
Multiple-Engine Question Answering in TextMap 
Abdessamad Echihabi, Ulf Hermjakob, Eduard Hovy, 

Daniel Marcu, Eric Melz, Deepak Ravichandran 
Information Sciences Institute 

University of Southern California 
4676 Admiralty Way, Suite 1001 

Marina del Rey, CA 90292 
{echihabi,ulf,hovy,marcu,melz,ravichan}@isi.edu 

 
 

1. Introduction 
At TREC-2003, TextMap participated in the Main task, which encompassed answering 
the following types of questions: 

• factoid questions; 
• list questions; 
• definition questions. 

In this paper, we overview the architecture of the TextMap system and report its 
performance, as evaluated by the NIST assessors, on each of these tracks. 

2. System architecture 
2.1 Answering factoid and list questions 
The TextMap system that answers factoid questions implements the following pipeline:  
• A question analyzer identifies the expected answer type for the question given as 

input (see Section 3.1 for details). 
• A query generator produces Web- and TREC-specific queries. The query generator 

exploits a database of paraphrases (see Section 3.2). 
• Web queries are submitted to Google and TREC queries are submitted to the IR 

engine Inquery (Callan et al., 1995), to retrieve respectively 100 Web and 100 TREC 
documents. 

• A sentence retrieval module selects 100 sentences each from the retrieved Web and 
TREC documents that are most likely to contain a correct answer.  

• Three distinct answer selection modules (knowledge-, pattern-, and statistical-based) 
each pinpoint the correct answers in the resulting 200 sentences and assign them a 
score (see Section 3.3).  

• A maximum-entropy-based re-ranker is used to combine the outputs of the three 
answer selection modules into a single ranked list (Section 3.4). 

• If the top answer comes from a TREC sentence, the answer is presented to the user. If 
the top answer comes from a Web document, it is retrofitted to the TREC collection. 
When retrofitting fails, the system returns NIL. 



List questions are answered by a system having the same architecture as the system used 
to answer factoid question. The only difference pertains to a simple backend algorithm 
that is used to output not one, but all answers whose score is higher than a given 
threshold.  

2.2 Answering definition questions 
Definition questions are answered by a system that uses many of the components 
described above and some additional ones. It scores answer candidates using the 
following resources: 

• WordNet glosses 
• Collection of 14,414 biographies from biography.com 
• Mike Fleischman’s corpus of 966,557 descriptors of proper people 
• Set of subject-verb, object-verb, subject-copula-object relations 

More details of the QA system that answers definition questions are given in Section 3.5. 
In what follows, we describe in more detail each of the individual components and report 
the performance of our system. 

3. Main Components 
3.1 Question analysis 
After parsing a question, TextMap determines its answer type, or “Qtarget”, such as 
PROPER-PERSON, PHONE-NUMBER, or NP.  We have built a typology of currently 185 
different types, organized into several classes (Abstract, Semantic, Relational, Syntactic, 
etc.).   

3.2 Query generation via reformulation 
To bridge the gap between question and answer sentence wordings, TextMap uses 
paraphrasing. For any given question, TextMap generates a set of high-precision 
meaning-preserving reformulations to increase the likelihood of finding correct answers 
in texts. These reformulations are used to generate more focused TREC and Web queries. 
For example, the question below produces the following reformulations: 

Question: How did Mahatma Gandhi die? 

Reformulation patterns:  

• Mahatma Gandhi died <how>? 

• Mahatma Gandhi died of <what>? 

• Mahatma Gandhi lost his life in <what>? 

• Mahatma Gandhi was assassinated? 

• Mahatma Gandhi committed suicide? 

• … plus 40 other reformulations …   



The fourth reformulation will easily match “Mahatma Gandhi was assassinated by a 
young Hindu extremist,” preferring it over alternatives such as “Mahatma Gandhi died in 
1948.”  
 
The reformulation collection in TextMap currently contains 550 assertions grouped into 
about 105 equivalence blocks.  At run-time, the number of reformulations produced by 
our current system varies from one reformulation (which might just rephrase a question 
into a declarative form) to more than 40. On the TREC-2003 questions, we produced, on 
average, 5.03 reformulations per question. 
 

3.3 Answer selection 

3.3.1 Knowledge-based answer selection 
The knowledge-based answer selection module uses the CONTEX parser (Hermjakob, 1997; 
2001), a decision tree based deterministic parser, which has been enhanced for question 
answering by an additional treebank of 1,200 questions, named entity tagging that among other 
components uses BBN’s IdentiFinder (Bikel et al., 1999), and a semantically motivated parse tree 
structure that facilitates matching for paraphrasing and of question/answer pairs. Answer 
selection is guided by the degree of matching at the syntactic/semantic level between question 
and answer parse trees and several additional heuristics that penalize answers for a variety of 
reasons, including: 

• Qtarget match factor:   Q: How long did the Manson trial last?  Semantic mismatch: 20 miles 

• Vagueness penalty:   Q: Where is Luxor?  Too vague: on the other side 

• Negation penalty:  Q: Who invented the electric guitar?  Negation: Fender did not invent the 
electric guitar. 

The knowledge-based answer selection module uses a limited amount of external 
knowledge to enhance performance: the WordNet hierarchy; internal quantity and 
calendar conversion routines; and abbreviation routines. See (Echihabi et al., 
forthcoming) for a detailed description. 

3.3.2 Pattern-based answer selection 
The pattern-based answer selection module uses a set of automatically learned patterns 
(Ravichandran and Hovy, 2002). The learning proceeds in two steps:  

1. Given a Qtarget from the TextMap ontology (a relation such as BIRTHYEAR), 
and a few instances of <Question; Answer> pairs such as (NAME_OF_PERSON, 
BIRTHYEAR), extract from the web all the different patterns (TEMPLATEs) that 
contain such a pair. 

2. Calculate the precision of each pattern and keep the patterns of high precision. 
For example, for BIRTHYEAR, some of the patterns learned by the system and the 
precision of those patterns are: 
 
Prec.  #Correct  #Found  Pattern 
1             122       122         <NAME> (<BD>- <DD> 
1               15         15         <NAME> (<BD> - <DD>) , 
1               13         13         , <NAME> (<BD> - <DD>) 



 0.9166     11         12        <NAME> was born on <BD> in 
 0.9090     10         11        <NAME> : <BD> - <TIME> 
 0.6944     25         36        <NAME> was born on <BD> 
 
Once a set of patterns is learned, the pattern-based answer selection system uses them in 
order to find possible answer candidates. The set of potential answers is sorted into a 
ranked list using a maximum-entropy-based framework, in the style of Ittycheriah (2002). 
The features used by the system are the type of pattern; the frequency of an answer; the 
expected answer type; the word-overlap between the question and the answer sentence. 
The pattern-based ranker was trained using the 1192 questions in the TREC 9 and TREC 
10 data sets for training and the 500 questions in the TREC 11 data set for cross-
validation. 

3.3.3 Statistics-based answer selection 
The statistics-based answer selection module implements a noisy-channel model for 
answer selection - see (Echihabi and Marcu, 2003) for details. This model explains how a 
given sentence SA that contains an answer sub-string A to a question Q can be rewritten 
into Q through a sequence of stochastic operations.  Given a corpus of question-answer 
pairs (Q, SA), one can train a probabilistic model for estimating the conditional 
probability P(Q | SA).  Once the parameters of this model are learned, given a question Q 
and the set of sentences Σ returned by the IR engine, we find the sentence Si ∈ Σ and an 
answer in it Ai,j by searching for the Si,Ai,j

 that maximizes the conditional probability  
P(Q | Si,Ai,j

).  The probability model is trained using off-the-shelf parameter estimation 
package that was developed for statistical machine translation.  
                

 

Test 
question 

Q 

Si,A
i,j

 

QA Model 
trained 
using 
GIZA 

Sx,A
x,y

= argmax (P(Q | Si,A
i,j

)) 

A = Ax,y 

GIZA

S1
 

Sm 

S1,A
1,1 

S1,A
1,v 

Sm,A
m,1

Sm,A
m,w 

IR

          Figure 1: The noisy-channel approach to question answering. 
 
For training, we use TREC 9 and TREC 10 questions (1091) with answer sentences 
(18618) automatically generated from the corresponding judgment sets. We also use 
questions (2000) from http://www.quiz-zone.co.uk with answer sentences (6516) semi-



automatically collected from the web and annotated for correctness by a linguist1.  To 
estimate the parameters of our model, we use GIZA, a publicly available statistical 
machine translation package (http://www.clsp.jhu.edu/ws99/projects/mt/).  
Figure 1 depicts graphically the noisy-channel based answer selection. 
 

3.4 Combining the output of multiple answer-selection modules 
Simple inspection of the outputs produced by our individual components on a 
development corpus of questions from the TREC-2002 collection revealed several 
consistent patterns of error:  
• The pattern-based answer selection module performs well on questions whose 

Qtargets are recognizable named entities (NAMES, ORGANIZATIONS, 
LOCATIONS).  However, this module performs less well on questions with more 
general QTargets (NPs, for example). 

• The statistics-based answer selection module does not restrict the types of the answers 
it expects for a question Qtargets: it assumes that any semantic constituent can be an 
answer.  As a consequence, many of the answers produced by this module may not be 
exact. 

• Overall, all modules made some blatant mistakes.  The pattern-based and statistics-
based modules in particular sometimes select as top answers strings like “he”, “she”, 
and “it”, which are unlikely to be good answers for any factoid question one may 
imagine. 

To address these problems, we decided to use the maximum entropy framework to re-
rank the answers produced by the answer selection modules and root out the blatant 
errors. For this purpose, we have used a set of 48 feature functions, which can be 
classified into the following categories: 
1. Component-specific: Scores from the individual answer selection module and associated 

features like the rank of the answer and the presence/absence of the answers produced by the 
individual answer selection module. We also add features based on the scores produced by 
the IR module and word overlap between question and answers. 

2. Redundancy-specific: Count of candidate answers in the collection. We also add 
additional features for the logarithm and the square root of the counts. 

3. Qtarget-specific: It was observed that some of the answer selection modules answer 
certain Qtargets better than others.  We therefore model a set of features wherein we 
combine certain classes of Qtarget with the score of the individual answer selection 
module.  This enables the maximum entropy model to assign different model 
parameters to different types of questions and answer selection module. 

4. Blatant-error-specific: We model a set of features based on the development set in an 
iterative process.  These include (negative) features such as “answers usually do not 
have personal pronouns” and “WHEN questions usually do not contain day of the 
week as answer”, among others. 

 

                                                 
1 We are grateful to Miruna Ticrea for annotating the question-answer pairs. 



3.5 Special modules/resources for answering definition questions 
 
The question-answering track for TREC-2003 included a new definition subtask, in 
which definition questions such as “Who is Aaron Copland?”, “What is a golden 
parachute?”, and “What is Bausch&Lomb?” had to be answered by a set of relevant 
information nuggets. 
 
Given a question like “Who is Aaron Copland?”, the challenge here is to identify relevant 
sentences such as 

• Aaron Copland's death comes a definitive biography of America's most important 
composer 

• Copland was born in 1900, the son of Russian Jewish immigrants (original name: 
Kaplan) 

in a larger set of sentences that the IR module extracted as potential candidates: 
• So she took me to meet Aaron Copland, who was then in his early thirties. 
• Each recipient of the honor, known as the Aaron Copland Awards, will get the run 

of the place with a spouse or partner, but no children or pets are allowed. 
 
We built and used several resources to identify relevant information 

3.5.1 Collection of Biographies 
 
We were able to obtain 14,414 biographical entries from http://www.biography.com, 
which we used to extract core biographical information for specific people as well as 
identify words that are indicative of biographical information. 
 
We built a list of 6,640 words that occur at least five times in biographies and occur much 
more frequently in biographical text (biography.com) than in standard text (Wall Street 
Journal). The top 20 terms (along with their “strength”) are: 
  494.0 Nobel       251.4 studied  188.3 edited  
  467.5 Oxford       247.0 travelled  187.5 Painter  
  406.0 poems       209.0 poem   183.0 Angeles 
  384.0 knighted      206.0 Labour  181.7 Physicist  
  290.0 Info       204.0 Composer  171.9 War   
  278.0 Ballet       194.5 St   169.2 commanded 
  257.0 Broadway      188.7 poetry   
 
Ten terms of lesser strength that nevertheless boost the score in the Copland examples:  
  49.5 Symphony      22.3 son   12.9 advocate 
  47.4 teacher         18.7 achievements  10.1 Jewish 
  42.5 Music        16.5 immigrant 
  34.7 Oscar       13.2 established 
   
The second use of the biography collection was to boost answer candidates with words 
from core biography terms for the specific person in question: 

• Copland , Aaron 1900 -- 1990 is a Composer; born in New York City. 



 

3.5.2 Collection of Descriptors for Proper People 
 
TextMap uses a slightly cleaned-up version of Michael Fleischman’s list of 966,557 
descriptor entries for proper people (Fleischman et al., 2003) such as 
       10 composer , composer , composer , Aaron Copland 
         2 witness , witness , witness , Aaron Copland 
         1 musician , musician , Pulitzer Prize winning musician , Aaron Copland 
         1 musician , musician , musician , Aaron Copland 
         1 composer , composer , late composer , Aaron Copland 
         1 composer , composer , classical composer , Aaron Copland 
boosting the score of sentences containing descriptors such as “composer” or “Pulitzer 
Prize winning musician”.  
 

3.5.3 WordNet 
 
If the anchor term of the definition question (e.g. “Aaron Copland”) has a WordNet gloss 
(Miller and Fellbaum, 1998), TextMap gives credit for sentences that contain words and 
expressions that overlap with that WordNet gloss (as underlined in the example below): 
  
      WordNet gloss:  Copland, Aaron Copland -- United States composer (1900-1990) 
 

3.5.4 Semantic-Relationship Patterns 
 
TextMap gives credit when the anchor of a question is found to match one of currently 
110 semantic relations, for example when the question anchor is the logical subject of 
verbs like “to compose”, “to write”, “to teach”; when it is the logical object of verbs like 
“to bear” (to be born); when it is in a subject-copula-object relationship with a head noun 
like “composer”, “advocate”, “son” (or any other relative). 

• Aaron Copland composed “Fanfare for the Common Man.” 
• Aaron Copland was born in 1900, the son of Russian Jewish immigrants 

 

3.5.5 Duplicate Removal and Answer Cutoff 
 
Duplicates are avoided by giving credit only for those words, expressions and relations 
that have not yet been observed in higher-scoring information nuggets. 
 
To determine the number of answer nuggets for a given question, we start with a very 
low threshold score and then linearly increase the threshold for each answer, eliminating 
answers with a score lower than the rising threshold. This mechanism keeps the number 
of answers in a reasonable range while allowing more answers for questions with many 



high-scoring answer candidates. This allowed our system to provide over 20 nuggets for 
questions such as “Who is Bill Bradley/Aaron Copland/Andrew Carnegie?” while 
limiting itself to as few as 3 answers questions such as “What is Iqra/El Shaddai/ 
Restorative Justice?” for which the system found fewer promising information nuggets. 
 
For the definition questions in TREC-2003, our system returned an average of 12.2 
answers and 1663.1 bytes per question. 
 

4. Evaluation Results 
 
In the official TREC evaluation, TextMap scored 33.7% for factoid questions, 11.8% for 
list questions, and 46.1% for definition questions, resulting in a composite score of 31.3% 
We also performed the following three sets of experiments with the Web as our corpus. 

1. Maximum Entropy re-ranking performed on individual answer selection modules: In 
this experiment, we turn off all the features in any answer selection module that 
depends on another answer selection module and we use for re-ranking only the top 
50 answers supplied by one answer selection component.  Thus this experiment 
enables us to assess the impact separately on each individual answer selection module 
of redundancy-, Qtarget-, and blatant-error-specific features, as well as improved 
weighting of the features specific to each module.  

2. Maximum Entropy re-ranking on all answer selection modules: In this experiment we 
add all the features described in Section 5.3 and test the performance of the combined 
system after re-ranking.  Re-ranking is performed on the answer set that results from 
combining the top 50 answers returned by each individual answer selection module. 
This experiment enables us to assess whether the ME framework enables us to better 
exploit strengths specific to each answer selection module. 

3. Feature Selection: Since we have only 200 training examples and almost 50 features, 
the training is likely to be highly prone to over-fitting.  To avoid this problem we 
apply feature selection as described in (Della Pietra et al., 1996).  This reduces the 
number of features from 48 to 31. 

 
Knowledge-Based  Pattern-Based Statistical-Based Metric 

Base   Base 
followe
d by 
ME re-
ranking 

Base  Base 
followe
d by 
ME re-
ranking 

Base Base 
followe
d by 
ME re-
ranking 

Base from 
all 
systems 
followed 
by ME re-
ranking 
(no 
feature 
selection) 

Base from 
all 
systems 
followed 
by ME re-
ranking 
(with 
feature 
selection) 

Top 
answer  

35.83% 45.03% 25.18% 30.50% 21.30% 32.20% 46.37% 47.21% 

Top 5  57.38% 56.41% 35.59% 43.09% 31.23% 40.92% 57.62% 57.62% 

MRR 43.88 49.36 28.57 35.37 24.83 35.51 51.07 51.27 

             Table 1. Performance of various answer selection modules in TextMap,  
                            an end-to-end QA system. 
 



Table 1 summarizes the results: it shows the percentage of correct, exact answers 
returned by each answer selection module with and without ME-based re-ranking, as well 
as the percentage of correct, exact answers returned by an end-to-end QA system that 
uses all three answer selection modules together.  Table 1 also shows the performance of 
these systems in terms of percentage of correct answers ranked in the top 5 answers and 
the corresponding MRR scores. 
 
The results in Table 1 show that appropriate weighting of the features used by each 
answer selection module as well as the ability to capitalize on global features, such as the 
counts associated with each answer, are extremely important means for increasing the 
overall performance of a QA system.  ME re-ranking led to significant increases in 
performance for each answer selection module individually.  When measured with 
respect to the ability of our system to find correct, exact answers when returning only the 
top answer, it accounted for 14.33% reduction in the error rate of the knowledge-based 
answer selection module; 7.1% reduction in the error rate of the pattern-based answer 
selection module; and 13.85% reduction in the error rate of the statistical-based answer 
selection module.  Combining the outputs of all systems yields an additional increase in 
performance; when over-fitting is avoided through feature selection, the overall reduction 
in error rate is 3.96%.  This corresponds to an increase in performance from 45.03% to 
47.21% on the top-answer accuracy metric. 
The inspection of the weights computed by the ME-based feature selection algorithm 
shows that our log-linear model was able to lock and exploit strengths and weaknesses of 
the various modules.  For example, the weight learned for a feature that assesses the 
likelihood of the pattern-based module to find correct answers for questions that have 
QUANTITY as a Qtarget is negative, which suggests that the pattern-based module is not 
good at answering QUANTITY-type questions.  The weight learned for a feature that 
assesses the likelihood of the statistics-based module to find correct answers for questions 
that have an UNKNOWN or NP Qtarget is large, which suggests that the statistical 
module is better suited for answering these types of questions.  The knowledge-based 
module is better than the others in answering QUANTITY and DEFINITION questions.   
These results are quite intuitive: The pattern-based module did not have enough 
QUANTITY-type questions in the training corpus to learn any useful patterns.  The 
Statistics-based module implemented here does not explicitly use the Qtarget in answer 
selection and does not model the source probability of a given string being a correct 
answer. As a consequence, it explores a much larger space of choices when determining 
an answer compared to the other two modules.  
At the moment, the knowledge-based module yields the best individual results. This is 
not surprising given that it is a module that was engineered carefully, over a period of 
three years, to accommodate various types of Qtargets and knowledge resources.  Many 
of the resources used by the knowledge-based module are not currently exploited by the 
other modules: the semantic relations identified by CONTEX; the ability to exploit the 
paraphrase patterns and advanced forms of reformulation for answer pinpointing; the 
external sources of knowledge (WordNet; abbreviation lists; etc.); and a significant set of 
heuristics (see Section 2.4).  
Our results suggest that in order to build good answer selection modules, one needs to 
both exploit as many sources of knowledge as possible and have good methods for 



integrating them. The sources of knowledge used only by the knowledge-based answer 
selection module proved to have a stronger impact on the overall performance of our 
answer selection systems than the ability to automatically train parameters in the pattern- 
and statistics-based systems, which use poorer representations. Yet, the ability to properly 
weight the contribution of various knowledge resources was equally important. For 
example, Maximum Entropy naturally integrated additional features into the knowledge-
based answer selection module; a significant part of the 9.2% increase in correct answers 
reported in Table 1 can be attributed to the addition of redundancy features, a source of 
knowledge that was unexploited by the base system. 
 

References  
Bikel, D., R. Schwartz, and R. Weischedel.  1999.  An Algorithm that Learns What’s in a Name.  Machine 

Learning—Special Issue on NL Learning, 34, 1–3. 

Callan, J.P., W.B. Croft, and J. Broglio. 1995. "TREC and Tipster Experiments with Inquery. Information 
Processing and Management 31(3), 327-343. 

Echihabi, A., U. Hermjakob, E. Hovy, D. Marcu, E. Melz, D. Ravichandran. 2003. How to Select an 
Answer String. Forthcoming. 

Echihabi, A., and D. Marcu. 2003. A Noisy-Channel Approach to Question Answering. Proceedings of the 
41st Meeting of the Association for Computational Linguistics (ACL), July 7-12, Sapporo, Japan. 

Fellbaum, C. (Editor); G. Miller (Preface). 1998. WordNet: An Electronic Lexical Database. MIT Press. 
http://www.cogsci.princeton.edu 

Fleischman, M., E. Hovy and A. Echihabi. 2003. Offline Strategies for Online Question Answering: 
Answering Questions Before They Are Asked. Proceedings of the 41st Meeting of the Association for 
Computational Linguistics (ACL), July 7-12, Sapporo, Japan. 

Hermjakob, U. 1997. Learning Parse and Translation Decisions from Examples with Rich Context.  Ph.D. 
dissertation, University of Texas Austin. file://ftp.cs.utexas.edu/pub/mooney/papers/hermjakob-
dissertation-97.ps.gz.  

Hermjakob, U., A. Echihabi, and D. Marcu. 2002. Natural Language Based Reformulation Resource and 
Web Exploitation for Question Answering. Proceedings of the TREC-11. NIST, Gaithersburg, MD. 

Hovy, E.H., U. Hermjakob, C.-Y. Lin, and D. Ravichandran. 2002. Using Knowledge to Facilitate 
Pinpointing of Factoid Answers. Proceedings of the COLING-2002 Conference. Taipei, Taiwan.  

Ittycheriah, A. 2001. Trainable Question Answering System. Ph.D. Dissertation, Rutgers, The State 
University of New Jersey, New Brunswick, NJ. 

Ravichandran, D. and E.H. Hovy. 2002. Learning Surface Text Patterns for a Question Answering System. 
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL). 
Philadelphia, PA 41–47. 

 
 


	Multiple-Engine Question Answering in TextMap
	1. Introduction
	2. System architecture
	
	2.1 Answering factoid and list questions
	2.2 Answering definition questions


	3. Main Components
	
	3.1 Question analysis
	3.2 Query generation via reformulation
	3.3 Answer selection
	3.3.1 Knowledge-based answer selection
	3.3.2 Pattern-based answer selection
	3.3.3 Statistics-based answer selection
	3.4 Combining the output of multiple answer-selection modules
	3.5 Special modules/resources for answering definition questions
	3.5.1 Collection of Biographies
	3.5.2 Collection of Descriptors for Proper People
	3.5.3 WordNet
	3.5.4 Semantic-Relationship Patterns
	3.5.5 Duplicate Removal and Answer Cutoff


	4. Evaluation Results
	References

