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1 Introduction

The Document Understanding Conference (DUC) uses TREC data as a test bed for algorithms
for single and multiple document summarization. For the 2003 DUC task of choosing relevant and
novel sentences, we tested a system based on a Hidden Markov Model (HMM). In this work, we
use variations of this system on the tasks of the TREC Novelty Track for finding relevant and new
sentences.

Our complete information retrieval system couples a query handler, a document clusterer, and
a summary generator with a convenient user interface. For the TREC tasks, we use only the
summarization part of the system, based on an HMM, to find relevant sentences in a document and
we use linear algebra techniques to determine the new sentences among these.

For the tasks in the 2003 TREC Novelty Track we used a simple preprocessing of the data which
consisted of term tokenization and SGML DTD processing. Details of each of these methods are
presented in Section 2.

The algorithms for choosing relevant sentences were tuned versions of those presented by members
of our group in the past DUC evaluations (see [5, 8, 15] for more details). The enhancements to
the previous system are detailed in Section 3.

Several methods were explored to find a subset of the relevant sentences that had good coverage
but low redundancy. In our multi-document summarization system, we used the QR algorithm on
term-sentence matrices. For this work, we explored the use of the singular value decomposition as
well as two variants of the QR algorithm. These methods are defined in Section 4. The evaluation
of these methods is discussed in Section 5.
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2 Preprocessing

2.1 Tokenization

The tokenization was quite simple. First the text was converted to lower case. All contiguous
strings of characters taken from the set {a,b,...,z} were terms except for those matched on a short
list of stop words.

2.2 Parsing Files using DTDs

Using the SGML document type definition (DTD) for a document allowed us to determine the
set of all possible SGML tags that exist in documents of that type. Using these tag sets, we
distinguished which sentences 1) were candidates for relevant sentences, 2) were not candidates for
relevant sentences but which contained key terms or phrases that would aid in identifying relevant
sentences, and 3) contained no useful information for the task of extracting relevant sentences. We
created a new attribute, stype, for the SGML tag denoting a sentence boundary, <s>, in order to
denote each of these three types of sentences. The possible values for this new attribute are 1, 0,
and −1, respectively. Table 1 presents the values of stype used for sentences embedded into the
SGML tags encountered in the several types of documents used in the evaluation.

Choosing to embed information into the document itself instead of creating a processing module
in our algorithm allowed us flexibility in using the information throughout the various stages of
our system. Furthermore, it will allow us to expand the types of sentence classification without
changing the code.

3 Finding Relevant Sentences

An HMM, in contrast to a naive Bayesian approach ([1], [12]), has fewer assumptions of in-
dependence. In particular, it does not assume that the probability that sentence i is relevant is
independent of whether sentence i − 1 is relevant. In the HMM developed for this evaluation, we
used a joint distribution for the features set which varied based upon the position in the document.

All of the features used by the HMM were based upon the terms (as defined in Section 2.1) found
in a sentence. The features for the HMM were as follows:

• number of signature terms, nsig, in a sentence—value is o1(i) = log(nsig + 1).

• number of subject tokens, nsubj, in a sentence—value is o2(i) = log(nsubj + 1).

• position of the sentence in the document—built into the state-structure of the HMM.

The signature terms are the terms that are more likely to occur in the document (or document set)
than in the corpus at large. To identify these terms, we used the log-likelihood statistic suggested
by Dunning [9] and used first in summarization by Lin and Hovy [13]. The statistic is equivalent to
a mutual information statistic and is based on a 2-by-2 contingency table of counts for each term.

The subject terms are a special subset of the signature terms. These are the signature terms that
occur in sentences with stype = 0, for example, headline and subject heading sentences.



File DTD Filename SGML Tag stype

APW* ACQUAINT acquaint.dtd <TEXT> 1
NYT* <HEADLINE> 0
XIE* 0
FBIS* FBIS fbis.dtd <TEXT> 1

<TI> 0
<H1>, . . . , <H8> 0

FR* Federal Register fr.dtd <TEXT> 1
<SUMMARY> 1
<SUPPLEM> 1
<FOOTNOTE> 1
<DOCTITLE> 0

FT* Financial Times ft.dtd <TEXT> 1
<HEADLINE> 0

LA* LA Times latimes.dtd <TEXT> 1
<HEADLINE> 0
<SUBJECT> 0
<GRAPHIC> 0

Table 1: Mapping SGML tags to stype values. All tags not shown but allowed by each DTD are
assigned stype = −1.

The features were normalized component-wise to have mean zero and variance one. In addition,
the features for sentences with stype 0 and -1 were coerced to be -1, which forced these sentences
to have an extremely low probability of being selected as relevant sentences.

An HMM handles the positional dependence, dependence of features, and Markovity. (For more
details about HMMs, see [2] and [14].) The model we proposed has 2s+ 1 states, with s relevance
states and s + 1 non-relevance states. A picture of the Markov chain is given in Figure 1. Note
that we allowed hesitation only in non-relevance states and skipping of states only from relevance
states. This chain was designed to model the extraction of up to s − 1 lead relevant sentences
and an arbitrary number of supporting relevant sentences. Using training data, we obtained a
maximum-likelihood estimate for each transition probability and this formed an estimate, M , for
the transition matrix for our Markov chain, where element (i, j) of M is the estimated probability
of transitioning from state i to state j.

Associated with each state i is an output function, bi(O) = Pr(O|state i), where O is an observed
vector of features. We made the simplifying assumption that the features were multivariate normal.
The output function for each state was estimated by using the training data to compute the
maximum-likelihood estimate of its mean and covariance matrix. We estimated 2s + 1 means,
but assumed that all of the output functions shared a common covariance matrix.

Training for the HMM was straightforward given marked data. Since the states of the HMM
were known in the training data, creating the model simply amounted to computing the maximum
likelihood statistics given the counts.
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Figure 1: Markov Chain to Extract 2 Lead Sentences and Supporting Sentences

In particular, the training data helped determine the number of states for the HMM. The upshot
was that a state space consisting of thirteen states (six relevance states and seven non-relevance
states) was optimal given TREC 2002 data. (For Tasks 3 and 4, when some of the TREC 2003
data is allowed for training, the optimal number of states was three— one relevance state and two
non-relevance states.)

With this model we computed γj(i), the probability that sentence j corresponded to state i. We
computed the probability that a sentence was a relevant sentence by summing γj(i) over all even
values of i, values corresponding to relevance states. This posterior probability, which we define as
gj, was used to select the most likely relevant sentences. We refer the reader to [4] for details.

This posterior probability was used to select which sentences were likely to be relevant. The
selection algorithm attempted to choose the number of sentences so that the expected F1 score was
maximized. The approximate F1 score was computed based on the expected precision, E(P ), and
expected recall, E(R), as follows:

F̂1 =
2E(P )E(R)

E(P ) + E(R)

where

E(P ) =

∑
tεS gt

|S|

where |S| is the cardinality of the set S of sentences selected, and

E(R) =

∑
tεS gt∑
t gt

.

The set S was chosen by selectively choosing the sentences in decreasing order of their probability
of being a relevant sentence. The score F̂1 was then computed and the set S increased as long as
F̂1 increased.

Another feature that was considered previously (during the DUC evaluation) for our system
was based on the query terms derived from the topic descriptions. We attempted to use this
information in two ways. The first was to simply add an additional feature to the HMM. This
approach actually decreased the precision of the system. The second method we considered used
the derived query terms in conjunction with an information retrieval (IR) system to rank each



document. The hope was to use a combination of these IR scores and the HMM sentence scores
to generate the relevant sentences. Unfortunately, the IR scores did not correlate strongly with the
likelihood that a document’s sentence would be chosen as relevant. We hypothesize that since the
document collection only contains documents relevant to the query, the topic description terms do
not add any additional information. Clearly, more analysis is required to determine why the topic
descriptions did not help in the generation of relevant sentences.

4 Finding New Sentences

To choose a subset of the candidate relevant sentences to produce new sentences we experimented
with three algorithms: a QR decomposition, a pivoted QR decomposition, and the singular value
decomposition (SVD). These methods all work on the term–sentence matrix, A, where Aij is 1 if
term i occurs in relevant sentence j. Before applying the sentence selection algorithms, the columns
of A were normalized; the Euclidean length of a column was set equal to the probability that the
corresponding sentence was indeed relevant. For Tasks 2 and 4 these probabilities were 1 since the
relevant sentences were given, while for Task 3, the probability was equal to the score produced by
the HMM for that sentence, gj.

The SVD was used as an optional preprocessing to the matrix A before applying the QR or pivoted
QR. The SVD is a matrix factorization method that returns the best low rank approximation for a
matrix. The idea of using such preprocessing was borrowed from information retrieval, where the
SVD is the basis for Latent Semantic Indexing (LSI) [6]. LSI has been shown to be quite useful
in uncovering latent relationships between columns of term–document matrices, thus allowing for
more conceptual rather than exact term matching for query-based document retrieval (see [3, 7]).
The goal was to use the SVD to help uncover latent redundancy amongst the relevant sentences.
Given A ∈ R

m×n, let k̄ = min(m,n). Then the SVD of A [10] is defined by orthogonal vectors
ui of length m, and orthogonal vectors vi of length n, i = 1, . . . , k̄, and nonnegative numbers
σ1 ≥ σ2 ≥ ... ≥ σk̄ ≥ 0, such that

A =
k̄∑

i=1

σiuiv
T
i .

As described in [11], the rank-k matrix (k ≤ k̄) that gives the optimal approximation to a given
matrix A (as measured in the 2-norm or Frobenius norm) is

ÃSV D =
k∑

i=1

σiuiv
T
i .

The rank k was determined empirically for this application and corresponds to a preassigned small
error.

A QR decomposition, with or without pivoting, can be applied either to the weighted term-
sentence matrix Aw = A or the lower rank approximation of Aw = ÃSV D. The QR decomposition
was used to determine whether a sentence should be considered new or redundant. In the QR
factorization a sentence was considered redundant if the vector corresponding to it was of small
weight, say less than τ, a predefined threshold. Specifically, we developed the following algorithms
for selecting new, or novel, sentences.



Algorithm 4.1 (Thresholded QR Decomposition) Suppose Aw has m rows and n columns:
i.e., the document has m unique terms and n sentences. The following iteration constructs a matrix
Q with columns qi, a matrix R with nonzero elements rji, and an ordering for the columns in an
array Index.
For i = 1, 2, . . . ,min(m,n),

Among the remaining columns of Aw, choose the first column with 2-norm greater than
τ . Denote this column by a`, where ` is its index in the original matrix.

Set Indexi = `.

Set qi = a`/‖a`‖.

Update the remaining columns of Aw to make them orthogonal to the chosen column:
for each unchosen column aj, set rji = aT

j qi and set aj = aj − rjiqi.

The set of “new” sentences of size k contains sentences Index1, . . . , Indexk.

The standard implementation of the pivoted QR decomposition is a “Gram-Schmidt” process
and was used to select new sentences as follows.

Algorithm 4.2 (Pivoted QR Decomposition) Suppose Aw has m rows and n columns: i.e.,
the document has m unique terms and n sentences. The following iteration constructs a matrix Q
with columns qi, a matrix R with nonzero elements rji, and an ordering for the columns in an array
Index.
For i = 1, 2, . . . ,min(m,n),

Among the remaining columns of Aw, choose the column with maximal norm. Denote
this column by a`, where ` is its index in the original matrix.

Set Indexi = `.

Set qi = a`/‖a`‖.

Update the other columns of Aw to make them orthogonal to the chosen column: for
each unchosen column aj, set rji = aT

j qi and set aj = aj − rjiqi.

The set of “new” sentences of size k contains sentences Index1, . . . , Indexk.

5 Results

For Task 1 the HMM used for TREC was trained using the marked relevant and new sentences
in the Novelty data from TREC 2002. Specifically, for Task 1 three models were built. The first
focused on only the novel sentences. To strengthen the model further a subset of the novel sentences
were chosen by hand for 24 of the document sets. This process removed many sentences that did
not convey relevant information when taken out of their original context. These data were then
used to build an HMM to score the sentences and determine which features should be included.
This was the model that our group used in DUC 2003 and in the entries labeled ccsummeoqr and
ccsummeosvd for Task 1.



A second model used the subset of the data from the LA Times articles only. It was hoped
that this subset was more representative of the TREC 2003 data than the complete collection from
TREC 2002. One entry for Task 1 used this model and was labeled ccsumlaqr.

The third model was based on all of the relevant sentences from TREC 2002. For Task 1 the
given relevant sentences were used to build the HMM and the entries were labeled ccsumrelqr and
ccsumrelsvd.

Note that for Task 1 the suffixes “svd” and “qr” denote the results using a truncated SVD followed
by a pivoted QR and those using just a pivoted QR, respectively.

All three models for extracting relevant sentences performed comparably and unfortunately,
generated fewer sentences than the human judges did in 2003, since they were predicting relevant
sentences based upon the smaller number of sentences selected by the judges in 2002.

For the task of selecting the new sentences given a list of putative relevant sentences and only
TREC 2002 data, it appears that the preprocessing by using a truncated SVD was not worthwhile.
The two SVD methods gave median F1 scores below those given by the pivoted QR method.
The results of extracting relevant and new sentences for Task 1 are presented in Tables 2 and 3,
respectively.

Run Median Precision Median Recall Median F1 Median Rank
ccsumlaqr 64 22 32 34
ccsummeoqr 69 19 29 36
ccsummeosvd 69 19 29 36
ccsumrelqr 66 21 31 34
ccsumrelsvd 66 21 31 34

Table 2: Performance of CCSUM on Task 1: Relevant Sentences; 55 Total Entries

Run Median Precision Median Recall Median F1 Median Rank
ccsumlaqr 48 20 27 27
ccsummeoqr 46 19 24 30
ccsummeosvd 48 17 23 31
ccsumrelqr 48 21 26 27
ccsumrelsvd 47 18 25 29

Table 3: Performance of CCSUM on Task 1: New Sentences; 55 Total Entries

Run Median Precision Median Recall Median F1 Median Rank
ccsum2svdpqr 70 90 78 19
ccsumt2svdqr 69 92 80 15
ccsumt2pqr 70 95 80 9
ccsumt2qr 69 92 80 15

Table 4: Performance of CCSUM on Task 2: New Sentences; 45 Total Entries

In Task 2 we were given the relevant sentences and had to determine the new sentences. We
submitted 4 approaches: an SVD followed by a pivoted QR (ccsum2svdpqr), an SVD followed by a



thresholded QR (ccsumt2svdqr), a pivoted QR (ccsumt2pqr), and a thresholded QR (ccsumt2qr).
The thresholded QR was added for this task, since all the relevant sentences were known and a
thresholded QR was thought to more closely simulate how a human would perform the task by
scanning the sentences in order and deleting those that were redundant. All of these methods
performed comparably and tended to give relatively high recall (see Table 4). It is interesting to
note that the pivoted QR appears to have a considerably higher median rank for F1 relative to the
peer systems, despite its median precision, recall and F1 being comparable with the other 3 entries.
Overall, our system performed comparably with the best systems, which also generated F1 scores
around 0.80.

In Tasks 3 and 4 we were given the relevant and new sentences for the first 5 documents of each
of the document sets. We realized after submitting our results that we should not have included
any sentences from these first 5 documents, even if they were correct, since the scoring script was
keying on only documents from the last 20 in each document set. As a result of our submission
error our precision numbers were penalized. Therefore, for Tasks 3 and 4, we present here tables
giving the corrected results (Tables 6 and 8) as well as the results of those submitted (Tables 5 and
7). The former are a true reflection of the performance of our submitted methods, while the latter
is a “monument” reminding us to read submission rules carefully!

Run Median Precision Median Recall Median F1 Median Rank
ccsum3pqr 41 93 56 24
ccsum3qr 41 93 56 24
ccsum3svdpqr 41 93 56 24

Table 5: Performance of CCSUM on Task 3:Relevant Sentences; 38 Total Entries

Run Median Precision Median Recall Median F1 Median Rank
ccsum3pqr 51 93 66 11
ccsum3qr 51 93 66 11
ccsum3svdpqr 51 93 66 11

Table 6: Corrected Performance of CCSUM on Task 3:Relevant Sentences; 38 Total Entries

For Task 3 we were given the relevant and new sentences for the first 5 documents of each
document set. We built a single HMM based on these relevant sentences for our methods using
a pivoted QR (ccsum3pqr), a thresholded QR (ccsum3qr), and an SVD followed by a pivoted QR
(ccsum3svdpqr). Consequently, the precision, recall, and rank for our three entries were the same
(see Table 6). Our method for estimating the length based upon expected F1 score appeared to
want to “go long,... very long,” thus, giving a median recall of 93. In contrast, the models used in
Task 1 generated too few sentences. Still the overall F1 score was 66 (for the corrected submissions),
which was comparable to the best scoring systems as given in the overview of the results of the
Novelty Track evaluation (see Figure 8 in [16]).

For the second part of Task 3, selecting the new sentences based on the predicted relevant
sentences, the method of pivoted QR nudged out the thresholded QR and the SVD followed by
a pivoted QR (see Table 8).



Run Median Precision Median Recall Median F1 Median Rank
ccsum3pqr 26 91 41 21
ccsum3qr 25 94 38 24
ccsum3svdpqr 26 89 41 22

Table 7: Performance of CCSUM on Task 3:New Sentences; 38 Total Entries

Run Median Precision Median Recall Median F1 Median Rank
ccsum3pqr 33 91 48 11
ccsum3qr 30 94 44 15
ccsum3svdpqr 32 89 47 12

Table 8: Corrected Performance of CCSUM on Task 3:New Sentences; 38 Total Entries

For Task 4 we were given all relevant sentences and the new sentences from the first 5 documents
in each set. Here, we attempted to optimize the thresholds for both the truncated SVD and the
pivoted QR based on the given new sentences. In Table 9, ccsum4spq001 refers to the entry with a
threshold set to 0.001 while ccsumt4sqr01 refers the the entry using a threshold of 0.01. The smaller
threshold resulted in fewer new sentences, although it did not increase the median precision and did
reduce the recall, which resulted in a lower F1 score. Of the group of entries, the pivoted QR did
the best. Its shining virtue was that it did not miss a single new sentence; however it did generate
nearly twice the number that the judges did. Also, the precision of these methods is generally lower
than in Task 2, which indicates that the tuning of the model based on the new sentences from the
first 5 documents did not help.

Run Median Precision Median Recall Median F1 Median Rank
ccsum4spq001 67 98 80 9
ccsum4svdpqr 68 92 79 17
ccsumt4pqr 67 100 80 7
ccsumt4qr 72 92 82 9
ccsumt4sqr01 67 92 78 15

Table 9: Corrected Performance of CCSUM on Task 4:New Sentences; 41 Total Entries
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