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Abstract
The Tarragon Consulting team participated in the
primary task of the TREC 2003 Genomics Track. We
used a combination of knowledge-engineering and
corpus analysis to construct semantic models of the
interactions between genes/proteins and other
biological entities in the organism, and then used
automatic methods to convert these models into
evidential queries that could be executed by the K2
search engine from Verity, Inc. The primary goal of
our participation in the Genomics Track was to
establish a performance baseline using ontologically-
grounded techniques that are scalable and
implementable using current commercial retrieval
technology. The results from both our official
submissions and subsequent experiments demonstrate
that good performance can be achieved using our
approach.

Overall Approach
In our approach we focused on “function” as opposed
to the other aspects of the basic biology of the gene
and its protein products. That is, we interpreted the
primary task to be one that requires us to identify the
ways in which the gene/protein is involved in the
organism's behavior, as opposed to one that simply
requires us to identify that some property of the
gene/protein is being discussed.
The framework for constructing our semantic models
is an ontology that makes a set of core distinctions
between: (a) the gene/protein subsystem; (b) the
organism; (c) the interactions of the gene/protein
subsystem with the organism; and, (d) the documents
that report on the biological entities and processes.
(See Figure!1 at the end of the paper for a high-level,
and much simplified, view of the ontology as a UML
static structure.)
We then interpret function to be synonymous with
interaction, and thus make the retrieval task one of

finding documents that use language that describe, or
report on, these interactions.
We used the PubMed corpus and the GeneRIFs from
the training set to construct a “lexicon of interaction”
(LoI) which was hand-edited for consistency and
validity, and then used as input to the automatic,
evidential query generation process.
To run the experiments, we created a minimal XML
variant of the PubMed records (see Figure!2) and
indexed them using Verity’s K2 search engine.1 We
used the output of the evidential query generation
process as input to the K2 engine, and ran the fifty
queries (i.e., one for each gene in the test set) against
the indexed collection. The results from the K2 engine
were then converted into the standard TREC format
for submission to NIST.

Official Submissions

Our experimental strategy prior to the official
submissions explored two main issues: (a) detection
and recognition of genes/proteins; and, (b) effective
ways of exploiting the LoI. Based on our experiments
with the training data, we settled on a single strategy
for name detection and recognition, and on two
strategies for exploiting the LoI. Our official runs
(tgnBaseline and tgnVariant1) reflect this two-fold
strategy.
In both our official submissions, we modeled
gene/protein names by focusing on the symbols (both
the OFFICIAL_SYMBOL and the ALIAS_SYMBOL) and
then creating a set of regular expression variants based
on treating all punctuation as optional and also
allowing for potential whitespace or punctuation when
the symbol character sequence changes from
                                    
1 See: http//www.verity.com/ for basic information about the
K2 family of products.



alphabetic characters to numerical character, and vice
versa.
So for example, in Topic 2 (“E2F transcription factor
1”), the symbols get mapped to the regular
expressions:

E2F1 => E_2_F_1
RBP3 => RBP_3
E2F-1 => E_2_F_1
RBBP3 => RBBP_3

where “_” denotes an optional single space or
punctuation character. Note that here, as with many
other symbol sets, the transformation produces
equivalent regular expressions. We remove any such
duplicates to create a final set of expressions for each
gene.
How best to exploit the gene/protein names in our
models, is more problematic. Based on our
experiments with the training data, we decided to use
a l l  o f  t h e  OFFICIAL_GENE_NAME, the
PREFERRED_PRODUCT, the PRODUCT and the
ALIAS_PROT (if they are different) as part of the
model. In many cases, however, we hand-edited the
names to remove “annotation” or to extract alternates.
So, for example in Topic 7, the official name:

syndecan 4 (amphiglycan, ryudocna)

becomes a three-fold set of names:
syndecan 4
amphiglycan
ryudocna

Once the name data is processed into our standard
form, we automatically generate a sequence of K2
topic fragments such as:

tgn_geneName_2 <Or>
* 1.00 <Many><Phrase>
** 'E2F'
** 'transcription'
** 'factor'
** '1'
* 0.90 <Many><Phrase>
** 'retinoblastoma'
** 'associated'
** 'protein'
** '1'

which defines the gene name specification for Topic 2
and where notation like <Or> denotes an operator in
the Verity Query Language (VQL).
The function component of our model leverages the
LoI by creating three sub-modules that capture verbs,
verb phrases, and general vocabulary that are related to
function. As noted earlier, this initial LoI was created
using a mix of corpus analysis techniques and
knowledge engineering methodologies, and was
developed to give us a basis for exploring a more
formal linguistic analysis derived from our semantic
models.

The LoI contains verbs such as “upregulate” and
“phosphorlyate”, verb phrases such as “localize in”
and “mechanism for”, as well a small set of mostly
nouns, such as “pathway” and “antagonist”, that relate
to biological entities typically involved with functional
behavior. In VQL this part of the model becomes
(somewhat simplified for presentation purposes):

tgn_function_lexicon <Accrue>
* 0.60 tgn_function_vs
* 0.80 tgn_function_vps
* 0.20 tgn_domain_lex

Finally, we modeled the species constraint as a test for
the presence of the corresponding MeSH keyword. So,
for example, to be a candidate for retrieval for a Homo
Sapiens gene, we check to see if the keyword “human”
appears anywhere in the MeSH tags. In VQL this test
becomes:

"Human" <In> /zonespec = "MH"

The overall query model for a gene topic is then
essentially just a conjunct of the gene name and
symbols, the function model, and the species test. In
VQL this becomes (again somewhat simplified):

tgn_trecgenQuery_1 <And>
* 1.00 _isHuman
* 1.00 <Sum>
** 0.80 <And>
*** 1.00 tgn_geneModel_1
*** 1.00 tgn_function_lexicon
** 0.20 _queryProximity_1

where we also show a component of the model (here
_queryProximity_1) that tests for the proximity of
the gene model (here tgn_geneModel_1) and the
function model (here tgn_function_lexicon). In
training we found that this improved our overall
scores, as measured using the trec_eval  scoring
program.
Using this core model and the two variant function
models, our official scores for the two submissions
(i.e., tgnBaseline and tgnVariant1) are shown in
Table!1. Note that these gave just about the same
overall performance, with tgnBaseline doing slightly
better on Average Precision, and tgnVariant1 doing
slightly better on R-Precision.
Both runs, though, were better than the overall median
scores reported (i.e., 0.2117 for Average Precision),
with 37 and 36 individual topics (respectively) getting
Average Precision scores greater than the median
individual topic score.

Failure Analysis

Our preliminary failure analysis of the official runs
showed that there were two main causes of poor
performance (relative to the median published scores).



First of all, we had some significant recall failures.
Overall we only retrieved 463 of the possible 566
relevant documents, and while in most cases we
missed just one or two, we did have more serious
failures. For example, for Topic!7 we missed all 7
relevant documents, and for Topic!37 we missed 37 of
the 61 relevant documents.
We analyzed each failure and identified whether it was
due to either: (a) a failure to detect the gene/protein;
(b) a failure to identify the “function” being discussed;
or, (c) a failure of the species test. In a few cases there
were multiple causes of the failure. Overall though, of
the 103 non-retrieved document, we attributed 81
failures to name recognition, 16 to function, and 13 to
the species test.2

The second major performance failure was ranking
failure. That is, our inability to get the relevant
documents sufficiently high in the retrieval ranking. At
this point in our investigation, we are less concerned
with this issue since we believe, as do other groups3,
that the GeneRIFs we have been using as the “ground
truth” in this exercise significantly under-represent the
amount of “RIF-able” material in the collection.

Alternate Experiments
Given the failure analysis, we experimented with a
number of alternate name detection/recognition
algorithms. These were all variants of what we might
call “token n-gram” methods in which, instead of
attempting to match the exact name as a phrase (e.g.,
“ETF transcription factor 1”), we explored various
forms of sub-string matching that involve both ordered
and un-ordered matching of tokens in the name.
The alternate run labeled ptVar01 in Table!1 uses a
combination of ordered bi-grams and un-ordered k-
grams (where k+1 is the number of tokens in the
name). Note that we now find 523 of the 566 relevant
documents and also retrieve many more documents
than before—30,605 as compared to 7,758. Both
Average Precision and R-Precision are better than
either of the official submissions, although not by very
much.
                                    
2 Of these 13 species failures, our analysis suggests that at
least 11 are due to incorrectly labeled GeneRIFs with respect
to species.
3 For example, the initial analysis reported by Bill Hersh,
Sarah Corley, Ravi Teja Bhupatiraju in “Relevance Analysis
for Primary Task of TREC Genomics Track” distributed via
the TREC Genomics mailing list on 2003.10.13 shows that
over 40% of the documents they retrieved were “RIF-able”
but not labeled by the ground truth.

The other alternate run reported here, labeled ptVar02
in Table!1, is the first is a series aimed at seeing if
exploiting document structure can improve
performance. This run simply adds an additional test to
the model used in ptVar01 to check if the full name, or
one of the symbol variants, of the gene/protein appears
in the title of the document (i.e., in the <TI> field),
increasing the retrieval score of the document if it
does.
Note that this simple extension produces a significant
jump in performance over the ptVar01 model—a
13.13% increase in the Average Precision, and a
19.66% increase in the R-Precision.
This is a surprising result given the fact that the
documents are all abstracts, and suggests to us that the
selection of the set of GeneRIFs used as the ground
truth was heavily influenced by the titles of the
original documents.

Ground Truth and Other Observations
A key element of the approach we adopted for he
TREC 20003 Genomics main task was to model the
concept of “function” directly. Yet as the results
presented at the TREC meeting show, it was not
necessary to model function in order to do well on the
task. In fact, non of the top three best performing
systems used any explicit representation of function.
This suggests to us that, in the context of MedLine
abstracts, almost any mention of the gene/protein is
likely to be relevant to function under the very broad
definition we were working with (i.e., “MEDLINE
references that focus on the basic biology of the gene
or its protein products from the designated organism.
Basic biology includes isolation, structure, genetics
and function of genes/proteins in normal and disease
states.”).
Coupled with the fact that the GeneRIFs we have
relied on for test and evaluation obviously under-
report the relevant material, we think it is safe to say
that we cannot draw too many significant conclusions
from this initial venture into the genomics arena.
Nevertheless, this was definitely a worthwhile exercise
and helped us validate our basic approach. At the same
time, it made us aware of the many special issues
associated with this field (e.g., name variation).
We look forward to TREC 2004 in which we can
address a problem that is better motivated by the needs
of practicing biologists, and for which we have a more
defensible evaluation framework.
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Figure 1: Simplified Ontology

<PubmedArticle>
<PMID>11727758</PMID>
<DCOM>20020520</DCOM>
<TI>
Opiates promote T cell apoptosis through JNK and caspase pathway.
</TI>
<AB>
Opiate addicts are prone to recurrent infections. In the present study we
evaluated the molecular mechanism of opiate-induced T cell apoptosis. Both
morphine and DAGO ([D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin) enhanced T cell
apoptosis. Morphine as well as DAGO activated c-Jun NH2-terminal kinase (JNK) in T
cells. Moreover, opiates increased the expression of ATF-2. a specific substrate
for JNK and P38 mitogen activated kinases (MAPK). Furthermore, opiates attenuated
extracellular signal related kinase (ERK) in T cells. Both morphine and DAGO
cleaved pro-caspases 8, 9, and 10 and generated caspases 8, 9 and 10 (active
products). Morphine as well as DAGO also cleaved poly-(ADP-ribose) polymerase
(PARP) into 116 and 85 kD proteins indicating the activation of caspase-3. These
results suggest that opiate-induced T cell apoptosis may be mediated through the
JNKcascade and activation of caspases 8 and 3.
</AB>
<MH>Apoptosis/drug effects/physiology</MH>
<MH>Caspases/*metabolism</MH>
<MH>Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/toxicity</MH>
<MH>Enzyme Activation/drug effects</MH>
<MH>Human</MH>
<MH>In Vitro</MH>
<MH>Jurkat Cells</MH>
<MH>Mitogen-Activated Protein Kinases/*metabolism</MH>
<MH>Morphine/toxicity</MH>
<MH>Narcotics/*toxicity</MH>
<MH>Support, U.S. Gov't, P.H.S.</MH>
<MH>T-Lymphocytes/*cytology/*drug effects/enzymology/immunology</MH>
</PubmedArticle>

Figure 2: Example <PubmedArticle/> XML Format



Table 1: Summary Results for Official Submissions and Selected Alternate Experiments

tgnBaseline tgnVariant1 ptVar01 ptVar02
# Docs Retrieved 7758 7758 30605 30634
# Docs Relevant 566 566 566 566
# Docs Rel_ret 463 463 523 532
Interpolated R-P:

at 0.00 0.5721 0.5606 0.5799 0.5492
at 0.10 0.4975 0.4922 0.5398 0.5284
at 0.20 0.4179 0.4192 0.4952 0.5081
at 0.30 0.3707 0.3577 0.4222 0.4533
at 0.40 0.3298 0.3193 0.3348 0.4062
at 0.50 0.3150 0.3086 0.3060 0.3875
at 0.60 0.2622 0.2616 0.2519 0.3326
at 0.70 0.2067 0.2083 0.2041 0.2559
at 0.80 0.1614 0.1637 0.1646 0.2125
at 0.90 0.1220 0.1214 0.1095 0.1393
at 1.00 0.0992 0.0998 0.0922 0.1156

Average Precision 0.2837 0.2791 0.2917 0.3300
Precision:

at 5 docs 0.2640 0.2720 0.3000 0.3120
at 10 docs 0.2180 0.2220 0.2280 0.2420
at 15 docs 0.2000 0.1973 0.1933 0.2253
at 20 docs 0.1760 0.1780 0.1760 0.1990
at 30 docs 0.1473 0.1480 0.1493 0.1713
at 100 docs 0.0752 0.0758 0.0754 0.0818
at 200 docs 0.0426 0.0422 0.0449 0.0472
at 500 docs 0.0184 0.0184 0.0205 0.0207
at 1000 docs 0.0093 0.0093 0.0105 0.0106

R-Precision 0.2850 0.2852 0.2858 0.3420


