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Abstract

We describe our participation in both tasks in the 2003 TREC Genomics track. For the primary
task we concentrated mainly upon query expansion and species-specific document searching. An
analysis of the variance of possible retrieval results suggested that the official TREC-supplied
test set is only a crude approximation of the true system performance. The secondary task we
treated as an extraction problem, using a maximum entropy scorer trained on GeneRIF sentences
as positives and other sentences as negatives. While our results were not always equivalent to
the actual GeneRIFs, on biological grounds many of them appeared better descriptors than the
GeneRIFs themselves.

1 Introduction

The School of Informatics at the University of Edinburgh, Stanford’s Center for the Study of Language
and Information, and the Laboratory for Informatics in the Department of Genetics at Stanford have
an on-going collaboration, aimed at improving access to and use of the biomedical literature. In
connection with this collaboration, a group of staff and students at the two institutions decided to
mount a joint team to participate in the first TREC-Genomics track. Here we outline how we went
about dealing with the two tasks.

2 Primary Task: Ad-hoc Document Retrieval

2.1 Partitioning the document set and indexing

Because many species have genes with the same name, we decided to try to eliminate “wrong species”
as a source of false positives, by only searching species-specific sub-collections of the original doc-
ument set (525,938 documents). We produced these species-specific sub-collections (one for each
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“official” TREC species: human (315,714 documents, 60% of the collection), rat (31,859 documents,
6% of the collection), mouse (28,280 documents, 5.4% of the collection), and drosophilia (8,377 doc-
uments, 1.6% of the collection), as well as one for any “official” TREC species (373,906 documents,
71.1% of the collection)) through a combination of intuition and machine learning. Specifically, we
used Rainbow’s classification system 1, choosing as classification features, those that were thought
to be indicators of species. These included both obvious features (e.g. the MeSH term Human as an
indicator of human), but also some idiosyncratic ones (e.g. the MeSH term Predisposition to Disease
also as an indicator of human). Both obvious and idiosyncratic features were selected through careful
analysis of the training qrels. Features indicative of other species (e.g.yeast, frog) were also used to
help classify documents as not being about an “official” species. False positives were also avoided by
excluding matches against MedLine fields that might contain distracting information (e.g AD - Insti-
tutional affiliation and address). In the end, we only considered the title, abstract, MeSH terms and
registry number fields of individual documents in creating these species-specific and all four species
sub-collections.

The 325 relevant documents (qrels) specified in the official TREC training data were used as the
training data for species classification, as was an equal number of documents that were about “non-
official” species (i.e. bos taurus, danio rerio and c. elegans - obtained through Locuslink). A separate
binary classifier was built for each “official” species, as well as one to classify whether a document
is about at least one of them. To further eliminate possible false positives from the search space,
features were added that would allow us to exclude documents that were considered non-genetic and
therefore unlikely to contain a GeneRIF. The resulting classification accuracy is shown below for a
locally-developed held-out test dataset:

Species Accuracy (%)

Human 88.05
Mouse 89.51

Rat 88.80
Drosophila 98.45

All 4 96.46

We also tried using a variety of features and Medline fields to see if we could improve on these
results, but none were found that would increase accuracy in the majority of cases.

Another possibility would have been to simply classify species on the basis of their being indexed
by the appropriate MeSH term for the species (e.g. query = Homo Sapiens: MeSH term = Human).
While this may have produced a slight increase in classification accuracy (and therefore a slight in-
crease in the document retrieval recall), it would also have substantially increased the search space,
which can lead to a substantial decrease in the document retrieval precision. By restricting our search
to species-specific sub-collections, we may pay the price in “false negatives” – relevant documents
that are missing from the sub-collection because they lack sufficient features to have been included.

The all 4 species sub-collection was intended, in part, to deal with this problem in a fall-back strat-
egy, where our initial retrieval using the individual species sets resulted in poor performance. Time,
however, denied us the opportunity to research this thoroughly. One technique that was applied was
where the first n (500, 700, 800) documents retrieved using the species specific set were retained and
the first 1000-n documents retrieved (distinct from the n documents) using the all 4 species document

1http://www-2.cs.cmu.edu/˜mccallum/bow/rainbow/
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set were tagged on to make up the 1000 documents. This increased our total recall scores. However,
this increase was not deemed justifiable for the resultant decrease in precision.

2.2 Query expansion

The recent surge in IR and IE within biological text has highlighted the inconsistency of the terminol-
ogy within the text. Genes can be referred to in a variety of different ways: the full name, an acronym
derived from the full name, by the name of a homologous gene, the resultant product of the gene.
Even Locus Link itself is not complete and does not specify all synonymous names of a gene. Con-
versely, more than one distinct gene can be referred to with the same handle. Thus, for more effective
retrieval, we looked at ways to expand our query. Synonyms from genetic databases were sought
to complement the set from LocusLink. Analysis of the training queries and their corresponding qrel
documents showed other discrepencies within gene symbols. For example, while the same letters may
be used, they may differ in case (upper vs lower). Punctuation characters may be added, as well as
different representations of the same numeric specifiers (e.g. 2=II=beta). These issues also had to be
taken into consideration when formulating our query.

At run-time, the original, TREC-supplied queries were first processed into unexpanded queries,
with the same format as the queries in Hersh’s third preliminary run. Figure 1 shows an example of a
TREC-supplied query.

1 1026 Homo sapiens OFFICIAL GENE NAME cyclin-dependent kinase inhibitor 1A (p21, Cip1)
1 1026 Homo sapiens OFFICIAL SYMBOL CDKN1A
1 1026 Homo sapiens ALIAS SYMBOL P21
1 1026 Homo sapiens ALIAS SYMBOL CIP1
1 1026 Homo sapiens ALIAS SYMBOL SDI1
1 1026 Homo sapiens ALIAS SYMBOL WAF1
1 1026 Homo sapiens ALIAS SYMBOL CAP20
1 1026 Homo sapiens ALIAS SYMBOL CDKN1
1 1026 Homo sapiens ALIAS SYMBOL MDA-6
1 1026 Homo sapiens PREFERRED PRODUCT cyclin-dependent kinase inhibitor 1A
1 1026 Homo sapiens PRODUCT cyclin-dependent kinase inhibitor 1A
1 1026 Homo sapiens PRODUCT cyclin-dependent kinase inhibitor 1A
1 1026 Homo sapiens ALIAS PROT DNA synthesis inhibitor
1 1026 Homo sapiens ALIAS PROT CDK-interaction protein 1
1 1026 Homo sapiens ALIAS PROT wild-type p53-activated fragment 1
1 1026 Homo sapiens ALIAS PROT melanoma differentiation associated protein 6

Figure 1: Original TREC-supplied query

This TREC-supplied query was transformed into the unexpanded query format shown in Figure 2.

”CDKN1A” ���
�

”P21” ”CIP1” ”SDI1” ”WAF1” ”CAP20” ”CDKN1” ”MDA-6” ”cyclin-
dependent kinase inhibitor 1A” ”cyclin-dependent kinase inhibitor 1A” ”cyclin-
dependent kinase inhibitor 1A” ”DNA synthesis inhibitor” ”CDK-interaction protein 1”
”wild-type p53-activated fragment 1” ”melanoma differentiation associated protein 6”

Figure 2: An unexpanded query
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This unexpanded query uses the Lucene retrieval engine syntax 2. Terms in quotations must match
as a unit, whilst the ���

�
modifier is an ad-hoc method for boosting the importance of matching against

the associated term. The entire set of terms is taken as a disjunction. For this example, since the TREC
supplied query indicated that the relevant gene belonged to homo sapiens, we used all documents in
our human sub-collection of the MEDLINE documents when retrieving documents.

We used different query expansion strategies in our two runs: one emphasised precision over
recall, and the other tried to recover more documents, with a possible decrease in precision. In the
precision-optimised run:

� Parentheticals in the official gene name or a protein product were extracted and appended to the
end of the unexpanded query.

� Conjunctions of two words preceding and two words following a hyphen were also appended
to query, provided that none of the words were common English. For example, given the query
term CDK-interaction protein 1, where at least two words follow the hyphen, the term (”CDK”
&& ”interaction protein”) is appended to the query. (&& is Lucene syntax for logical “and”.)
Applying this method for punctuation marks other than hyphenation was not found to be suc-
cessful.

� Acronyms were generated for terms that had more than three words. Again, such acronyms
were simply appended to the set of terms.

� Numeric specifiers were removed and the resultant term appended.

� Non-digit specifiers (such as Roman numerals) were converted to digits and vice versa. Again,
these extra terms were appended to the end of the query.

� Lowercase and uppercase versions of all terms were also appended.

Our recall-optimised run started with the same query expansion approach as when emphasising
precision. In addition though, we retrieved from SwissProt the official gene, associated gene and
proteins synonyms for the relevant species. These were appended to the query.

Query expansion of the query shown in Figure 2 results in the much larger query shown in Fig-
ure 3, in which the original query terms are followed by upper-case variants, extracted parentheticals,
variants with hyphens removed, lower-case variants, etc.

We also tried expanding the query using GO terms, throwing-away common English (non-biological)
words, stemming etc, but none of these led to any improvement in recall and/or precision.

After expansion, a query was sent to the Lucene retrieval engine, and all retrieved documents
(from a given document sub-collection) were used in our submission. As a cross-check, we also tried
the Lemur retrieval engine (http://www.cs.cmu.edu/˜lemur) and obtained similar results. This showed
that our system performance was not simply a consequence of using Lucene.

2.3 Results

On the 50-document development set, we obtained the following results using the query expansion
strategy that concentrated on obtaining high-precision results (at the expense of possibly not retrieving
some documents).

2http://jakarta.apache.org/lucene
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”cyclin-dependent kinase inhibitor 1A (p21, Cip1)” ���
�

”CDKN1A” ���
�

”P21” ”CIP1”
”SDI1” ”WAF1” ”CAP20” ”CDKN1” ”MDA-6” ”cyclin-dependent kinase inhibitor
1A” ”cyclin-dependent kinase inhibitor 1A” ”cyclin-dependent kinase inhibitor 1A”
”DNA synthesis inhibitor” ”CDK-interaction protein 1” ”wild-type p53-activated frag-
ment 1” ”melanoma differentiation associated protein 6” ”CYCLIN-DEPENDENT KI-
NASE INHIBITOR 1A (P21, CIP1)” ���

�
”CDKN1A” ���

�
”P21” ”CIP1” ”SDI1” ”WAF1”

”CAP20” ”CDKN1” ”MDA-6” ”CYCLIN-DEPENDENT KINASE INHIBITOR 1A”
”DNA SYNTHESIS INHIBITOR” ”CDK-INTERACTION PROTEIN 1” ”WILD-TYPE
P53-ACTIVATED FRAGMENT 1” ”MELANOMA DIFFERENTIATION ASSOCI-
ATED PROTEIN 6” ”P21, CIP1” ”CYCLINDEPENDENT KINASE INHIBITORA”
”cyclin-dependent kinase inhibitor 1a (p21, cip1)” ���

�
”cdkn1a” ���

�
”p21” ”cip1” ”sdi1”

”waf1” ”cap20” ”cdkn1” ”mda-6” ”cyclin-dependent kinase inhibitor 1a” ”dna synthesis
inhibitor” ”cdk-interaction protein 1” ”wild-type p53-activated fragment 1” ”melanoma
differentiation associated protein 6” ”p21, cip1” ”cyclindependent kinase inhibitora”
”CDK 1C” ”CDK 1” ”CIP1” ”WTPAF1” ”MDAP6” ”cyclindependent kinase inhibitorA
(p, Cip)” ”cyclindependent kinase inhibitorA” ”cyclindependent kinase inhibitorA” ”cy-
clindependent kinase inhibitorA” ”CDKinteraction protein” ”wildtype pactivated frag-
ment” ”melanoma differentiation associated protein” ”cyclindependent kinase 1A (p21,
Cip1)” ���

�
”MDA6” ”cyclindependent kinase 1A” ”CDKinteraction protein 1” ”wildtype

p53activated fragment 1” ”cyclin-dependent kinase 1A (p21 Cip1)” ���
�

”p21 Cip1” (”1A
p21” && ”Cip1”) (”p21 p21” && ”Cip1”)

Figure 3: An expanded query

Retrieved (out of 331) 185 (55.9%) 280 (84.6%) 265 (80.1%)
Average precision 0.3523 0.3939 0.4870
Exact 0.2959 0.3330 0.4711

The first column shows the results without expanding the query; the second column shows the results
after expanding the query. The final column shows the results after using the expanded query and the
relevant species-specific document sub-collections.

On the official 50-document test set, we obtained the following results, with column labels the
same as above:

Retrieved (out of 566) 360 (63.6%) 523 (92.4%) 495 (87.5%)
Average precision 0.1625 0.1870 0.2888
Exact 0.1458 0.1584 0.2636

As can be seen, using our species-specific document sub-collections leads to a significant gain in
precision (54.4%), offset by a small drop in recall (5.4%).

We had mostly similar results using our expansion strategy aimed at increasing recall. The devel-
opment set produced the following results:

Retrieved (out of 331) 185 (55.9%) 331 (100%) 314 (94.9%)
Average precision 0.3523 0.3838 0.4661
Exact 0.2959 0.3342 0.4340

On the official test set, our results were as follows:
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Retrieved (out of 566) 360(63.6%) 501(88.5%) 533(94.2%)
Average precision 0.1625 0.1609 0.2690
Exact 0.1458 0.1385 0.2275

The latter figures show that the addition of terms from SwissProt only improved overall performance
when applied to the much small species-specific sub-collections. This leads us to conclude that “prof-
ligate” query expansion can pay off in the context of “intelligently” targetting the retrieval set.

2.4 (Failed) Attempts at Re-ranking

Information retrieval and question-answering systems often use re-ranking techniques, with a view
to promoting the rank of relevant documents. We first tried re-ranking the retrieved documents using
a maximum entropy model and purely lexico-syntactic features. To give an indication of how well
this might work, Hersh’s third set of results (http://medir.ohsu.edu/˜genomics/preliminary.html), with
a mean average precision of

�������
could be boosted to a mean precision score of around

�������
. Unfor-

tunately, we could not discover a set of lexico-syntactic features which could capture the notion of
relevance when applied to an unseen set of documents and associated queries. We think there may be
two reasons for this: First, the relevance of a document to a particular query appears not to be obvi-
ously encoded in the document. Secondly, there is considerable variation in how relevant documents
correctly match against a query, and no way of obvious general, systematic way to re-rank them.

We then hypothesized that re-ranking documents based on some “function score” would lead to
better results. Here we tried three methods, all without success.

First, we attempted to distinguish between articles that talked about function as opposed no func-
tion at all. We devised a “Go-iness” score, based on the the number of prominent GO terms that
appeared in an article’s abstract. We performed an analysis of GO-terms by first tokenizing each GO
term. We then counted GO-tokens in each abstract. Indeed, abstracts with more GO-tokens do tend
to discuss biological ”function” more frequently. We checked the distribution of GO terms across
abstracts that talk about function and those that do not. We created a training set of function articles
by searching Pubmed with the Mesh term ”protein” and for the negative set we searched for clinical
and disease abstracts. We then ran a chi-square test of significance over GO-tokens. We weighted
more heavily the scores of tokens that were statistically more likely to be found in function articles.
While this measure produced a reasonable distinction between function vs non-function articles, it did
not create a clear bi-modal distribution, and overall classification performance based on go-iness was
not good.

As an alternative, we tried to develop a Maximum Entropy classifier, to distinguish between func-
tion and non-function articles. As positive examples, we took articles that were annotated with a
molecular function GO term. As negative examples, we downloaded genetics articles without the
MeSH term “protein”. While the performance of the resulting classifier was good, precision fell dras-
tically when it was used to re-rank documents, either alone or combined with Lucene scores. As far as
we could discern, the lack of improvement was based on the classifier’s inability to distinguish which
gene’s function is being talked about. Since Lucene returns documents that talk about more than one
gene, highly functional articles discussing the wrong gene were often highly ranked: We found the
top-scoring documents do talk about function but not the function of the gene in question.

It also appeared that certain phrases could help distinguish between the function of queried genes
and the function of other genes. For example, “on � gene-name � ” seemed to be frequently used in
documents that were talking about the effects of other genes on the queried gene (but not the function
of the queried gene itself). Since we did not have time to devote to parsing, we attempted to use
information about word order around a gene name. Since the Maximum Entropy classifier we were
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using treats each document as a bag of words, we artificially induced ordering by replacing each
word that occurred before a gene in a sentence by “XXX � word � ” and each that occurred after, by
“ � word � XXX”. This created two subtypes of � word � for the classifier to use as features. The
method still did not improve performance relative to the original ordering produced by Lucene.

Our final attempt at reordering involved a “one gene theory”, based on the observation that an
article that talked about many genes seemed less likely to describe a gene’s function, since it was not
a focus of the article. For this we ran the gene name identifier by first blacking out the topic gene and
checking if an article contains any other genes. We took all sentences that talked only about one gene
and tried to create a distinction using maximum entropy. We also experimented with using the title,
first sentence that mentions the gene and last sentence to mention the gene. None of our manuevres
aided precision. They did, however, inform our approach to the secondary task (Section 3).

2.5 Result Stability

The official test set contained only � � queries. One could argue that retrieval results using such a small
set are unlikely to be a good estimate of the true system performaance.

To test this hypothesis, random sets of � � TREC-like queries and qrels were formulated from
LocusLink and tested on our system for both optimum recall and optimum precision. We tested 150
of these random sets for each expansion method, with results as follows:

No expansion (%) Precision Recall
optimised (%) optimised (%)

Minimum Precision 23.87 29.43 30.65
Maximum Precision 47.63 49.41 45.04

Mean Precision 34.37 37.33 37.43
Standard Deviation 4.29 3.83 3.52

Precision Range 23.76 19.98 14.39

Minimum Recall 41.31 58.48 67.89
Maximum Recall 79.63 90.14 98.28

Mean Recall 61.95 76.94 80.61
Standard Deviation 7.18 5.43 5.94

Recall Range 38.32 31.66 30.39

There are two significant things to note: First is the wide range in precision and recall that can
result from a change in 50-element test set. The second is that our precision scores for the actual
test set fall significantly below the mean for our random sets, even taking into account the standard
deviation. This indicates that, assuming our random sets were representative of typical queries, the
TREC test set was a particularly poor query sample (for our system). What we cannot tell from this
experiment is whether relative system performance (i.e., comparing systems against one another) is
stable or varies with the choice of test set. This would be something worth assessing.

3 Secondary Task: Reproducing GeneRIF Annotation

Using insights from the first task about gene function, we devised two techniques for picking key
phrases out of abstracts that are known to be GeneRIFS (Task 2). Both worked well on cursory
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subjective evaluation by biologists, but did not score well on the DICE measure.
The first method was based on the density of GO terms in a given sentence. Our hypothesis was

that a sentence with a very dense concentration of GO terms would be the most likely GeneRIF text.
We used the same tokenized GO-terms as described for Task 1. The method can produce good results.
Consider for example, a sentence we picked up from Pubmed ID 12080061 for the Locus Link ID
4012. The actual GeneRIF for this document is:

Identification of a tankyrase-binding motif in this protein

The sentence we picked from the same abstract is:

TRF1 binding allows tankyrase to regulate telomere dynamics in human cells, whereas
IRAP binding presumably allows tankyrase to regulate the targeting of IRAP.

In many respects, the sentence picked by our method is a better GeneRIF candidate than the actu-
aly GeneRIF itself, thus raising the usual questions about the quality of the gold standard, and the
conditions under which GeneRIFs are selected.

The second method we implemented was based on a Maximum Entropy classification of sentences
as either GeneRIF or non-GeneRIF. Using a feature selection method based on chi-square distribution
of words, we selected features that helped distinguish between sentences with signal (i.e., GeneRIF)
and those without. The positive set consisted of all GeneRIFs other than the test set itself. The negative
set consisted of all sentences from the GeneRIF containing abstracts other than those sharing more
than three non-stop words in common with the GeneRIF. We created a score algorithm for which the
output was the sentence with the highest probability of being a GeneRIF.

To determine the probability that a GeneRIF would be found in a particular position, we annotated
a set of 200 MedLine entries from LocusLink associated with GeneRIFs. We located the words from
the GeneRIF within the title and abstract. In this data set, the GeneRIF came from the title in 74
of 187 cases. So we used 0.4 as probability for the title being taken as the GeneRIF. The GeneRIF
was drawn from the final sentence of an abstract in in 49 of 187 cases, and so this probability was
set to 0.26. Finally, the GeneRIF came from the first sentence in 3 of the 187 cases. Assuming all
other sentences to be equally likely, we uniformly distributed the probabilities on other sentences by
dividing by (total sentences, including title - 3)(decomposition of 3 - 1 for title, 1 for first sentence
and 1 for last sentence).

In the end, we submitted one run from this method. The final submission was based on a rather
ad hoc combination of internal features (using the Maximum Entropy classifier to find GeneRIF-like
sentences) and the prior probability that a GeneRIF would be found in the title, first, last or other
sentence. We also used the GO-based metric, in which sentences were weighted in terms of their
concentration of lexical tokens found in GO terms.

While our methods identified sentences that appeared very reasonable sources of GeneRIFs, our
DICE score for Task 2 was not very high. Because our methods stayed at the sentence-level, they
suffered when the correct GeneRIF was a specific phrase within the sentence.

4 Discussion

In future work on query expansion, rather than expand all queries equally with the same method, we
want to consider a strategic approach to tailor query expansion. This can be achieved by gathering
simple statistics for each term looking for occurrences of punctuation used, protein name containing
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and gene names and vice versa, parentheticals, specifier types etc. So each query can have a unique
expansion based on it term constituents.

While GeneRIFs provide a good measure of comparison, we feel that they are neither exhaustive
nor the best candidates in many cases. This makes machines unable to objectively match the GeneR-
IFs. As explained in the example above, some of the senences/phrases that the computer picked up
were in fact better at explaining function than the actual GeneRIFs themselves. The other examples
are not discussed here but they provide ample evidence to the claim that machines can be used to ex-
tract biologically relevant information from text. This can potentially save thousands of man-hours of
work. Since the machine works objectively, the criteria for selection of such sentences will objective
and standard. A cursory checking by Biologists for most of these candidates would be enough. These
methods can also be used to extract GeneRIFs from abstracts before 4/2002 when GeneRIFs were not
available.
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