
Relevance Propagation for Topic Distillation
UIUC TREC-2003 Web Track Experiments

Azadeh Shakery, ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract

In this paper, we report our experiments on the Web Track
TREC-2003. We submitted five runs for the topic distilla-
tion task. Our goal was to evaluate the standard language
modeling algorithms for topic distillation, as well as to
explore the impact of combining link and content infor-
mation.

We proposed a new general relevance propagation
model for combining link and content information, and
explored a number of specific methods derived from the
model. The experiment results show that combining link
and content information generally performs better than
using only content information, though the amount of im-
provement is sensitive to the document collection and tun-
ing of parameters.

1 Introduction

We participated in the topic distillation task of TREC-
2003 Web Track with two goals:

1. Evaluating our basic language modeling algorithms
for topic distillation.

2. Exploring how to effectively combine the link infor-
mation with the content information.

The reports about this task from TREC-2002 seem to
indicate that a standard content-based retrieval algorithm,
such as Okapi, performs very well for topic distillation.
So we decided to test how a basic language modeling ap-
proach would perform. Specifically, we used the standard
query likelihood method with Dirichlet prior smoothing
[8] as well as the two-stage language modeling algorithm,
which is supposed to tune the parameters automatically
according to the query [9].

Intuitively, the link information may provide some
clues as to whether a page is a key resource or not. It
is thus interesting to explore how we may combine the
link information with the content information to improve
the accuracy in finding key resources. We propose a new
general relevance propagation model for combining link
information with the content information. The relevance
propagation model naturally captures the intuition that a

web page’s value depends on the page’s content value
(self relevance) as well as the values of all the pages that
are linked to this page (through either inlinks or outlinks).
It allows every page to propagate its self relevance value to
the neighboring pages through links to generate a “hyper-
relevance” value for each page.

We consider several interesting special cases of this
general relevance propagation model, and derive several
specific methods for combining link information with
content information. We use the query likelihood method
with Dirichlet prior smoothing as well as the two-stage
smoothing for computing the self relevance value of a
page (solely based on the content). We then apply
these different propagation methods to propagate every
page’s self relevance value along links to obtain a hyper-
relevance value for each page. The hyper-relevance val-
ues are used to produce the final ranking for selecting key
resources.

The experiment results show that combining link and
content information generally performs better than using
only content information, though the amount of improve-
ment is sensitive to the document collection and tuning of
parameters.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly describe the language modeling al-
gorithms that we experimented with. In Section 3, we
present the general Relevance Propagation Model and
three specific propagation methods. In Section 4, we
briefly discuss how to implement the general relevance
propagation model. In Section 5, we analyze the results
of our experiments on TREC-2002 and TREC-2003 data.
Finally, in Section 6, we give the conclusions and future
research directions.

2 Language Modeling Algorithms

Our basic content-based retrieval algorithm is the
Kullback-Leibler (KL) divergence between the query lan-
guage model and the document language model [1, 7].
This method is a generalization of the query likelihood re-
trieval method proposed in [5] and can support feedback
more naturally than the query likelihood method. In this
retrieval method, in order to compute a score for a doc-
ument w.r.t. a query, we first compute a query language
model and a document language model, and then compute

1



the KL-divergence of these two models. The main issue
in computing the document language model is smoothing,
and we explore two smoothing methods – Dirichlet prior
and two-stage smoothing. We also explore two different
ways of computing a query language model, one using
the query text alone and one using both the query text and
some pseudo feedback documents. The details of these
methods can be found in [10].

From these different combinations, we decide to use the
following approaches as our baseline “content only” runs:

1. Dirichlet Prior Smoothing, no feedback: This is
the simplest language modeling approach.

2. Two-stage smoothing, mixture model feedback:
This is a relatively sophisticated language modeling
approach.

3 Relevance Propagation Model

The results of TREC-2002 Web Track did not seem to fa-
vor approaches combining link and content information.
The best official results were from Tsinghua university
[11]; they explored the use of out-degree, as well as an-
chor text to find key resources. What they found was that
anchor-text was useful, but out-degree was not. The sec-
ond and third best results on TREC-2002 Web Track were
from City University [2] and Chinese-Academy [6] re-
spectively. None of these groups used the link information
in finding the key resources.

However, intuitively, the content similarity of a page to
a query, on its own, may not be sufficient for selecting
a key resource, and the link information can be useful in
finding key resources. A good resource is a page whose
content is related to the query topic, and which has links
to and/or from other related resources. So two factors
are important in selecting good resources: the content of
the page and the relevance of the pages which have links
to/from the page.

Motivated by these observations, we propose a new
general relevance propagation model for combining link
and content information. Specifically, We define the
“hyper-relevance” score of each page as a function of
three variables, the content similarity of the page to the
query (“self relevance”), a weighted sum of the hyper-
relevance scores of the pages that point to the page, and a
weighted sum of the hyper-relevance scores of the pages
that are pointed to by the page. Formally, the relevance
propagation model can be written as :

h(p) = f(S(p),
�

pi→p

h(pi)wI(pi, p),
�

p→pj

h(pj)wO(p, pj))

where h(p) is the hyper-relevance score of page p, S(p) is
the content similarity between the page p and the query
(i.e., “self relevance”), and wI and wO are weighting
functions for in-link and out-link pages, respectively.

In principle, the choice of function f could be arbitrary.
An interesting choice is a linear combination of the vari-

ables shown below:

h(p) = αS(p) + β
∑

pi→p

h(pi)wI (pi, p)

+ γ
∑

p→pj

h(pj)wO(p, pj))

α + β + γ = 1

The hyper-relevance scores can be computed iteratively
until they converge to a limit, which is the final score of
the page for ranking; more detail is presented in Section 4.

We now consider three special cases of this general rel-
evance propagation model. Each special case corresponds
to some reasonable user behavior.

3.1 Weighted In-Link

This model of user behavior is quite similar to the model
of PageRank [4], except that it is not query-independent.
The random surfer is given a start page at random. He
keeps traversing links until he gets bored and starts from
another random page. The probability that the random
surfer visits a page is its hyper-relevance score.

This model has some characteristics which distinguish
it from PageRank. First, it works on a subset of pages
which are in the working set, rather than working on the
whole set of data. (The details of constructing the working
set is given in section 4.2) One of the properties of pages
in the working set is that their content similarity to the
query is above a threshold, so they can not be completely
unrelated to the query. Second, the probability that the
random surfer traverses an edge is proportional to the sim-
ilarity of the target page and the query. That is, it is more
probable that the user traverses and edge which leads to
a more similar page, than jumping to a less similar page.
Besides, when the random surfer gets bored, it jumps to
new pages based on their similarity to the query.

This behavior can be formally modeled as follows. In
each iteration, the new score of each page is computed as:

h(p) = αS(p) + (1 − α)
∑

pi→p

h(pi)w(pi → p)

w(pi → p) ∝ S(p)

3.2 Weighted Out-Link

In this model, we assume that given a page to a user, he
reads the content of the page with probability α and he
traverses the outgoing edges with probability (1−α). We
also assume that it is more likely that the user traverses
an edge that leads to a page whose content-similarity is
higher.

Formally, we compute the hyper-relevance of each page
iteratively using:

h(p) = αS(p) + (1 − α)
∑

p→pj

h(pj)w(p → pj)

2



w(p → pj) ∝ S(pj)

In each iteration, the hyper-relevance of each page is com-
puted as a combination of its self-relevance and the hyper-
relevance of the pages that it points to. The pages that
are linked from a page do not have the same impact on
its weight. Pages whose contents are more similar to the
query are assumed to have more impact on the score of the
page than those which are less similar. This effect is indi-
cated in w(p → pj). The hyper-relevance scores of pages
are computed iteratively until they converge to a value,
which are used to rank the pages.

3.3 Uniform Out-Link

In this special case, we assume that at each page, the user
reads the content of the page, and with probability (1−α)
he reads all the pages that are linked from the page. So
the score of each page will be equal to a combination of
its self relevance and the scores of all its linked pages.

Formally the hyper-relevance of each page is computed
iteratively. In each iteration, the hyper-relevance of each
page is:

h(p) = S(p) + (1 − α)
∑

p→pj

h(pj)

4 Implementation Issues

4.1 Preprocessing

We indexed all the web pages before dealing with queries.
We used the Lemur toolkit for document indexing [3]. For
document tokenization, we used the Fox stopword list and
Porter stemmer.

4.2 Constructing the Working Set

We do not run our experiments on the whole set of data.
Instead, for each query, we first construct a working set of
pages and then find the top ranked pages among the pages
of this subset.

To construct the working set, we first find the top
100000 pages which have the highest content similarity
to the query from the whole collection of pages. We as-
sume that the pages that are not among these pages can not
be key resources for the given query. From these 100000
pages, a small number (about 200) of the most similar
pages are selected to be the core set of pages. We then ex-
pand the core set to the working set by adding the pages
that are among the 100000 pages and which point to the
pages in the core set or are pointed to by the pages in the
core set. We then run our experiments on these working
sets. Note that each working set is specific to a query.

4.3 Computing the Hyper-relevance Values

In order to be able to compute the scores efficiently, we
should come up with a way to find the hyper-relevance

scores easily and in a feasible amount of time. In our im-
plementation, we use matrix multiplication iteratively to
compute the scores. We can use existing matrix multipli-
cation methods to speed up the computation process.

Suppose that query Q and parameters are given. Our
goal is to compute the limit hyper-relevance scores. To
this end, we construct a square matrix Un×n where n is
the number of pages in the working set.

To construct the matrix, we first set all the entries to
zero (uij = 0, 1 ≤ i, j ≤ n). We then add the influence of
out-links: for each 1 ≤ i, j ≤ n, we add β × w(pi → pj)
to the entry uij . Then we add the influence of in-links by
adding γ × w(pi → pj) to the entries uji. The only thing
that remains is to add the effect of self content similarity.
To add this effect, we add α × S(pi) to all the entries
uij , 1 ≤ j ≤ n.

We then construct a vector Hn of hyper-relevance
scores. At the beginning, we set all the entries in H to
be 1

n
. The vector H should maintain the property that the

sum of all the entries equal to one in every step.
In each step, we multiply U by H and we normalize the

H vector. Each entry hi in H corresponds to the hyper-
relevance value of page pi. It is easy to show that after
multiplication, the hyper-relevance values are updated ac-
cording to the general relevance propagation model.

If we do the multiplication and normalization itera-
tively, the hyper-relevance scores will converge to a limit,
which is the final score we use for sorting results.

5 Experiment Results

5.1 Preliminary Experiments

LinksRun P@10 Content
In Out

Dir. Base 0.255
√

Dir + W. IN 0.267
√ √

Dir + W. OUT 0.265
√ √

Dir + U. OUT 0.265
√ √

Table 1: Experiments on TREC-2002 Data

The results of our algorithms on TREC-2002 data were
quite promising. We explored the three presented meth-
ods, as well as a couple of other ways of propagating the
relevance scores, and all the methods outperformed the
baseline content-only language modeling method.

Table 5.1 summarizes our experiments on TREC-2002
data. Figure 1 shows the results of our algorithms com-
pared to the baseline method.

As can be seen from the chart, all the methods have
improvements over baseline.

Uniform out-link always perform better than baseline,
while Weighted out-link has improvements for α > 0.2
and Weighted in-link has improvements for α > 0.7.

3



0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
 a

t 1
0 

do
cs

alpha

BaseLine (Content Only)
Weighted In-Link

Weighted Out-Link
Uniform Out-Link

Figure 1: Experiments on TREC-2002 Data

5.2 Official TREC-2003 Results

Table 5.2 summarizes our experiments on TREC-2003
data. The second column in the table is precision at 10
for the submitted runs, while the third column shows pre-
cision at 10 when the parameters are tuned to get the op-
timal results.

P@10 LinksRun
α = 0.8 α = 0.1

Cont.
In Out

Dir. Base 0.054∗ 0.054
√

Dir+W. In 0.058∗ 0.066
√ √

Dir+W. Out 0.054∗ 0.072
√ √

Dir+U. Out 0.054∗ 0.054
√ √

2s Base 0.064∗ 0.064
√

2s+W. In 0.066 0.078
√ √

2s+W. Out 0.062 0.082
√ √

2s+U. Out 0.062 0.062
√ √

Table 2: Experiments on TREC-2003 Data
∗ : Submitted Runs

Unlike our results on TREC-2002 data, our experi-
ments on TREC-2003 data were not that promising. Fig-
ure 2 shows the results of our algorithms on TREC-2003
data. We see that for a majority settings of the parame-
ter, the weighted out-link approach actually improves the
performance clearly, but the α value that we obtained by
training on the 2002 data corresponds to a bad setting
for TREC-2003. When we optimize the parameter α on
the TREC 2003 test set, both the weighted in-link and
weighted out-link methods outperform the baseline.

As can be seen from the chart, the baseline method did
not give good results on this year’s data and although the
proposed algorithms improved the ranking a bit, the over-
all precision was not good.

Comparing our two baseline runs (i.e., “2s Base”and
“Dir Base”), we see that the two-stage smoothing coupled
with mixture model for feedback performs significantly
better than the the Dirichlet prior smoothing, confirming

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
 a

t 1
0 

do
cs

alpha

BaseLine (Content Only)
Weighted In-Link

Weighted Out-Link
Uniform Out-Link

Figure 2: Experiments on TREC-2003 Data

the effectiveness of two-stage smoothing and dictionary
based feedback.

5.3 Discussion

We tried to find the reason for our poor results for this
year’s task. One difference between TREC-2002 data and
TREC-2003 data is the number of relevant documents
for each query. The average number of relevant docu-
ments per query is 31.48 for TREC-2002, while it is only
10.32 for TREC-2003 data. To find out whether this is
a reason for our poor performance. We do experiments
on two subsets of queries: a selected subset of queries
from TREC-2002 whose average number of relevant doc-
uments is smaller than the average over all the queries and
a selected subset of queries from TREC-2003 whose av-
erage number of relevant documents is larger than the av-
erage over all queries.

Our subset of queries from TREC-2002 data contains
25 queries with 10.48 relevant documents on average.
The subset of queries from TREC-2003 data contains 20
queries with 19 relevant documents on average.

We tried our algorithms on these two subsets of queries.
Figure 3 and Figure 4 show the results for the TREC-2002
subset and TREC-2003 subset, respectively.

As can be seen from Figure 3, the performance is not
as good as the performance we obtained using the whole
set of queries, but is not as poor as the results we obtained
for TREC-2003 either.

On the other hand, Figure 4 shows that the perfor-
mance is better than the performance we obtained using
the whole set of queries, but is not as good as the TREC-
2002 results.

What we can conclude is that small number of relevant
documents per query can be a factor in our poor perfor-
mance in TREC-2003, but there should be other reasons
as well, that we are trying to find out.

4



0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
 a

t 1
0 

do
cs

alpha

BaseLine (Content Only)
Weighted In-Link

Weighted Out-Link
Uniform Out-Link

Figure 3: Experiments on the Subset of TREC-2002 Data

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
 a

t 1
0 

do
cs

alpha

BaseLine (Content Only)
Weighted In-Link

Weighted Out-Link
Uniform Out-Link

Figure 4: Experiments on the Subset of TREC-2003 Data

6 Conclusions and Future Direc-
tions

We explored two language modeling approaches for the
topic distillation task: (1) basic query likelihood method
with Dirichlet prior smoothing, and (2) two-stage smooth-
ing with mixture model feedback. The results show
that the the two-stage smoothing with feedback signifi-
cantly outperforms the query likelihood method, confirm-
ing the effectiveness of two-stage smoothing [9] and mix-
ture model feedback method [7]

We also proposed a new general relevance propagation
model for combining link and content information, and
explored a number of specific methods derived from the
model. The experiment results show that combining link
and content information generally performs better than
using only content information, though the amount of im-
provement is sensitive to the document collection and tun-
ing of parameters.

For the future work, we plan to do more experiments to
find out what factors affect the performance of our algo-
rithms. We will also explore how to tune the parameters
for obtaining the optimal results.

References

[1] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of SIGIR’2001, pages 111–
119, Sept 2001.

[2] A. MacFarlane. Pliers at trec 2002. In Proceedings
of TREC 2002, 2002.

[3] P. Ogilvie and J. Callan. Experiments using the
lemur toolkit. In Proceedings of the 2001 TREC con-
ference, 2002.

[4] L. Page, S. Brin, R. Motwani, and T. Winograd.
The pagerank citation ranking: Bringing order to
the web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[5] J. Ponte and W. B. Croft. A language modeling ap-
proach to information retrieval. In Proceedings of
the ACM SIGIR, pages 275–281, 1998.

[6] H. Xu, Z. Yang, B. Wang, B. Liu, J. Cheng, Y. Liu,
Z. Yang, and X. Cheng. Trec 11 experiments at
cas-ict: Filtering and web. In Proceedings of TREC
2002, 2002.

[7] C. Zhai and J. Lafferty. Model-based feedback in
the KL-divergence retrieval model. In Tenth Inter-
national Conference on Information and Knowledge
Management (CIKM 2001), pages 403–410, 2001.

[8] C. Zhai and J. Lafferty. A study of smoothing meth-
ods for language models applied to ad hoc informa-
tion retrieval. In Proceedings of SIGIR’2001, pages
334–342, Sept 2001.

[9] C. Zhai and J. Lafferty. Two-stage language mod-
els for information retrieval. In Proceedings of SI-
GIR’2002, pages 49–56, Aug 2002.

[10] C. Zhai, T. Tao, H. Fang, and Z. Shang. Improving
the robustness of language models: Uiuc trec-2003
robust and genomics experiments. In Notebook of
TREC 2003, 2003.

[11] M. Zhang, R. Song, C. Lin, S. Ma, Z. Jiang, Y. Jin,
Y. Liu, and L. Zhao. Thu trec 2002: Web track ex-
periments. In Proceedings of TREC 2002, 2002.

5


