
NLPR at TREC 2003: Novelty and Robust
Qianli Jin, Jun Zhao, Bo Xu

National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Science

Beijing, China 100080
{ qljin, jzhao, bxu }@nlpr.ia.ac.cn

 It is the first time that the Chinese Information Processing group of NLPR
participates in TREC. Our goal in this year is to test our IR system and get some
experience about the TREC evaluation. So, we select two retrieval tasks: Novelty
Track and Robust Track. We build a new IR system based on two key technologies:
Window-based weighting method and Semantic Tree Model for query expansion. In
this paper, the IR system and some new technologies are described first, and then
some detail work and results in Novelty and Robust Track are listed.

1 IR System and new technologies

1.1 The Architecture of IR system
 Our IR system is both for English Retrieval and Chinese Retrieval. Some maim
parts of the system are shown in the following.

POS

Tagging / Parsing

Query Expansion / NER

POS

Tagging / Parsing

New Query

On-line

New Query

Query Documents Off-line
Chinese English Chinese English

Stemming Stemming

Semantic
Tree
Model

Indexing

Indexed Corpora

Window-based
Weighting

Compute the similarities

Relevant Document list

Relevant Feedback

There are many modules in the system, such as POS, stemming, tagging, NER, Query
Expansion and etc. Most of them are traditional and common, except that there are
two new technologies: Window-based Weighting and Semantic Tree Model. In the
following two parts, they are detail introduced.

1.2 Window-based Weighting
The key algorithm of an IR system is similarity computing between queries and

uery: “Can radio waves from radio towers or car phones affect brain cancer

Document A: “John claimed his brain

documents. Till now, the most popular algorithm is the inner product of vectors, and
the vectors can be built by using weighting technologies, such as binary weight, tf-idf,
query expansion, relevant feedback and etc. In other words, most of the existing
algorithms are based on vector computing. However, this method usually gets limited
precision, because sometimes, a vector can not represent a query properly. For
instance, if we have the following query and two documents:

Q

occurrence?”
 cancer was caused by the wave from his

cellular phone. That claim, put forth in a lawsuit, has no basis in
accepted scientific fact.”
 “I was listening to the rDocument B: adio, when the tower collapsed. I ran several

blocks before my brain kicked in, and saw that another wave of
people started running towards a police car.”

e definitely know that Document A is relevant to the Query, while Document B is

e develop two key notions as follows:
 contributions

,

ased on the above two key notions, we developed three window-based models for the

.2.1 Model One: Simple Window-based Model
s in a document, the larger the

W
not. But if binary word vector model is used, the similarity value between Document
B and the query is larger than the one between Document A and the query. We also
try some other weighting technologies such as tf-idf, query expansion and etc., but
find that in this case, based on vector computing, Document B seems more “relevant”
to the query than Document A.
In order to solve this problem, w
 1. Query words appearing closely in the document provide more
to the similarity value than the ones appearing separately. The closer the query words
in a document, the larger the similarity value between the query and the document.
 2. Some query words, like named entities and baseNP are called “Core Words”
while the other words are called “Surrounding Words”. “Core Words” are much
more important than “Surrounding Words”, and should have special status in the
retrieval processing (i.e. having larger weights).

B
application of information retrieval. They are called “Simple Window-based Model”,
“Dynamic Window-based Model” and “Core-window-based Model”, from the simplest
model to the most complex one.

1
As our first key notion, the closer the query word
similarity value between the query and the document. So, we introduce a window in
the retrieval processing. When the query words co-occur in the window, a larger
similarity weight is provided. First we put all the words of the document into the word

sequence orderly, like the Figure 1. Each sub-sequence with d continual words is
included in a d-width window.

Let N denote the number of the words in the whole sequence, and denote the width

can be represented as follows:

 d

of the window. Then the similarity value (),(1 dqSim) between query and document

dN

∑
=

+=
i

diiSWindqSim
1

)1......(),(),(1
−

 denotes the similarity value between the query and the d-width

th word to ()th word in the whole sequence in the Simple

sequence. H is equ l to ONE if the jth word is a query word, otherwise, it is

is the inverse document frequency of the jth word in the

ity value between a query and a document is the sum of the

repres ts of two items. The first one

)2]......([*]*[),(∑∑
+

=

+

=

=+
di

ij
j

di

ij
jj tidftdiiSWin

where),(diiSWin +

window from the i

ere, jt

equal to ZERO. And

sequence. The final si

ented as Form

itio

i+d

Window-based Model. t is the binary signal of the jth word in the whole

similarity values of all the windows. The similarity value in a single window,

j

a

j

ilar

ula 2, consis

idf

m

nal tf-idf method. And

]*[∑
=ij

jj idft

provides mo

+

is just like

the trad the second one re weight,

when more than one query word appeared in the corresponding window.

di

][∑
+

=

di

ij
jt

1.2.2 Model Two: Dynamic Window-based Model
weight to the window, which

ightWin is the smallest window width, which can overlay all the query

In Simple Window-based Model, we give larger
includes more than one query word. But what is the distribution of these query words
in the window? They can be separate or conjoint. If these query words in the window
are conjoint, they maybe form a phrase. As we all know, phrases usually are less
ambiguous than words. So, we should give the conjoint query words larger weight
than the separate query words in the window. Another problem in Model One is that it
is difficult to decide the width of window in real applications. A fixed window width
cannot be suitable for all queries. In order to solve the above two problems, Model
Two is proposed, which is called Dynamic Window-based Model. In the new Model,
a dynamic window width called “TightWin” is developed to modify the original fixed
window.
Define: T
words in the original window.

In Figure 2, we give several examples about the value of TightWin. If the query words

ber of the words in the whole sequence, and d denote the width

distribute separately in the original window, the value of TightWin is large. And if
they are conjoint, the TightWin is small. So, we should give a large weight when
TightWin is small.
Let N denote the num
of the window. Then the similarity values between query and document in Model Two

(),(2 dqSim) can be represented as follows:

∑
−

=

+=
dN

i

diiDWindqSim
1

)3......(),(),(2

)4......()
][

(*][*]*[)
][

(*),(),(p

di

ij
jdi

ij
j

di

ij
jj

p

di

ij
j

TightWin

t
tidft

TightWin

t
diiSWindiiDWin

∑
∑∑

∑
+

=
+

=

+

=

+

= =+=+

where),(diiDWin + denotes the similarity value between the query and the d-width

window from the ith word to (i+d)th word in the whole sequence in Dynamic

Window-based Model. is the binary signal of the jth word in the whole

sequence. Here, is equal to ONE if the jth word is a query word, otherwise, it is

equal to ZERO. And is the inverse document frequency of the jth word in the

sequence. TightWin is defined above, and p is a parameter, which is larger than zero.

Compared with Model One, Model Two has an additional item

jt

j

jt

idf

p

di

ij
j

TightWin

t
)

][
(
∑
+

= , which

provides adjustment to the original fixed window. The conjoint query words provide
more contributions to the final similarity value.

d

ii,(

1.2.3 Model Three: Core Window-based Model
In the above two models, when query words appear closely in the document, they will
be given larger weight. In some cases, it may bring some problems. Take a look at the
above example query again.

“Can radio waves from radio towers or car phones affect brain cancer
occurrence?”

When the query words “radio waves” and “brain cancer” appear closely in a
document, we can say that this document is most likely relevant to the query. But,
when the query words “car phone” and “affect” appear closely in a document, we are
not sure whether it is relevant. So, based our second key notion, we parse the query
sentence and classify the query words into two groups. They are “Core Words” and
“Surrounding Words” defined as follows.
Define:
(1) The query words, which represent the main meaning of the query, such as baseNP

and Named Entities, are called “Core Words”.
(2) The query words, which are not core words, are called “Surrounding Word”.
(3) A window is called “Active Window”, if and only if it includes Core Words.

Obviously, Core Words are much more important than Surrounding Word. So, Active
Window should have larger weight than the common window.
Let N denote the number of the words in the whole sequence, and d denote the width
of the window. Then the similarity value between query and document in Model

Three (Sim) can be represented as follows:),(dq

∑
−

=

+=
N

i
dCWindqSim

1
)5......()),(3

)6...(][*)
][

(*][*]*[][*),(),(C m
di

ij
j

p

di

ij
jdi

ij
j

di

ij
jj

di

ij
j t

TightWin

t
tidfttdiiDWindiiWin ∑

∑
∑∑∑

+

=

∗

+

=
+

=

+

=

+

=

∗ =+=+

),(diiCWin +

jt

jt

*
jt

*
jt

jidf

m
di

ij
jt]∑

+

=

∗

where denotes the similarity value between the query and the d-width

window from the ith word to (i+d)th word in the whole sequence in Core

Window-based Model. is the binary signal of the jth word in the whole

sequence. Here, is equal to ONE if the jth word is a query word, otherwise, it is

equal to ZERO. is another binary signal of the jth word in the whole sequence

for Core Words. is equal to ONE if the jth word is a Core Word, otherwise, it is

equal to ZERO. And is the inverse document frequency of the jth word in the

sequence. TightWin is defined in 1.2.2, and m is a parameter, which is larger than zero.

Compared with Model Two, Model Three has an additional item[, which

focuses on the Core Words in the window. Only the active window has contributions
to the final similarity value. The more the core words in the window, the larger the
similarity value.

Detail evaluations of window-based weighting are included in the Reference [1].

1.3 Semantic Tree Model for Query Expansion
The key problem of query expansion is to compute the similarities between terms and
the original query. In other words, the original query can be regard as a point in the
semantic space, and the goal of query expansion is to select some additional terms,
which have the closest meaning to the point. So, as the first step, like most of the
former methods, we need to compute the prior similarities between the terms. And we
use Term Similarity Trees to represent and estimate the similarities between terms,
which can cluster the terms according to their meaning. Then, we use the TSTM to
expand queries.

1.3.1 Grow Term Similarity Trees based on prior similarities between terms

1.3.1.1 Build elements of Term Similarity Tree

Let denote the prior similarity between the term q and p. For a given

term q, use a tree to represent the sorted similarities in descending order between q

),(pqPSim

and all the other words, like the left part of the following Figure.

Note that the weight of the branch between and is , and: q mp),(mpqPSim

),(...),(1 ≥≥≥ mpqPSimpqPSim

Then, we keep the first m leaves and discard the rest to build m-best tree of prior
similarities, like the right part of the Figure. There are several methods for computing
the prior similarities between terms. Here, we use normalized local co-occurrence
algorithm to estimate them.

1.3.1.2 Grow Term Similarity Tree

Let denote the original query including K terms, where

is the ith term in query. Then, we grow the Term Similarity Tree of query Q

asTSTM , where v denotes the expanded level and m indicates that each

element in term similarity tree is an m-best tree of prior similarities. The term
similarity tree of query Q is shown in the following Figure.

),...,,...,,(21 Ki qqqqQ =

),,(mvQ

iq

Each part framed by a quadrangle in the Figure denotes an element of TSTM, which
is an m-best tree of prior similarities. Using the multi-level term similarity tree, we
can easily compute the semantic similarity between two terms (one query term and
one other term), no matter whether they co-occur in the training corpora. Note that

each term in the query, like , has its own sub-tree, whose root is the query-term

itself. We define:

iq

(a) A path between the query-term and its leave-term p is the route from the root

node to the leave node p.
iq

iq
(b) The weight of a path between the query-term and its leave-term p is the

product of all the branch weights (prior similarity) on the path from to p.
iq

iq
(c) The shortest path between the query-term and its leave-term p is the path

between and p, which has the largest weight.
iq

iq
(d) The similarity between the query-term and its leave-term p is defined as the

weight of their shortest path.
iq

For instance, we can compute similarity between two terms and as: 1q jip ,,1

)7(......),(),(

),(),(

,,1,1,11

,,11,,11

jiii

jiji

ppPSimpqPSim

pqpathshortestofweightpqSim

×=

−−−=

1.3.2 Query Expansion based on TSTM

Let denote the original query including K terms, where

is the ith term in query. The is the term similarity tree of query Q.

),...,,...,,(21 Ki qqqqQ = iq

),,(mvQTSTM

The term w is expanded to query Q, when w satisfies two conditions illustrated as the
following two formulae:

)8(......
)),,,((

),(),(
1








×≥

≥= ∑
=

KpercentwmvQTSTMOverlay

cvwqSimwQSim
K

i
i

(qSim i

iq

where is the similarity

between the query Q and the term w. is the similarity between the term

 and w, which can be estimated as formula (7). And cv is the threshold value of

similarity.

),(wQSim

), w

) denotes the occurrence times of term w in the sub-trees

of . It means that in the total K sub-trees of Q’s term similarity tree,

how many sub-trees include (overlay) the term w. percent is the threshold value of
overlay degree.

),,,((wmvQTSTMOverlay

),,(mvQTSTM

The first discrimination function in formula (8) is used to estimate the similarities

between the term w and the query terms q respectively. And the

second discrimination function in formula (2) is used to estimate the similarity
between the term w and the whole query Q. The query Q can be regard as a point in

Ki qqq ,...,,...,, 21

the semantic space, so we need to know whether the term w is close in meaning to this

point, not just close to the independent meaning of each . iq

Detail evaluations of Semantic Tree Model for query expansion are included in the
Reference [2].

2 Novelty Track

 The Novelty Track is designed to investigate systems' abilities to locate relevant
and new information within a set of documents relevant to a TREC topic. The goal of
the track is to find out relevant/new sentences, instead of documents.

2.1 Relevant
Considering sentences have few words than documents, query expansion is much
more important. So, we use the following process to deal with relevant retrieval:

A) Two Stages Query Expansion. In the first stage, we use Term Similarity Model to
expand queries. In the second stage, we use Relevant Feedback to modify and expand
queries again to improve the retrieval result. Usually, top 20% sentences are used for
relevant feedback, after the first retrieval.

B) We use two different methods to compute similarities between queries and
sentences. The first is the traditional tf-idf method. And the second is window-based
method to ensure that the closer the query words in sentences, the higher the
similarity value. Actually, this method is the expansion of N-gram model (because
window-based method does not require the query words appearing directly continual).

C) We use an existing method called 'pivoted document length normalization' to
normalize sentence length. (see the Reference [3])

D) The similarity values of different topics are usually different. The main reason is
that queries have different length and query words have different characteristics (i.e.
idf). So, it's unreasonable to use a simple and fixed threshold for every topic. Here, we
developed one dynamic threshold for one topic, based on the probabilistic
characteristics of similarity values between this topic and sentences.

2.2 Novelty (new)
Having relevant sentences, we have another task to filter out repeated information. We
define a value called 'New Information Degree'(NID) to present whether a sentence
includes new information related to the former sentences. If the value of NID is big,
this sentence is reserved, or it will be discarded. There are two different ways to

define NID of the latter sentence related to the former sentence.

 Sum the 'idf' value of words appeared in both sentences
NID_1 = 1- --
 Sum the 'idf' value of words appeared in latter sentences

 The number of matched bi-gram word sequences
NID_2 = 1 - --
 Total number of bi-gram word sequences in latter sentences

Usually, if the value of NID is bigger than 10%-20%, the latter sentence will be
considered useful (including new information).

2.3 Official Results
Dyn: Dynamic Threshold Sta: Static Threshold
Win: Core Window-based weighting method RF: Relevant Feedback
Leng: Length Normalization Tf-idf: tf-idf weighting
NID_1 / NID_2: defined above in 2.2 QE: Query Expansion

Task 1 Table

ID TAG Algorithms Relevant Results
Average F Measure

Novelty Results
Average F Measure

NLPR03n1w1 Dyn-Win-RF 0.510 0.425
NLPR03n1f1 Tf-idf-leng-RF 0.477 0.399
NLPR03n1f2 Tf-idf-leng-RF 0.407 0.349
NLPR03n1w2 Dyn-Win-RF 0.391 0.325
NLPR03n1w3 Dyn-Win-RF 0.330 0.279

Task 2 Table

ID TAG Algorithms Average F Measure

NLPR03n2d1 NID_1, Dyn 0.807
NLPR03n2s1 NID_1, Sta 0.819
NLPR03n2d2 NID_2, Dyn 0.808
NLPR03n2s2 NID_2, Sta 0.817
NLPR03n2d3 NID_1+2, Dyn 0.803

Task 3 Table

ID TAG Algorithms Relevant
Average F

Novelty
Average F

NLPR03n3d1 RF, Win, leng, NID_2, Dyn 0.687 0.518
NLPR03n3s1 RF,Win, leng, NID_1, Sta 0.677 0.532

NLPR03n3d3 RF,Win, leng, NID_1, Dyn 0.674 0.509
NLPR03n3d2 QE,RF,tf-idf, leng, NID_2,Dyn 0.618 0.472
NLPR03n3s2 QE,RF, tf-idf, leng, NID_1,Sta 0.624 0.489

Task 4 Table

ID TAG Algorithms Average F Measure

NLPR03n4d1 NID_1,Dyn 0.775
NLPR03n4s1 NID_1, Sta 0.789
NLPR03n4s2 NID_1+2, Sta 0.794
NLPR03n4s3 NID_2, Sta 0.796
NLPR03n4d2 NID_2. Dyn 0.773

Form the above results, we find that the technologies of window-based weighting
method and relevant feedback are useful. In task 2,3,4, we all get very big values of
average F measure, but in task 1, it is small. The reason is that in task 1, we use TREC
Novelty 2002 data as our training corpora, which have quite few relevant sentences.
However, the data for 2003 have many relevant sentences (even more than 50% for
some topics), so we should use small thresholds. The big thresholds from the training
corpora (2002 data) make good precision and poor recall (also poor F measure). In
task 2-4, we use a part of the 2003 data as the training corpora and get better F values.

3 Robust Track

 As a mature IR system, the robustness is quite important. The goal of the Robust
Track is to improve the consistency of retrieval technology by focusing on poorly
performing topics. So, in this track, we improve our system based on the following
two points:

1) Considering that even the worst topic should have an acceptable result, a robust

algorithm of similarity should be produced to improve precision for each topic.
2) Though at most 1000 documents will be accepted by NIST per topic, we suppose

that most users only look through the former part of retrieval result (Maybe 2 or 3
screens). So, for each run, we submit several dozens of retrieved documents. We
should make sure that the true relevant documents have the top similarity values.

3.1 Processing
In order to improve the robustness described above, we use a combined algorithm,
including four technologies. The processing of our system is as follows:
 A) Query expansion based on Term Similarity Trees. It is described in the first part

of this paper and also in the Reference [1].
 B) Window-based weighting methods for computing similarities. It is described in

the first part of this paper and also in the Reference [2].
C) Length normalization (see the Reference [3])

D) Dynamic Threshold. The similarity values of different topics are usually different.
The main reason is that queries have different length and query words have
different characteristics (i.e. df). So, it's unreasonable to use a simple and fixed
threshold for every topic. Here, we developed one dynamic threshold for one
topic, based on the probabilistic characteristics of similarity values between this
topic and documents.

3.2 Official Results

ID Tag Algorithms Retrieved
documents

Average Precision
(non-interpolated)

Number of topics
with no relevant

in top 10
NLPR03vb25 Dynamic

Window-based
weighting

25 0.1516 7%

NLPR03vb10 Simple
Window-based

weighting

10 0.1055 7%

NLPR03w16 Core
Window-based

weighting

16 0.1153 10%

NLPR03vb50 Dynamic
Window-based

weighting

50 0.1770 7%

NLPR03w49 Core
Window-based

weighting

49 0.2434 10%

From the above table, we can see that we get a low value of average precision. The
reason is that for each topic, only several dozens of retrieved documents are returned,
not 1000. We suppose that most users only look through the former part of retrieval
result and a robust IR system should ensure that users can find relevant documents at
the top 10 or 20. Based on the experiments, the window-based methods, especially
core window based method, outperform most traditional tf-idf weighting method.
Detail evaluation and discussion are given in the paper of reference [1].

Reference
[1] Qianli Jin, Jun Zhao, Bo Xu, Window-based Method for Information Retrieval,

2004, The First International Joint Conference on Natural Language Processing
[2] Qianli Jin, Jun Zhao, Bo Xu, Query Expansion based on Term Similarity Tree,

2003 International Conference on Natural Language Processing and Knowledge
Engineering, IEEE.

[3] Amit Singhal, Chris Buckley, Mandar Mitra, Pivoted Document Length
Normalization, SIGIR 1996.

	1 IR System and new technologies
	2 Novelty Track
	3 Robust Track

