
UB at TREC-11: Batch and Adaptive Filtering

M. Srikanth X. Wu R. Srihari

Department of Computer Science and Engineering

State University of New York at Buffalo,
Amherst, NY 14228-2567

1 Introduction

This is the first time we participated in TREC filtering track. We submitted four runs: two for
adaptive filtering, and two for batching filtering. And these runs come from two separate efforts with
very different approaches. One effort treats the filtering problems as standard text categorization
problems and solves them using Support Vector Machines (SVM). The second effort is a Language
Modeling approach to information filtering. Among other things we wanted to use filtering tasks as
large scale test cases for two separate frameworks we have been working on for information retrieval.
Significant time was spent on putting the components together and limited time on pre-submission
performance evaluation.

2 Weighted Margin SVM for Information Filtering

2.1 SVM in text categorization

The standard text categorization problem can be stated as following: given a set of category-labeled
documents, the goal is to classify a new document into the predefined categories. Typically each
document can belong to multiple categories or no category at all. This is a supervised machine
learning problem. And further more, when the categories form a flat structure, each category can
be treated as a separated dichotomy problem.

SVM are based on Structural Risk Minimization (SRM) principle from statistical learning the-
ory [7]. In contrast to the Empirical Risk Minimization (ERM) principle which try to find a
hypothesis h from a structural complexity fixed hypothesis space, H, that minimizes the training
error, the SRM try to find a hypothesis h where the true error of the classifier is minimized. To
achieve this, SRM usually tries to shrink the complexity of the hypothesis space H while main-
taining a fixed training error. Compare to ERM, SRM is more suited when the training data set is
limited.

SVM, the simplest linear form of SRM, is nothing but a maximum margin linear classifier.
Given an example (xi, yi), and decision hyperplane (w, b), the (functional) margin of example with
respect to hyperplane is defined as

γi = yi(< w · xi > +b). (1)

Note γi implies correct classification of (xi, yi) if γi > 0. The (functional) margin of training set S
(with l examples) with respect to decision hyperplane (w, b) is defined as

γ = min
0≤i<l

yi(< w · xi > +b), (2)

1

Geometric margin is the functional margin derived by ‖w‖. The maximum margin hyperplane
given training set S is thus defined as the hyperplane with respect to which the training set has
maximum geometric margin.

There are two major advantages of SVM. First the learning ability of SVM is independent of
the dimensionality of the feature space thus immune from the so-called curse of dimensionality.
SVM learning process typically focuses on these hard to classify patterns automatically and thus
can ignore the extra noise introduced by each additional dimension. Thus by using SVM, the
usually computational expensive feature selection steps are not needed. Second, with so-called
kernel tricks, SVM can be used to learn different discriminant functions by using different kernel
functions. So it can learn a linear classifier, polynomial classifier, or radial basis function with just
one line change in your source code.

SVM has been used for text categorization [3, 2, 5] and shown to outperform all classical
learning methods including neural networks, linear discriminant function and KNN. And this claim
is further verified by Y. Yang in her well-cited comparison papers [9, 8]. The reason for its superior
performance can be best explained by its compatibility to text categorization problems: the typical
document representation method like term frequency and inverted document frequency (TFIDF)
weighted vectors results in huge and sparse vector for each document and most text categorization
problems are linearly separable (as suggested by the fact that all ohsumed categories and most
Reuters categories are linearly separable).

2.2 Filtering as a Text Categorization Problem

While last year batch filtering track can be easily cast into a text categorization problem, it is not
possible this year. For one, we don’t have enough training examples available for most all the topics,
and it is even worse in adaptive filtering track where we have only three positive examples for each
topic. Second, the rich information contained in the topic description/narrative that help to shape
topic boundary is not readily available for any statistical based machine learning methods. And
actually it is our guess that the ability of approaches to make use of the topic description/narrative
will differentiate their performance. In the final result, the fact that people can do much better
in first 50 categories than in the second 50 categories can be considered as a manifestation of our
guess. Since the quality of topic description/narrative is much better in first 50 categories is much
better than these of the second 50 categories.

SVM is the winner of the last year batch filtering track. And it is considered as one of major
component of our package, to really test out our SVM implementation, we use it to handle the
filtering track problem. To do that, there are two problem we have to deal with. First, we have
to turn the information stored in the topic description/narratives into some usable information for
our SVM learner. Since the only information that SVM learner can make use of is the examples,
we have to device a way to generate pseudo examples using topic description/narrative. Second,
how our SVM learner make use of these pseudo examples?

2.3 Generating Pseudo Examples

The way we generate pseudo examples from the topic description and narrative is very simple.
And there are two different steps. First, we use the description/narrative get the top 30 closest
document in TFIDF sense, and label them as probable positive example. Note that they definitely
can’t be considered as 100% positive examples. Second, we randomly choose 90 documents from
the whole training set excluding the existing training examples and top 1000 closest documents to
topic description/narrative in TFIDF sense and label them as probable negative examples. This

2

Weighted Margin SVM

SVM

+

+

-

-

Figure 1: SVM vs Weighted Margin SVM

is extreme simple way to utilize the rich information contained in the topic description/narrative.
And the number of probable positive and negative examples we use is set arbitrarily for all the
topic without further investigation.

2.4 Weighted Margin SVM

With newly generated probable examples, the question now is how to use them in SVM learning. To
be able to use the training set where label is associated with an observation weight, the SVM training
and classification algorithms has been modified to handle these additional information available to
the learner: and the result of such modification is the Weighted Margin SVM (WMSVM) machine.

The difficulty a classical SVM classifier faces when presented with weighted observation can be
best illustrated by the figure 1. We have four pieces of labeled data: two positive and two negative.
The size of the circle represents the label reliability. The dashed line represents the hyperplane
found by SVM, and the solid line the hyperplane by the Weighted Margin SVM.

In the results submitted for the filtering track, we were using a weaker version of the WMSVM
implementation that can handle the weighted soft margin. Since then, we have a stronger WMSVM
implementation that can handle both hard margin and soft margin correctly, but we are still
working the experiments with this strong version on filtering track. But even with the weaker
version WMSVM, along with the simple pseudo example generation, we are able to apply SVM
learning on a data set which for some cases, has only a few positive examples.

3 Language Modeling Approach

A model-based approach to information filtering was explored for the second set of submissions
to TREC 2002 batch and adaptive filtering tasks. Language models are associated with both
documents and queries. The initial query model was generated using the topic description. We
viewed the training documents for a given query as relevance feedback documents. A new query
model is estimated based on the initial query model and the language models estimated for the
feedback documents. This method was used for both batch and adaptive filtering.

3

3.1 Language Modeling and Information Retrieval

Statistical Language Modeling (SLM) has been used in many Natural Language Processing (NLP)
tasks including Speech Recognition, Machine Learning and Information Extraction. Recently, Ponte
and Croft [6] proposed language modeling approach to information retrieval. Each document in
a document collection is associated with a language model and given a query, documents are
ranked based on the probability of their language model generating the query text. Alternatives
to query likelihood model have been proposed. Of specific interest here is the method proposed
by Lafferty and Zhai [4] where they associate language models to both documents and queries and
rank documents based on their model’s similarity with the query model. Model similarity was
computed using the Kullback-Leibler divergence measure.

The motivation for our language modeling approach to TREC-11 batch and adaptive filtering is
Zhai and Lafferty’s paper on incorporating relevance feedback in language modeling approaches to
information retrieval [10]. Their proposal was in the Query-Document Model similarity approach
to information retrieval Given a set of feedback documents F = {d1, d2, · · · , dn} for query Q, they
estimate a feedback model θ̂F based on the feedback document F and use it to update the query
model θ̂Q to θ̂Q′ by

θ̂Q′ = (1 − α) θ̂Q + α θ̂F (3)

where α is the interpolation parameter. Two different strategies were proposed for feedback model
estimation: a generative model of feedback documents and a model with minimum divergence over
feedback documents. We used the later in our language modeling approach to information filtering.
Zhang and Callan [11] used a method similar to the generative model for feedback documents
in their TREC 2001 adaptive filtering submission. They used language modeling techniques in
updating terms and term weights in their query representation.

In the divergence minimization approach, the feedback model is estimated to satisfy two con-
ditions: (1) that it is “closer” to the feedback documents and (2) it is “farther” from the corpus
model. The second condition ensures that the effect of language and domain characteristics com-
mon to feedback documents do not generalize the new query model and move it off topic. The
feedback model is selected to be the one which minimizes

De(θ;F,C) =
1

|F |

n∑

i=1

D(θ||θ̂di
) − λ D(θ||p(·|C)) (4)

where p(·|C) is the corpus probability distribution and λ is the feedback parameter.

3.2 Language Modeling approach to Information Filtering

Given a query Q, two language models are estimated: (1) positive or on-topic language model,
θ̂P , and (2) negative or off-topic language model, θ̂N . The initial positive and negative models
are estimated from the topic description. These models are updated based on the training data
available for each query. The positive examples Fp = {dp1

, dp2
, · · · , dp|Fp|

} are used to update the

positive model θ̂P using the feedback model generated by minimizing (5) which is similar to (4).

Dn(θFp
;Fp, C) =

1

|Fp|

∑

d∈Fp

D(θFp
||θ̂d) − λ D(θFp

||p(·|C) (5)

While the negative language model θ̂N can be used instead of the corpus probabilities in (4), we
have used the corpus model since it is a better representation of what is not in topic. A negative

4

feedback model is generated by minimizing

Dn(θFn
;Fn, C) =

1

|Fn|

∑

d∈Fn

D(θFn
||θ̂d) − λ D(θFn

||θ̂P) (6)

where Fn = {dn1
, dn2

, · · · , dn|Fn|
} is the set of negative examples. Here one is interested in a

negative feedback model that is “closer” to negative examples by “farther” from positive language
model. Unlike [10] who used a Dirichlet smoothing in estimating document language model, θ̂d, we
used a mixture model with fixed weights for document and corpus statistics.

p(w|θ̂d) = γ p(w|d) + (1 − γ) p(w|C) (7)

where γ was set to 0.6.
The positive and negative topic models are updated by

θ̂P ′ = (1 − α1) θ̂P + α1 θFp
(8)

θ̂N ′ = (1 − α2) θ̂N + α2 θFn
. (9)

Given a test document, its language model is first estimated using (7). Its score is determined
by the ratio of its divergence from positive and negative models

score(θ̂d; θ̂P , θ̂N) = D(θ̂d||θ̂P)/D(θ̂d||θ̂N). (10)

Document scores are thresholded to make the binary classification decision. Thresholds were
estimated based on score distribution in the training set similar to the method used by [1]. The score
of relevant documents are assumed to be normally distributed and the top non-relevant documents
are exponentially distributed. The utility score is optimized to obtain a closed form solution for
the threshold.

For adaptive filtering, there are no negative examples and hence the initial negative model is the
corpus model. The above method is followed to classify documents. When a document is deemed
relevant for a query by the system, its relevance judgment is fetched to update the language models.
If the document was judged relevant to the topic, the positive model is updated and if it was deemed
not relevant the negative model was updated. While the models can be updated irrespective of the
relevance of the document, for our TREC submission, we only updated one model at a time. The
score threshold is updated before moving on to the next document.

Some implementation specific details and observation on our system’s performance are given
here. In our implementation,

• Document and queries were stemmed and stop words were removed.

• Only the topic description was used in generating the initial topic model generation

• While computing the score, terms with probability less than 0.0001 were ignored.

• Instead of top non-relevant document scores, all non-relevant document scores were used in
computing the threshold.

• In adaptive filtering, the corpus statistics were not updated as test documents are processed.
The training document collection was used to estimate the corpus model.

• In adaptive filtering, documents whose relevance is not known is assumed to be not relevant
to the topic and is used in updating the negative topic model.

5

4 Observations and Conclusion

The results we submitted to filtering track using either methods is not impressive. There are couple
reasons for that. With regards to our Weighted SVM submission, besides the fact we didn’t use
a stronger version WMSVM, the naive way of making use of topic description/narrative probably
killed us. This is partially supported by the different performance difference between us and best
performance for topic: in the first 50 topic where description/narrative is rich in content, we lag
far behind the best performer. But on the second 50 topic, where the topic description/narrative
is not as good, we are a little bit closer to the best performer overall.

With regards to the language modeling approach, our initial analysis suggests that the thresh-
olding technique used seems to favor high recall taking our system closer to an “allow-all” classifier.
This could have been due to the characteristics of the measure we used for scoring documents. Using
all non-relevant documents in our threshold computation seems to have affected the thresholding
processes. This was compounded by the assumption of documents with unknown relevance as
non-relevant.

Either methods, we believe, have scope for further improvement with respect to their application
in information filtering. We expect the stronger version of WMSVM to perform better. In addition
we are exploring better ways to generate pseudo examples from topic description/narratives. At
same time, a couple parameter, such as the observation weight for each pseudo examples and the
number of pseudo examples, can be tuned to improve filtering performance.

References

[1] A. Arampatzis, J. Beney, C Koster, and T van der Weide. Incrementality, half-life, and
threshold optimzation for adaptive document filtering. In E. M. Voorhees and D. K. Harman,
editors, TREC 2000, Gaithersburg, MD, 2000.

[2] R. Cooley. Classification of news stories using support vector machines. In Proceedings of

IJCAI’99 Workshop on Text Mining, Stockholm, Sweden, 1999.

[3] Thorsten Joachims. Text categorization with support vector machines: learning with many
relevant features. In Claire Nédellec and Céline Rouveirol, editors, Proceedings of ECML-98,

10th European Conference on Machine Learning, pages 137–142, Chemnitz, DE, 1998. Springer
Verlag, Heidelberg, DE.

[4] J. Lafferty and C. Zhai. Document language models, query models, and risk minimization for
information retrieval. In SIGIR01, pages 111–119, 2001.

[5] David Lewis. Applying support vector machines to the trec-2001 batch filtering and routing
tasks. In NIST Special Publication 500-250: The Tenth Text REtrieval Conference, pages
286–292, 2001.

[6] J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In
SIGIR98, pages 275–281. ACM, New York, 1998.

[7] Vladimir N. Vapnik. The nature of statistical learning theory, 2nd Edition. Springer Verlag,
Heidelberg, DE, 1999.

[8] Y. Yang and X. Liu. A re-examination of text categorization methods. In 22nd Annual

International SIGIR, pages 42–49, Berkley, August 1999.

6

[9] Yiming Yang. An evaluation of statistical approaches to text categorization. Information

Retrieval, 1(1-2):69–90, 1999.

[10] C. Zhai and J. Lafferty. Model-based feedback in the language modeling approach to informa-
tion retrieval. In CIKM, pages 403–410, 2001.

[11] Y. Zhang and J. Callan. The bias problem and language models in adaptive filtering. In E. M.
Voorhees and D. K. Harman, editors, TREC 2001, pages 78–83, Gaithersburg, MD, 2001.

7

