour through a string-based query representation and sub-
sequent parsing, though that would have been possible using Lucene’s
built-in query parser. The terms were created by tokenization match-
ing that of indexing. The queries were Lucene BooleanQuery objects,
with the clauses being neither required or forbidden. This lack of pos-
itive/negative marking results in TF-IDF scoring being applied, with
none of the terms being required.

Extracting Phrasal Query Terms

We used our own open source software, LingPipe, to extract so-called
“named entities” from topics. For instance, for the topic listed in
Figure 1, the term “metal ion transporter” is analyzed as a term.2

LingPipe’s entity extraction is based on a Bayesian generative model
that tags each token as being the beginning of a named entity, a con-
tinuation of a named entity, or not in a named entity. In our generative
model, we break the entire sequence probability down using the chain
rule, generating a token/tag pair based on the previous token/tag pairs.

2This example highlights a shortcoming of LingPipe’s current asymmetric model of
entities, which is described below. LingPipe’s best guess is that the term is an atom, which
is guided by the term “metal ion”, which is an atom. Because there are no hierarchical
terms, and because the end of a term is not distinguished very strongly from the beginning,
the last term has too little chance to influence the overall type. This is particularly vexing
for English nouns, where the noun that determines type is typically the last token in a
sequence. The next version of LingPipe will explicitly model the ends of entities as the
same way as the beginnings. (Transporters are, in fact, protein molecules that are involved
in regulating the movement of ions between cells.)

5



History is limited to a finite window of one previous tag and two pre-
vious tokens. The chain rule is used again to predict first the tag
and then the token given the tag. Maximum likelihood estimates are
generated using the labeled training data found in the GENIA cor-
pus.3 These estimates are then interpolated with lower-order models
estimated from the same data. Unknown words are modeld by their
“shape”, such as all-caps, mixed-case, capitalized, alphanumeric, etc.

A first-best hypothesis is extracted using dynamic programming (a
slight generalization of the Viterbi decoder for HMMs to higher or-
der models). Extraction throughput is roughly 100,000 tokens/second,
which is slower than indexing, but much faster than large query re-
trieval ranking. Overall impact on performance for returning 1000
results is less than a tenth of a percent.

In addition to “metal ion transporter”, the phrase “iron transport”
is properly labeled as “other name,” the type assigned to processes
such as transportation. But there were errors in type, such as “Fer-
roportin1” being labeled as an other name rather than a gene. Un-
fortunately, the long phrase “SLC40A1; Ferroportin 1; FPN1; HFE4;
IREG1; Iron regulated gene 1; Iron-regulated transporter 1; MTP1;
SLC11A3” was misrecognized as a DNA region, and “Solute carrier
family 11 (proton-coupled” (with the mismatched parentheses) is la-
beled as a protein family.4 The first topic, with its word salad of ter-
minology, presents a difficult case; other cases for which performance
was better are listed below.

For each phrase found, we included an additional clause in the
query with a cumulative boost of an additional factor of 4. On the
high side, a phrasal query matching a core MeSH term or a term in
the title would be boosted by a factor of 16; a simple token matching
an abstract has a boost factor of 1.

Interestingly, most of the queries were fairly terminologically poor
in that they did not include many interesting named entities. An exam-
ple where the entity recognizer fared well was in the need “Find corre-
lation between DNA repair pathways and oxidative stress.” for which
LingPipe found the relevant terms “DNA repair pathways” and “ox-

3The GENIA corpus, curated by the University of Tokyo, contains 600,000 tokens
of data drawn from MEDLINE abstracts. Sequences of tokens are labeled with tags
representing about 40 types of biologically relevant entity. The GENIA corpus distin-
guishes among molecular types (DNA vs. RNA vs. protein), as well as molecular structure
(molecule family vs. macro-molecular structure vs. molecule vs. sub-region, etc.). In
addition, other entities are included such as cell lines, organisms, and a generic “other”
category often referring to processes.

4Often, named entity extractors apply post-model filters to clean up phrases that are
too long, too short, have mismatched parentheses, etc. We did just that for the BioCreative
2004 named-entity gene extraction task, and it reduced errors by around five or ten percent,
which is a typical result.

6



idative stress”. Other examples of correct terms extracted are “DNA
repair”, “skin-carcinogenesis”, “TOR signaling”, “UV-carcinogenesis”,
“mouse kidney”, “morphological changes”, “gene expression”, “signal-
transducing molecule”, “nerve growth factor pathway”, “Saccharomyces
cerevisiae”, “BCL2-interacting molecules”, “anti-p53 monoclonal an-
tibody DO1”, and even “Sleeping Beauty transposons”. Single token
phrases are also extracted; good examples include “NEIL1”, “Smad4”
and “TGFB”.

Incorrectly extracted terms that were too long included the ones
listed above, as well as “Determine binding affinity”, which should
just be “binding affinity”. Common mistakes include over-running
punctuation, as in “Mental Health Wellness 1 (MWH1”, which should
be “Mental Health Wellness 1” and “MWH1” for the gene and its
acronym.

Incorrectly extracted terms that were too short included “mice” as
opposed to the correct “hairless mice”. In general, LingPipe tends to
err on the side of increased length in suffixes and decreased length in
prefixes.

Missed terms included the “inhibitors” in “Human gene BCL-2
antagonists and inhibitors”, though “Human gene BCL-2 antagonists”
was properly extracted. LingPipe also missed “double-stranded DNA
breaks”, but this noun is not an entity in the GENIA ontology, so this
isn’t a mistake per se.

A difficult case is posed by expressions such as “Glyphosate toler-
ance gene sequence”, which was properly extracted, but contains the
subterm “Glyphosate tolerance” that would also be nice to have in an
ad hoc query. A similar example is presented by “BUB2/BFA1”, which
LingPipe marks as a single phrase. In fact, the two proteins BUB2 and
BFA1 act together as a regulator, although each also has regulatory
properties when found in isolation; we assume the query was about the
joint regulation, and the query found by LingPipe was the correct one.
Unfortunately, the convention of using a “/” to separate proteins in a
complex is not universal; sometimes a comma or hyphen is used.

Several of the topics were rather less entity-specific, such as “Risk
factors for stroke”, from which no entities were extracted.

Held out analysis on the GENIA corpus, which only closely matches
a subset of the MEDLINE abstracts about human blood diseases, in-
dicates a roughly 60 percent precision and recall rate in finding exact
matches with correct lables, and a roughly 80 percent chance of finding
“sloppy matches” as defined for the Message Understanding Conference
(MUC) evaluations. For this task, we do not care about labels here,
but we do care about boundaries. Phrases that are too long wind up
being too restrictive and those that are too short are too permissive.
The performance is thus expected to be somewhere between 60 and 80
percent precision and recall. Our hypothesis was that precision recall

7



errors would tend to be insignificant in ranking citations, whereas re-
call errors would tend to negatively impact precision by missing key
restrictive phrases.

TF-IDF

We used the default TF-IDF weighting in Lucene, as implemented by
the class DefaultSimilarity. Lucene provides a rich mechanism for
monkeying with the TF-IDF scoring factors, but we figured Doug Cut-
ting’s guess was probably better than ours (he developed the Lucene
engine). The default term frequency (TF) implementation takes the
square root of observed frequency. The default inverse document fre-
quency (IDF) implementation takes log(numDocs/(docFreq +1))+1.
Documents are normalized to unit length by dividing each term weight
by the square root of the sum of the squared weights. Boosts are im-
plemented as multiplicative factors.

The upshot of using a standard TF-IDF setup is that misrecognized
phrases that do not show up in a lot of other documents will simply
drop out of the computation. Consider the earlier extra-long term, for
instance.

Execution Speed and Size

The same index was used for both experiments. It took roughly five
hours to produce the index, which also stored the original titles, ab-
stracts, MeSH terms, and chemical names. The resulting size of the
index was approximate 9GB; it’d be much shorter without storing large
parts of the original citations.

Evaluating queries took about 15 minutes to return 1000 documents
for each of the 50 evaluation topics. The time for phrase extraction
was an insignificant fraction of this time, taking less than a second.

Results

The baseline system scored above the median result for almost every
query, and above the phrase-based system for every query. The collec-
tive results are reported in Figure 4, Figure 5, and Figure 6..

Discussion

Our initial hypothesis, that phrasal terms would help with precision,
was fairly thoroughly disproved in the context of the TREC ad hoc

8



Eval Base With Phrases
Retrieved 50000 50000
Relevant 8268 8268
Rel-ret 4635 4140

Figure 4: Unranked Performance

Prec at Recall Base With Phrases
at 0.00 0.8013 0.7387
at 0.10 0.5561 0.5016
at 0.20 0.4886 0.4155
at 0.30 0.4314 0.3594
at 0.40 0.3548 0.2771
at 0.50 0.2792 0.2277
at 0.60 0.2324 0.1956
at 0.70 0.1929 0.1552
at 0.80 0.1478 0.1230
at 0.90 0.0954 0.0943
at 1.00 0.0536 0.616
Average 0.3094 0.2656

Figure 5: Interpolated Recall-Precision and Average Precision

Documents Baseline Phrases
5 docs 0.5800 0.5240

10 docs 0.5380 0.4800
15 docs 0.5293 0.4560
20 docs 0.4960 0.4330
30 docs 0.4627 0.4087

100 docs 0.3458 0.3030
200 docs 0.2572 0.2240
500 docs 0.1515 0.1320

1000 docs 0.0927 0.0828
R-Precision 0.3515 0.3187

Figure 6: Precision at Doc Counts and R-Precision

9



genomics evaluation. Although there are a handful of queries for which
the phrases helped, their impact was otherwise negative.

We are still uncertain why our results were negative, but we can
imagine several possible explanations. Although term extraction is
performing at state-of-the-art levels, this may not be good enough. But
the only way it would have a negative effect is if ill-formed terms were
actually found in some documents and it boosted their scores. Our
qualitative evaluation of term extraction shows that it’s performing as
well as can be expected, and the errors on the long side seem unlikely
to hurt precision.

A more encouraging explanation is that the short lengths of MED-
LINE citations leaves little opportunity for the phrasal terms to disam-
biguate. We believe that with full documents, the chance occurrence
of phrase fragments without the entire phrase showing up will be much
higher. Even so, this does not explain why the phrases didn’t provide
some boost for citations in which they were found, or if they did, why
this didn’t improve performance. A less generous explanation would
be that the terms in phrases are so highly correlated that they are
useless (though this still doesn’t explain why they hurt performance).

A final possibility is that the phrases boosted precision for finding
that phrase, but the true distinguishing features were elsewhere in the
abstracts.

Resources

All of the resources used for carrying out these experiments are avail-
able from the following web sites:

TREC trec.nist.gov
TREC Genomics medir.ohsu.edu/∼genomics
LingPipe www.aliasi.com/lingpipe
Lucene jakarta.apache.org/lucene
GENIA www-tsujii.is.s.u-tokyo.ac.jp/∼genia
MEDLINE www.nlm.nih.gov/databases/databases medline.html
PubMed www.ncbi.nlm.nih.gov/entrez

10


