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1 Introduction 
It is the fourth time that we take part in the QA track. Our system, FDUQA, is based on 

our previous system (Wu et al, 2002). FDUQA includes an offline part and an online part. We 
make great efforts on the online part while leaving the offline part unchanged. We have tried 
many natural language processing techniques, and incorporated many sources of world 
knowledge, including Web. A novel Query formulation technique has also been put forward.  

 In addition, we’ve tried another attempt on answer extraction in this year’s task. In the 
second section, we will describe the architecture of our QA system; and give a detailed 
description on the Query formulation for Web search in the third section; while in the fourth 
section, we will introduce our new attempt on answer extraction; and we will present our 
performance in the last section.  

2 Architecture 
FDUQA’s architecture is shown in figure1. Our system can be divided in two ways. One 

is traditional: question analysis, retrieval, and answer extraction, as shown in figure 1 by the 
two horizontal lines. The other is more natural: answer type decision-making, candidate 
answer decision-making, and final answer decision-making, as shown in figure 1 by the two 
vertical lines. We’ll describe the FDUQA system in the latter.  

In the answer type decision-making step, FDUQA system determines the answer type 
of the input question based on the question’s interrogative and focus words. The classifier 
and focus words decision algorithm are both based on heuristic rules. We adopt an eighteen-
class answer type classify system, illustrated in table1. At this step our system can achieve 
the precision of 80%. 

ABBR NOUN_PHRASE AGE 
CAPITAL_WORDS DESP_OF_ABBR DATE 
LOCATION LENGTH MEASURE 
MONEY NUMBER ORGANIZATION 
PERCENT PREP_PHRASE PERSON_NAME 
SPEED WRITING_NAME NONTYPE 

Table 1 Answer Type concepts 

At the second step, candidate answer decision-making, our system searches the Web 
by Google and then tries to find the answer in the returned snippets. Finding an answer in 
the huge corpus is easier than in a smaller one in some sense, because system can search 
the corpus more easily and get more confident answer by stricter query (or query set). For 
example, questions such as “Where was Hans Christian Anderson born?” are very easy for 
Web search engine to find the answer by inputting query as “Hans Christian Anderson was 
born in”. We’ll describe the Query formulation for Web Search module in great details in the 
next section.  



 
Figure 1 FDUQA system architecture 

The upper two modules can be taken for question analysis and retrieval steps for the 
traditional QA system, while the following modules make up of the answer extraction step. 
Candidate answer tagging module tags candidate answers in the returned snippets based on 
their NE tagging and Base NP tagging results. Consider the distances of the key concepts 
and the distances between the candidate answers and key concepts, the multi-policy 
boosting module gives score to every candidate answer and snippet pair. The pairs are 
clustered by candidate answers, and each candidate answer set can get its score by adding 
up all of its elements’ scores. Thus, the candidate answers can be sorted with their scores.  

The third step is final answer decision-making section. At this step, the first two 
modules, Query generation for TREC search and search engine, are the same as last year. 
The following modules are almost the same as the corresponding modules in last step. The 
only difference between two “Candidate Answer tagging” modules is that system tagging the 
candidate answer in this step based on the candidate answer generated in last step, the 
candidate answer decision-making step. Support selection module sets the support score by 
adopting the same technique that used in multi-policy boosting module that give score to 
every candidate answer and snippet pair. The system integrates every candidate answer’s 
support scores and their ranks in last step to sort them. FDUQA system considers the top 
one candidate answer as the final answer.  



3 Query formulation for Web search 

3.1 Query Formulation 

Answer of a question may appear in a context, which is just the statement form of the 
question. For example, the answer of question “What book did Rachel Carson write in 
1962?” appears in a context like “Rachel Carson wrote <Answer> in 1962”. But mostly such 
a context doesn’t exist in a limited corpus like AQUAINT. However, we do retrieval not only 
on the AQUAINT corpus, but also on Internet like some other systems (Kwok et al., 2001; 
Dumais et al., 2002). Because of the largeness and variety of information on Internet, this 
context can be retrieved now. Based on this idea, we formulate queries for Web retrieval. 
Figure 2 describes the process of query formulation.  

 

Figure 2 process of query formulation 

 
Our system first parses questions using LinkParser (Sleator and Temperley, 1993), an 

English parser based on link grammar. Its precision is up to 0.9. Next we extract four 
constituents from the parsed question: subject, predicate, object and adverbial modifier. 
These constituents are then used to formulate queries for Web retrieval.  

For example, we parsed the question “What book did Rachel Carson write in 1962?”  
Its constituents are:  

“Rachel Carson” – subject; 
“wrote” – predicate; 
“in 1962” -- adverbial modifier. 

In this question, object of “wrote” is the question focus.  
The queries formulated from the above constituents are:  

"Rachel Carson wrote" "in 1962" 
"Rachel Carson wrote" in 1962 
"Rachel Carson" wrote in 1962 
Rachel Carson wrote in 1962 

Words in quote marks must appear continuously in retrieved snippets, while others may 
appear dispersedly or even not appear. Obviously, the first query is a tight one. And the 
followings are relatively looser. We generate loose queries allowing for other forms of context 
on Web. For example, “1962 Rachel Carson wrote Silent Spring that was aimed at the 
general public and became the Uncle Tom’s Cabin of the new environmentalism”. This 
snippet can’t be retrieved with the first query, but can be retrieved by the later three. And “... 
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Rachel Carson grew up on a small Pennsylvania farm, where she ... her degrees in 1932, 
she wrote science articles ... of the Sea, and finally Silent Spring in 1962” can only be 
retrieved by the last two queries.  

3.2 Retrieval on Web 

Among various Web search engines, we select Google because of its high performance. 
And the formulated queries are specified according to the requirement of Google. We submit 
queries to Google from tight ones to loose. Thus we can find snippets with answers for most 
of the questions.  

We have done an experiment on questions of TREC2002 QA Track. In these 500 
questions, TREC provided answers for 444 of them. So we only considered these 444 
questions. And only the first 20 received results for each query are used. The result of Web 
retrieval is listed in table 2.  
 

#question #question (has answer in 
snippets) 

#question (has answer in snippets 
and some snippet supports the 

answer) 
444 367 (82.7%) 341 (76.8%) 

Table 2 Web retrieval Result 
We can find answers in the retrieved snippets for 82.7% of the 444 questions. And in a 

closer observation, the retrieved snippets support 341 answers, that is 76.8% of all these 
questions. Thus, most of the search results contain answers. It’s important for the later 
processing.  

4 New attempt for answer extraction 
Pattern based method has been used by many other question answering systems, 

InsightSoft (Soubbotin and Soubbotin, 2001; Soubbotin and Soubbotin, 2001) has acquired 
good performance, ISI developed a method for learning patterns automatically 
(Ravichandran and Hovy, 2002). 

We try a new pattern based method for implementing the answer extraction and give a 
solution to the problems that other system failed, such as only one key phrase of the 
question can be included within pattern. We will introduce the process of pattern learning and 
answer extraction with them.  

The pattern for answer extraction is called context pattern, it is consisted of the 
following three parts: <Q_Tag>+[ConstString]+<A>. Here, <Q_Tag> stands for the key 
phrase in question, it includes different elements of the question, and we will introduce them 
later. <A> stands for the answer, any string holding the position will be extracted as the 
answer. “[ConstString]” is a sequence of words.  

Context patterns can be learned automatically using the <Q_Tag , A> pairs as training 
examples. For instance, context pattern “<A>, Q_Focus of Q_NameEntity” can be used to 
answer the question “What is the capital of Syria?” “Q_Focus” represents the question term 
“the capital” and “Q_NameEntity” represents the question term “Syria”.  

We take the 500 questions of TREC 2002 as our training data for learning these context 
patterns.  



4.1 Question Analysis 

We define a set of notations to represent questions in advance as illustrated in table 3. 
They are the object or event the question asks about.  

All these Q_Tag have different importance scores taking into account the possibility 
they appear around the answer.  

The question pattern (Q_Pattern) is generated from its Q_Tag symbol set, and then the 
classification of questions will be built based on the Q_Pattern and the answer type. A case 
in point is that the question class “ [DAT] When was Q_BNP_1 Q_Verb? ” covered the 
question “ When was Apollo 11 launched? ”, “ When was the first atomic bomb dropped? ” 
and so on.  

 
 

Q_Tag Description 
 

Importance_Score 

Q_Quotation the quotation part in the question 8 

Q_Focus 
the key word or phrase representing the 
object or event the question asks about 
(analyzed from Parser Minipar) 

7 

Q_NameEntity the name entity in the question  
(analyzed from Name Entity tool) 6 

Q_Verb the main verb of the question 
(analyzed from Parser Minipar) 5 

Q_BNP the noun phrase of the question 
(analyzed from the BNP Chunking tool) 4 

Table 3 Symbol Set of Question 

4.2 Pattern Learning and Evaluation 

We will explain our approach with the sample example below.  
Sample question class: [LCN] What Q_Verb Q_Focus of Q_NameEntity?  
Sample question: What is the capital city of New Zealand?  
Where Q_Verb = “is”, Q_Focus = “the capital city”, Q_NameEntity = “New Zealand”, 

and Answer = “Wellington”. 
The context patterns of each question class are learned by the following algorithm:  
    1. Constructing Query: “Q_Focus + Q_NameEntity +Answer” is constructed as the 

query. For example, the query of above sample question is: “the capital city”+“New 
Zealand”+ “Wellington”.  

2. Searching: the query is submitted to the search engine Google and the top 100 
Web documents are downloaded.  

3. Snippet Selection and Filtering: the snippets for pattern learning are extracted from 
the Web documents. The answer, the nearest ten words left to it, and the nearest ten words 
right to it are retained. 

4. Context Pattern Extraction: replace the question term in each snippet by the 
corresponding Q_Tag, and the answer term by the tag <A>. The minimum length string 
containing the Q_Tag and the tag <A> is extracted as the context pattern. For example, 
consider the string “…the number of languages that are being spoken. Wellington the capital 
city of New Zealand and …”, context pattern “<A> Q_Focus of Q_NameEntity” is extracted. 



5. Computing the Initial Score of Context Pattern: the score is computed as the 
following formula considering the importance of the Q_Tag and the distance between the 
different Q_Tag and the answer. (α=1,β=0.6) 
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m is the number of Q_Tag the question class contains, n is the number of the Q_Tag 

the context pattern contains, di is the distance between the different Q_Tag and the answer.  
The approach to context pattern evaluation is as follows. Query for each context pattern 

is formed and submitted to the Google, and the top 100 snippets are downloaded for context 
pattern precision calculation. The query consists of three parts: 
[ Pre_Part]+[Post_Part ]+[Q_Focus + Q_NameEntity ]. 

[ Pre_Part] stands for the word string left to tag <A> of the context pattern, and that 
[Post_Part ] stands for the word string right to tag <A> of the context pattern. [Q_Tag] is 
composed of the Q_Focus and Q_NameEntity of the question. The matching score of each 
pattern is calculated as follows:  

Match

MatchCorrect

Num
Num

ScoreMatch __ =
 

      NumCorrect_Match denotes the number of snippets that tag <A> is matched by the correct 
answer; NumMatch denotes the number of the snippets that tag <A> is matched by any word.  

At last the score of the context pattern is computed with the formula :  (α=0.3,β=0.7)  
ScoreMatchScorInitialScorePattern ___ •+•= βα  

4.3 Answer Extraction 

The context patterns can be used to extract answer to a new unseen question as 
follows:  

1. Determine the question class of the unseen question based on its Q_Pattern and 
answer type. The corresponding context patterns are also selected. 

2. Replace the Q_Tag symbols in the context pattern with the corresponding word 
string of the question. 

3. For each context pattern and each snippet search engine returned, select the 
words matching tag <A> as the answer. 

4. Sort the answers by their context pattern’s score and their frequency. 
The first answer is returned to the factoid question and the top five answers are 

returned to the list question and definition question.  

5 Conclusion 
This year we only take part in the main task of QA, and submit three runs. Our results 

are not very satisfactory. Our first run, FDUT12QA1, is based on our main architecture; 
FDUT12QA2 is our new attempt; and FDUT12QA3 is the simple combination of 
FDUT12QA1 and FDUT12QA2. Their detail evaluation report is illustrated in table 4. 

 
 FDUT12QA1 FDUT12QA2 FDUT12QA3 



Final score 0.163 0.122 0.165 
Accuracy of factoid 
questions 0.194 0.179 0.191 
Average F of list questions 0.088 0.067 0.086 
Average F of definition 
questions 0.176 0.065 0.192 
right questions of factoid 
questions 80 74 79 
Unsupported questions of 
factoid questions 28 27 27 

Table 4 Evaluation report 

We find in table 4, that the numbers of unsupported questions of factoid questions are 
very big compared with their corresponding right answered questions. That’s because we 
can’t well integrate the Web into our system. 
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