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ABSTRACT
In this newly introduced Robust Track, we mainly tested a
novel query-based approach for the selection of the most ap-
propriate term-weighting model. In our approach, we clus-
ter the queries according to their statistics and associate the
best-performing term-weighting model to each cluster. For
a given new query, we assign a cluster to the query accord-
ing to its statistical features, then apply the model associ-
ated to the cluster. As shown by the experimental results,
our query-based model selection approach does improve the
poorly-performing queries compared to a baseline where a
unique retrieval model is applied indifferently to all queries.
Moreover, it seems that query expansion has detrimental
effect on the poorly-performing queries, although it signifi-
cantly achieves a higher mean average precision over all the
100 queries.

1. INTRODUCTION
Many term-weighting models have been proposed for in-

formation retrieval. For a given collection and a given query,
it is an interesting and challenging problem to automatically
select the term-weighting model, which would provide the
best retrieval performance. It is referred to as the model
selection problem.
Previous works on the model selection problem, including

[6, 8, 7], are based on the analysis of the term-weighting
models relevance scores. Therefore, using these approaches,
the system cannot select the optimal model prior to the
retrieval process.
On the contrary, our approach to the model selection is

a pre-retrieval strategy. For a given query, it automatically
selects a term-weighting model without the need to wait for
the system’s relevance scores.
Our work for the model selection problem is based on Am-

ati & van Rijsbergen’s Divergence From Randomness (DFR)
probabilistic framework [2]. Their framework deploys more

Table 1: The mean average precision (MAP) for the
TREC-7 ad-hoc task on the disk4, 5 (No CR) of the
TREC collections using 11 different DFR models.

Model MAP Model MAP
I(F)B2 .1985 PL2 .1894

I(n exp)L2 .1937 PB2 .1906
I(n exp)C2 .2001 BB2 .1985
I(n exp)B2 .1986 I(n)B2 .1987
I(n)L2 .1958 BL2 .1932
I(F)L2 .1933

Table 2: The mean average precision (MAP) for the
TREC-8 ad-hoc task on the disk4, 5 (No CR) of the
TREC collections using 11 different DFR models.

Model MAP Model MAP
I(F)B2 .2623 PL2 .2571

I(n exp)L2 .2611 PB2 .2526
I(n exp)C2 .2637 BB2 .2632
I(n exp)B2 .2630 I(n)B2 .2649
I(n)L2 .2626 BL2 .2608
I(F)L2 .2607

than 50 models for term weighting. However, for a given re-
trieval task/query, the framework does not have a strategy
to single out a model that would provide a reliable perfor-
mance. Table 1 and Table 2 list the mean average precision
(MAP) obtained by different models on the TREC-7 and
TREC-8 ad-hoc tasks respectively. Here we just list the re-
sults given by the most stable and effective models in Amati
& van Rijsbergen’s framework. As shown by the results,
even on the same collection, the optimal model could be
different for each task. Also, for each task, the best model
could achieve up to 5.65% higher MAP than the poorest
one.
The aim of this study is to test a query-based approach

for the selection of the most appropriate term-weighting
model. For a given query and a given collection, we propose
to automatically select the best performing term-weighting
model. For the Robust Track, our assumption is that the
proposed pre-retrieval model selection mechanism would im-
prove the poorly-performing queries, by applying a term-
weighting model that maximises the average precision of
each query.



The remainder of the paper is organized as follows. In
Section 2 we introduce our query-based model selection ap-
proach. In Sections 3 and 4, we describe our experimental
setup for the Robust Track, and provide the evaluation re-
sults and the related analysis. In the experiments, the per-
formance of the proposed model selection approach is par-
ticularly assessed. Finally, we conclude our work in Section
5.

2. QUERY-BASED MODEL SELECTION
Our query-based model selection mechanism assumes that

the performance of a term-weighting model depends on the
statistics of the query. Therefore, the statistical features of
a query could constitute a good indication for the model
selection mechanism.
Our mechanism involves a training process where the queries

are clustered according to their statistical characteristics,
and the best term-weighting model for each cluster of queries
is obtained by taking previous relevance judgements into
consideration. For a given new query, we assign a cluster
to the query according to its statistical features, and then
apply the term-weighting model associated to the cluster.
A possible approach to clustering the queries is to take

the users’ feedback into account, and cluster together the
queries for which users have visited similar documents [10].
However, since the retrieved document are only known after
the retrieval process, this approach is not appropriate for
our pre-retrieval model selection mechanism.

2.1 Query Clustering
We propose a query clustering method that is independent

of the retrieval procedure. For each query, we construct
a feature vector, then cluster the queries according to the
similarity of each vector pair. The underlying problem of
this approach is the right choice of the features required to
represent a query. In this paper, we propose the following
three factors for the feature vector of a query:

• Query length

According to Zhai & Lafferty’s work [12], query length
has a strong effect on the smoothing methods of lan-
guage models. In our previous work, we also found
that query length heavily affects the length normali-
sation methods of the probabilistic models [5]. There-
fore, it can be an important feature in the clustering
process.

In this work, we use ρ · ql to represent this feature,
where:

- ρ is a parameter. We experimentally set it to 0.2.

- ql is the query length, i.e. the number of unique
terms in the query.

• The difference of the informative amount in the query
terms

To describe the informative amount that a term car-
ries, we usually associate an inverse document fre-
quency (idf) to the term. The idf factor is a decreas-
ing function of the number of documents containing
the term.

Since the informative amount of a query term is corre-
lated with the utility of a term in the retrieval process,

the most informative term in a query, which has the
highest idf , is supposed to be the most useful term in
discriminating the relevant documents from the others
in a collection. On the contrary, the least informative
term in a query would add little weight to the relevant
documents. Indeed, the least informative term in a
query tends to be a “stop-word”, which could have a
detrimental effect on the retrieval. Hence, the differ-
ence of the informative amount among the query terms
can be an important feature of a query.

In this work, this difference is defined as the quotient of
the minimum idf divided by the maximum idf among
the query terms:

γ =
idfmin

idfmax

=
log(nt,max/N)

log(nt,min/N)

where:

- γ is the factor representing the distribution of the
informative amount in the query terms.

- idfmax and idfmax are the minimum and maximum
idf among the query terms respectively.

- nt is the number of documents containing a partic-
ular query term t.

- nt,max and nt,min are the maximum and minimum
nt among the query terms respectively.

- N is the number of documents in the whole collec-
tion.

• The clarity/ambiguity of a query

In [4], Cronen-Townsend et. al. proposed the clar-
ity score of a query to measure the coherence of the
language usage in documents, whose models are likely
to generate the query. In their definition, the clarity
of a query is the sum of the Kullback-Leibler diver-
gence between the probability of generating each term
in the vocabulary from the query and from the whole
collection.

Another clue for the clarity of a query is the size of the
document set containing (at least one of) the query
terms. In [9], Plachouras et. al. suggested that it is
an important property of a query.

In this work, we follow the idea in [9], and use

ω = −

log(n q/N)

logN

to represent the clarity a query, where:

- N is again the number of documents in the whole
collection.

- n q is the number of documents containing (at least
one of) the query terms.

Thus, when n q is small, we will obtain a large ω value,
which implies that the query is very specific, and there-
fore is of high clarity.



As a consequence, the feature vector qf for a query is
given as:

qf = (ρ · ql, γ, ω)

Finally, the feature vectors have to be clustered. A spe-
cific similarity measure, and a clustering algorithm need to
be specified. In this work, we use the cosine of the angle
between two feature vectors in the above three-dimensional
space and the agglomerating hierarchical clustering (AHC)
algorithm [11] for the clustering process. In the AHC algo-
rithm, initially, each vector is an independent cluster. The
similarity between two clusters is measured by the cosine
similarity of their centroids. If we have n vectors to be pro-
cessed, we start with n clusters. Then, we merge the closest
pair of clusters (according to the cosine similarity measure)
as a single cluster. The merging process is repeated until it
results in k clusters. Here the number k of clusters is the
halting criterion of the algorithm.

2.2 The Model Selection Mechanism
Based on the query clustering method introduced in the

previous section, our model selection mechanism can be sum-
marised as follows:

• We cluster a set of training queries according to their
intrinsic features, as proposed in the previous section.

• For each cluster, we select the best-performing model
in terms of the precision/recall measures.

• Then for a new query, we assign its closest cluster and
trigger the best-performing model associated to the
assigned cluster.

The proposed mechanism aims to optimise the average
precision for each query, which leads to a maximised overall
performance for all the queries.
In Sections 3 and 4, we describe our experimental setting

for the Robust Track, and provide the evaluation results and
the related analysis. The experiments aim to evaluate the
proposed model selection mechanism, especially its perfor-
mance on the poorly-performing queries.

3. EXPERIMENTAL SETUP
The document collection used in the Robust Track is the

disk4 and disk5 (no CR database) of the TREC collections.
The 100 topics given by TREC for the Robust Track have
two parts. The first part consists of the 50 poorly-performing
queries of the TREC-6, 7, 8 ad-hoc tasks, namely 50 old
queries. The remaining part consists of 50 new queries in-
troduced by the Robust Track.
Each query consists of 3 fields: title, description and nar-

rative. As required, we use only the description field.
Two different query sets are used as the training set of

the model selection mechanism, i.e. the 50 old queries and
the 100 queries of the TREC-7, 8 ad-hoc tasks. The latter
includes 35 queries of the former.
For the experiments, our model selection mechanism in-

volves 11 term-weighting models developed within Amati
& van Rijsbergen’s DFR probabilistic framework. These
models are: I(n exp)C2, I(n)L2, I(n)B2, I(n)B2, I(n exp)B2,
BL2 , I(F)B2, I(n exp)L2, BB2, PL2 and PB2. An effective

and stable length normalisation method, i.e. the normali-
sation 2, is applied in these models. The details of these
models and the normalisation 2 can be found in [1].
In our experiments for the Robust Track, the model se-

lection mechanism was evaluated through 6 runs (5 official
runs and 1 additional run). Also, its performance with or
without the use of query expansion was tested. The runs are
designed as follows (Table 3 lists the IDs of the runs, Sel78
was the additional run):

• InexpC2

This is the baseline. It applies a single model, i.e.
the I(n exp)C2 model [1], for all the queries. The
I(n exp)C2 model is developed within Amati & van
Rijsbergen’s DFR framework and is considered as an
effective and robust model on the collection used in
this Robust Track. Its formula is:

w(t, d) =
F + 1

nt · (tfne + 1)

(

tfne · log2
N + 1

ne + 0.5

)

where:

- w(t, d) is the weight of the term t in the document
d.

- F is the term frequency of the term t in the whole
collection.

- nt is the document frequency of the term t.

- N is the number of documents in the collection.

- ne is given by N ·

(

1− (1− nt

N
)F

)

.

- tfne is the normalised term frequency. It is given
by the modified version of the normalisation 2 [1]:

tfn = tf · loge(1 + c ·
avg l

l
) (1)

where c is a parameter; l and avg l are the doc-
ument length of the document d and the average
document length in the collection respectively; tf
is the raw term frequency.

• Sel50 and Sel78

In order to compare our query-based model selection
mechanism to the baseline, we proposed two runs. The
two runs use different training queries sets. Sel50 uses
the 50 poorly-performing queries (50 old queries), and
Sel78 uses the 100 queries of the TREC-7, 8 ad-hoc
tasks. Thus, the effect of the training set on the model
selection mechanism performance could be tested. We
experimentally set the halting criterion of our query
clustering method to k = 4 for Sel50, and k = 3 for
Sel78.

• InexpC2QE

We also tested the model selection mechanism with the
use of a query expansion methodology. This run con-
stitutes our baseline for the runs applying the query
expansion methodology. The run InexpC2QE applies
I(n exp)C2 and a query expansion methodology for all
the queries. The query expansion methodology follows



Table 3: The IDs of the 6 involved runs. +QE and
-QE indicate that query expansion is applied or not
respectively. Sel78 is an additional run.

-QE +QE
Run ID InexpC2 InexpC2QE

Sel50 Sel50QE
Sel78 Sel78QE

the idea of measuring divergence from randomness [1].
The approach can be seen as a generalisation of the
approach used by Carpineto and Romano in which
they applied the Kullback-Leibler divergence to the
un-expanded version of BM25 [3]. For each query, we
extract the 40 most informative terms from the top 10
retrieved documents as the expanded terms.

• Sel50QE and Sel78QE

Both the runs Sel50QE and Sel78QE use the same set-
ting as the runs Sel50 and Sel78 for model selection.
However, they also apply the query expansion mecha-
nism for each query. Moreover, we experimentally set
the halting criterion of our query clustering method to
k = 4 for Sel50QE, and k = 2 for Sel78QE.

The parameter c of the normalisation 2 (see Equation (1))
was estimated by our new tuning approach, which measures
the normalisation effect on the term frequency distribution
[5]. Using this tuning approach, we automatically set the
parameter to c = 1.96.

4. EXPERIMENTAL RESULTS
There are mainly three quantitatives measures that could

be used to evaluate the experiments in the Robust Track:

#Rel: The number of queries with no retrieved relevant
documents in the top 10 ranks, computed over the
complete set of queries.

MAP(X): The area under the curve when MAP (mean aver-
age precision) of the worst X queries is plotted against
X.

MAP: The mean average precision over the complete set of
queries.

Tables 4 and 5 list the results of our runs. Tables 6 and
7 list the involved models in the model selection process
and the performance of each single model over all the 100
queries. From the tables, we can see that MAP(X) is quite
low in all the cases. Therefore, we mainly compare the MAP
and #Rel measures of the runs.
As shown by the results, for the poorly-performing queries,

using the 50 old queries as the training query set, Sel50 and
Sel50QE achieve better MAP and #Rel than InexpC2 and
InexpC2QE respectively (see Tables 4 and 5).
Using more training queries, for the poorly-performing

queries, the performance of Sel78 is nearly the same as
InexpC2 (see Table 4). Moreover, with query expansion,
Sel78QE outperforms InexpC2QE (see Table 5).
Compared to all the 6 runs, we can see that Sel78QE

achieves the highest MAP over all the 100 queries (see Tables
4 and 5).

Table 4: Results of the runs without query expan-
sion. Sel78 is an unofficial run.

Queries Run ID #Rel MAP(X) MAP
50 old InexpC2 10 .0056 .1019

Sel50 7 .0055 .1054
Sel78 10 .0049 .1015

50 new InexpC2 4 .0246 .3478
Sel50 4 .0162 .3327
Sel78 3 .0219 .3446

all 100 InexpC2 14 .0094 .2249
Sel50 11 .0071 .2190
Sel78 13 .0081 .2231

Table 5: Results of the runs with query expansion.

Queries Run ID #Rel MAP(X) MAP
50 old InexpC2QE 17 .0011 .1169

Sel50QE 13 .0045 .1295
Sel78QE 16 .0032 .1238

50 new InexpC2QE 7 .0191 .3600
Sel50QE 8 .0053 .3480
Sel78QE 9 .0071 .3626

all 100 InexpC2QE 24 .0039 .2384
Sel50QE 21 .0037 .2387
Sel78QE 25 .0030 .2432

The run Sel78QE results into the constitution of two query
clusters, to which the models PL2 and I(n exp)B2 are as-
sociated respectively (see Table 6). It is encouraging to see
that although I(n exp)B2 has a better performance in terms
of MAP than PL2 does (see Table 7), using PL2 for most
of the queries (i.e. 86 out of 100), and I(n exp)B2 for the
rest, our model selection mechanism achieves even higher
MAP. This observation suggests that the performance of a
term-weighting model is dependent on the statistics of the
query. Indeed, with the use of query expansion, this run
(i.e. Sel78QE) outperforms the use of each single model
indifferently for all the 100 queries (see Table 7).
Moreover, it seems that the query expansion methodology

significantly improves the MAP, but has detrimental effect
on the poorly-performing queries in terms of #Rel.
The performance of the query expansion methodology could

be explained by its underlying assumption. It assumes that
the top 10 ranked documents are highly relevant, then ex-
tracts the 40 most informative terms from them as the ex-
panded query terms. Therefore, for the poorly-performing
queries, the top 10 returned documents are likely to give
false relevance information. As a consequence, the poorly-
performing queries lead to the failure of the query expansion
methodology.

5. CONCLUSIONS
In the Robust Track, we mainly evaluated our query-based

model selection mechanism based on query clustering. The
performance of the model selection mechanism was tested
with two different training query sets and, with or without
query expansion.
According to the evaluation results, if a proper training

query set is used, our query-based term-weighting model se-
lection does improve the performance of the poorly-performing
queries compared to the baseline, where a unique term-



Table 6: Statistics of the model selection mecha-
nism. M Cluster is the term-weighting model asso-
ciated to a cluster of queries. #Queries is the num-
ber of queries (in the whole 100 queries) belonging
to the cluster.)

Run ID M Cluster #Queries
Sel50 (k = 4) PB2 18

I(n exp)C2 6
I(F)B2 7
I(F)L2 69

Sel78 (k = 3) I(n exp)B2 86
I(n exp)C2 14
PL2 0

Sel50QE (k = 4) I(F)B2 7
PB2 6
PL2 18
I(F)L2 69

Sel78QE (k = 2) PL2 86
I(n exp)B2 14

Table 7: Single model Vs. Model selection over all
the 100 queries.

Without QE With QE

Model #Rel MAP Model #Rel MAP
BB2 13 .2203 BB2 24 .2367
BL2 19 .2115 BL2 26 .2338
PB2 15 .2102 PB2 23 .2240
PL2 14 .2098 PL2 18 .2329
I(F)B2 14 .2230 I(F)B2 22 .2396
I(F)L2 17 .2156 I(F)L2 24 .2368
I(n)B2 12 .2181 I(n)B2 26 .2375
I(n)L2 15 .2160 I(n)L2 21 .2381

I(n exp)B2 13 .2234 I(n exp)B2 22 .2404
I(n exp)C2 14 .2250 I(n exp)C2 24 .2396
I(n exp)L2 17 .2148 I(n exp)L2 26 .2386

Sel50 14 .2190 Sel50QE 21 .2387
Sel78 13 .2231 Sel78QE 25 .2432

weighting model has been applied uniformly to all queries.
Moreover, it seems that query expansion has detrimental

effect on the poorly-performing queries, although it achieves
a significantly higher average precision measure over all the
100 queries. This observation can be explained by the un-
derlying mechanism of the query expansion methodology.
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