The QUANTUM Question Answering System at TREC-11

Luc Plamondon

Guy Lapalme

RALI/DIRO, Université de Montréal
CP 6128, Succ. Centre-Ville
Montréal, Québec, Canada, H3C 3J7

{plamondl, lapalme}@iro.umontreal.ca

Leila Kosseim

Concordia University
1455 de Maisonneuve Blvd. West
Montréal, Québec, Canada, H3G 1M8

kosseim@cs.concordia.ca

Abstract

This year, we participated to the Question Answering task
for the second time with the QUANTUM system. We en-
tered 2 runs for the main task (one using the web, the
other without) and 1 run for the list task (without the
web). We essentially built on last year’s experience to
enhance the system. The architecture of QUANTUM is
mainly the same as last year: it uses patterns that rely
on shallow parsing techniques and regular expressions to
analyze the question and then select the most appropriate
extraction function. This extraction function is then ap-
plied to one-paragraph long passages retrieved by Okapi
to extract and score candidate answers. Among the nov-
elties we added to QUANTUM this year is a web module
that finds exact answers using high-precision reformula-
tion of the question to anticipate the expected context of
the answer.

1 Introduction

TREC-11 marks the second year of existence of
QUANTUM, the QUestion ANswering Tool of the
University of Montreal. As for last year, we used
QUANTUM to participate to the main and the list
task, and we did not enter the context task. This
year’s version of QUANTUM is similar in essence to
last year’s version, but we enhanced specific modules
that provided poor performances last year and we
added a module to search for exact answers on the
web. Following the conclusions we came to last year
[1, 2], we decided to drop our own information re-
trieval system to rely solely on Okapi' [3] since the

1 Okapi-Pack: www.soi.city.ac.uk/~andym/OKAPI-PACK

latter led to clearly better results. Also, we fine-
tuned our answer extraction functions by introducing
weights in the computation of answer scores.

The TREC-10 version of QUANTUM is described
in [1] and an analysis of the results is presented in [2].
We summarize some sections that are still relevant
to the understanding of this year’s version, while we
delve into the new features in more detail.

2 Components of Questions

and Answers

QUANTUM uses the same technique for question
analysis as last year [2]. To see how we decompose a
question, let us consider question #302 — How many
people die from snakebite poisoning in the US per
year? and its answer. As shown in Fig. 1, the ques-
tion is decomposed in three parts: a question word,
a focus and a discriminant, and the answer has two
parts: a candidate and a variant of the question dis-
criminant.

The focus is the word or noun phrase that influ-
ences our mechanisms for the extraction of candidate
answers (whereas the discriminant, as we shall see in
Sect. 4.4, influences only the scoring of candidate an-
swers once they are extracted). The identification of
the focus depends on the selected extraction mecha-
nism; thus, we determine the focus with the syntactic
patterns we use during question analysis. Intuitively,
the focus is what the question is about, but we may
not need to identify one in every question if the cho-
sen mechanism for answer extraction does not require

die from snakebite poisoning in the U.S. per year?

Q: How many people
—— N——
question word focus

A: About 10 people

—_— —

candidate

discriminant

die a year from snakebites in the United States.

variant of question discriminant

Figure 1: Example of question and answer decomposition. The question is from TREC-9 (# 302) and the answer is
from the TREC document collection (document LA082390-0001).

it.

The discriminant is the remaining part of a ques-
tion when we remove the question word and the fo-
cus. It contains the information needed to pick the
right candidate amongst all. It is less strongly bound
to the answer than the focus is: pieces of informa-
tion that make up the question discriminant could be
scattered over the entire paragraph in which the an-
swer appears, or even over the entire document. In
simple cases, the information is found as is; in other
cases, it must be inferred from the context or from
world-knowledge.

We use the term candidate to refer to a word or a
small group of words, from the document collection,
that the system considers as a potential answer to the
question. Candidates are usually noun phrases (see
Sect. 4.3.1 for a discussion on exact answers).

3 Runs Submitted at TREC-11

This year, we participated to the main task and the
list task. We developed two versions of QUANTUM
for the main task: one version that does not make
use of the web, and one that does. For the list task,
only the no-web version was ready by the time of the
competition. So only one run was submitted for the
list task and two for the main task.

4 Architecture of the Core Sys-
tem

The current version is a continuation of last year’s
system but with enhancements suggested in our anal-
ysis of last year’s results and with some changes re-
quired by the new specifications of the 11th edition
of TREC (exact answer, single answers, etc.). After
analyzing last year’s performance, we concentrated
our efforts in improving the question analysis module
to correctly analyze more questions and the scoring

module to better score the candidates. In particu-
lar, we wanted to better weight the contribution of
WordNet and the named-entity tagger depending on
the type of question. Last year, our strategy to in-
sert NIL answers in our candidate set dropped our
score significantly (from 0.223 to 0.199). We believe
that our strategy was sound, but our scoring of the
candidates was such that we would have been better
off without inserting NIL answers. This is why, this
year, we did not attempt to insert NIL answers.

Let us step through the 4 basic steps of the system:
question analysis, passage retrieval and tagging, can-
didate extraction and candidate scoring.

4.1 Question Analysis

To analyze a question, we use a tokenizer, a part-
of-speech tagger and a noun-phrase chunker (NP-
chunker). QUANTUM then applies a set of hand-
made patterns based on words, on part-of-speech tags
and on noun-phrase tags, in order to select the most
appropriate function for answer extraction. Last
year, only 40 such patterns were used, but they cor-
rectly classified 88 % of the 492 TREC-10 questions.
To increase the performance of the classification mod-
ule, we added 20 more patterns to account for last
years mistakes and new question formulations. Once
the question is classified, an extraction function de-
termines what criteria a group of words from a docu-
ment should satisfy to constitute a valid answer can-
didate; for example, a location should begin with a
capital letter while a measure should include a num-
ber and a measure unit. We also added a synonym
extraction function to our last year’s set of 11 func-
tions (Table 1) because some questions in the TREC-
10 corpus required it. Extraction functions such as
definition were less useful this year because the ques-
tions were mainly named-entity targeted.

Like last year, each function triggers a search mech-
anism to identify candidates in a passage based on the
passage’s syntactic structure or the semantic relations

of its component noun phrases with the question fo-
cus. More formally, we have C = f(p, ¢), where f is
the extraction function, p is a passage, ¢ is the ques-
tion focus and C is the list of candidates found in p.
Each element of C is a tuple (¢;, d;, s;), where ¢; is the
candidate, d; is the number of the document contain-
ing ¢;, and s; is the score assigned by the extraction
function.

4.2 Passage Retrieval and Tagging

The extraction of candidates is a time-consuming
task. Therefore, we select the shortest, albeit most
relevant, passages of the document collection before
we begin answer extraction. To do so, we use the
Okapi system to retrieve variable-length passages.
Passage retrieval has not changed from last year;
however, experiments showed that our own fixed-
window IR did not achieve as good results as Okapi.
So this year, we exclusively used Okapi. Okapi is
an information retrieval engine that has the ability
to return relevant paragraphs instead of whole doc-
uments [3]. We feed it with the question as a query
and we set it up so that it returns 30 one-paragraph-
long passages (the average length of a passage, or
paragraph, is 350 characters).

Since the answers to the TREC-11 factual ques-
tions are usually short noun-phrases (Sect. 4.3.1), we
run our NP-chunker on the most relevant passages.
Our chunker looks for specific sequences of part-of-
speech tags, which are given by our tagger. In addi-
tion, we run a named entity extractor on the pas-
sages because the candidates sought by extraction
functions such as person(p), time(p) and location(p),
are named entities. For this step, we use the Alembic
Workbench system developed at Mitre Corporation
for the Message Understanding Conferences (MUC).
Amongst all the named entity types that Alembic can
recognize [4], we currently use only PERSON, ORGA-
NIZATION, LOCATION, DATE and TIME entities.

The tagged passages are then passed to the pre-
viously selected extraction function to identify and
score candidate answers.

4.3 Extraction of Candidates

Given the extraction function f chosen after question
analysis, the question focus ¢ and a set of tagged pas-
sages p;, candidates ¢; are extracted along with their
document number d; and their score s; (Sect. 4.1).
To do so, each function is implemented by a set of
search strategies that involve words, part-of-speech
tags, semantic relations (mainly hypernym/hyponym

relations given by WordNet) and named entities iden-
tified by Alembic. Table 1 presented earlier shows
some examples of what extraction functions look for.
During the extraction phase, we seek a high recall
rate, no matter whether candidates are cited in a con-
text that matches the question discriminant; we shall
use a combination of scores to account for the context
later.

4.3.1 Answer Exactness

A major difference with the TREC-10 QA track is
that answers must be exact. This means there is no
limit imposed on the length of an answer string, but
the string must not contain an incomplete answer nor
must it contain more information than requested by
the question. What is considered “too much” or “not
enough” was not clearly defined at the time the com-
petition was held; the problem was left to the asses-
sors’ judgment. Another consideration for having ex-
act answers, although not relevant to TREC, is that
potential users of QA systems are more likely to find
the red, green and white flag more pleasant to read
than), that the red, green and white flag of the Ital.

We decided to keep the strategy we employed last
year, which is to extract all the noun-phrases in a re-
trieved passage and then to test, using the selected
extraction function, whether each of them is an in-
teresting candidate. That means that a candidate is
always at least a complete NP and it never encom-
passes more than one NP, except in a limited number
of cases that we explicitly foresaw when writing the
extraction functions. We are aware that this is not
suitable to all questions but we believe it is a simple
way to achieve a satisfying level of answer exactness
most of the time.

There are cases where a NP is not long enough (our
definition of a single NP does not include conjunc-
tions of embedded NP), typically when (1) a question
seeks more than one entity: #1422 — What two Fu-
ropean countries are connected by the St. Gotthard
Tunnel under the Alps? A: Switzerland and Italy?
and (2) the answer is a title or a quote: #1832 —
What did Walter Cronkite say at the end of every
show? A: “and that’s the way it was”. There are
also cases where a NP can be too long. For exam-
ple, Louise Veronica Ciccone would be an inexact
answer to question #1723 — What is Madonna’s last
name? A: Cliccone.

After examining answer patterns for TREC-8,
TREC-9 and TREC-10 questions, we estimated that

2Even though this question has a list-task style, it is part
of the main task.

Function Example of question and sample of answer patterns

definition(p, p) : #897 — What is an atom? (p = atom)

: <hypernym of atom>, <atom or hyponym of atom>

: <atom or hyponym of atom> (<hypernym of atom>)
: <atom or hyponym of atom> is <hypernym of atom>

specialization(p, @) #1684 — What card game uses only 48 cards? (¢ = card game)

<hyponym of card game>

cardinality(p, ¢) #1761 — How many black keys are on the piano? (¢ = black keys)

<number> <black keys or hyponym of black key>

measure(p, @) #1715 — How much vitamin C should you take in a day? (¢ = vitamin C)

<number> <hyponym of unit> of <witamin C or hyponym of wvitamin C>

#1420 — How high is Mount Kinabalu? (¢ = high)
: Various patterns

attribute(p, ¢)

: #1651 — What is another name for the North Star?
: the North Star, also known as <NP>
<NP>, also known as the North Star

synonym(p,)

POZOZOZ PR ErORororoRrorrro

person(p) #1424 — Who won the Oscar for best actor in 19707
<PERSON named entity>
time(p) #1676 — When was water found on Mars?
<TIME named entity>
<hyponym of time_period>
location(p) #1483 — Where is the highest point on earth?
: <LOCATION named entity>
manner(p) #1446 — How did Mahatma Gandhi die?
: Not implemented for TREC
reason(p) : #902 — Why does the moon turn orange?
: Not implemented for TREC
object(p) Default function

A: <NP>

Table 1: Extraction functions, examples of TREC questions and samples of answer patterns. Hypernyms and
hyponyms are obtained using WordNet, named entities are obtained using Alembic and NP tags are obtained using
an NP-chunker. When we mention the focus in an answer pattern, we also imply other close variants or a larger NP
headed by the focus.

only 2% of the questions could not be answered by
a NP. Therefore, we decided to make no significant
change to our system regarding answer exactness.

4.4 Scoring of Candidates

The final score of a candidate is computed as in Eq. 1:

score = « - extraction score + (1 —) - passage score

(1)
with «, the extraction score and the passage score
ranging from 0 to 1 (we describe the extraction score
and the passage score below).

We dropped the prozimity score term that we used
last year. This 3rd term was meant to favor candi-
dates that were surrounded by question keywords but
it did not have a noticeable influence in the tests we
conducted this year.

We found the optimal value o = 0.75 by max-
imizing the performance of QUANTUM on a sub-
set of TREC-8, TREC-9 and TREC-10 questions.
We discarded no-answer questions and questions that
QUANTUM does not analyze correctly.

The final scores given by Eq. 1 range from 0 to
1. Last year, scores awarded by QUANTUM did not
have an upper bound, so candidates extracted using
different extraction functions were hardly compara-
ble. The comparability of scores seemed a prerequi-
site for detecting no-answer questions using a thresh-
old (Sect. 4.5) and for a final re-ordering of the ques-
tions based on confidence (Sect. 6).

4.4.1 The Extraction Score

The extraction score measures how much a candi-
date satisfies various criteria that all valid candidates
should meet. The set of criteria is specific to each
type of question, thus to each extraction function.
Criteria are weighted and a candidate does not have
to satisfy all of them. Eq. 2 shows the criteria for the
time function:

(2)

with entity = 0.5 if the candidate has been tagged
as a TIME named entity by Alembic (entity = 0 oth-
erwise), hyponym = 0.25 if the candidate is a hy-
ponym of the WordNet synset time_period or of an-
other selected synset (hyponym = 0 otherwise), and
penalty = 0.75 if the candidate contains one of the
question keywords (penalty = 1 otherwise so that
score is not reduced).

The values of the parameters for the 12 extraction
functions were found by maximizing the performance

scoreyime = max(entity, hyponym) - penalty

of QUANTUM on the same question subset as de-
scribed above. An outcome of the optimization is the
reduction of the influence of WordNet to the bene-
fit of Alembic for the person function (WordNet: 0,
Alembic: 1), for the location function (WordNet: 0,
Alembic: 1) and for the time function (WordNet: 0.25,
Alembic: 0.75). This was expected because our anal-
ysis of last year’s results led us to the conclusion that
WordNet was rather a source of noise when a named
entity extractor could be used instead.

4.4.2 The Passage Score

While the extraction score is concerned only with the
form and type of a candidate, the passage score at-
tempts to take into account the supplemental infor-
mation brought by the question discriminant. It mea-
sures how confident we are in the passage where the
candidate is found. For this measure, we use the score
given to the passage during its retrieval by Okapi.
However, this year, we normalize the score of each
passage over the score of the best-scoring passage to
have a passage score — and thus a final score (Eq. 1)
— between 0 and 1. Since the question discriminant
is likely to appear in the text under a slightly differ-
ent form and to be scattered over several sentences
around the sought candidate, we believe that an IR
engine is the best tool for measuring the concentra-
tion of elements from the discriminant in a given pas-
sage.

4.5 No-Answer Questions

At TREC-10, we measured the score drop between
the ranked candidates for a question and we inserted
a NIL answer when the score drop was higher than a
threshold. This meant the system would rather say
there is no suitable answer in the document collection
than propose any candidate at a worse rank. We had
chosen to use a threshold on normalized score drops
instead of a threshold on absolute scores because dif-
ferent extraction functions would use different score
scales. The major drawback of that method is the
impossibility to propose a NIL answer at first rank
(unless QUANTUM finds no candidate at all, which
seldom happens because the extraction functions are
very permissive).

This year, we attempted to use scoring methods
that produce comparable final scores no matter how
the candidates are extracted. Our goal was to set a
threshold on the final score below which a NIL an-
swer would be preferred. Unfortunately, because of
the small number of criteria used when computing

the extraction score and because of their boolean be-
haviour, the scores of all the candidates tend to clus-
ter around a few values. We observed that the scores
of first-rank candidates ranged from 0.5 to 1, with
about one third of them at 0.5. Thus, a NIL inser-
tion based on a score threshold would have resulted
in a NIL answer for 33 % of the TREC-10 questions,
which seemed too far from reality (10 %) to be an im-
provement to the system. Therefore, we decided not
to detect no-answer questions.

5 Architecture of the Web

Module

Following several systems from last year, and because
TREC-11 questions are of general domain, the web
proved to be an interesting source of answers [5, 6].
We present here how a new module of QUANTUM
makes a simple use of the web to retrieve exact an-
swers.

Our use of the web differs from most of last year’s
participants. To use the web, two strategies could
be used: either aiming at high recall or high preci-
sion. High recall would mean retrieving a large list of
candidate answers and using a good scoring strategy
to rank the candidates. This is similar in essence to
answer redundancy. We decided to go for the other
approach: high precision of the answers at the ex-
pense of recall.

We do not seek supplemental documents from the
web to complement the set of documents retrieved
from the TREC collection, because QUANTUM has
enough answer candidates from the TREC collection.
The problem is to correctly identify the answer from
the list of candidates and score it such that it is po-
sitioned at the top of the list. So we use the web to
retrieve candidates only through high-precision meth-
ods in such a way that the web does not return an
answer often, but when it does, the answer is ex-
pected to be the correct one. To do so, we look on
the web for an exact sentence that could naturally be
the formulation of the answer to the question.

To formulate an answer pattern, the TREC ques-
tion is turned into its declarative form using a set of
hand-made patterns. For instance, #1697 — Where
is the Statue of Liberty? is reformulated as “the
Statue of Liberty is <LOCATION>". We call this
reformulation the expected context of answer because
we expect to find this pattern, with the correct an-
swer in place of <LOCATION>, at least once on the
web.

We then use Yahoo! to search for web pages that

contain the known part of the expected context (here,
the phrase “the Statue of Liberty is”) and we
identify answer candidates by unification. We do sim-
ple validity checks on candidates, such as testing the
length of a candidate or whether a candidate for a
location begins with a capital letter, but as for now
the tests are not as sophisticated as the extraction
functions displayed in Table 1.

The web module can identify about 10 general
types of answers (eg. <LOCATION>, <NUMBER>,
<CLAUSE>, ...). However, by using a conjunc-
tion of expected contexts, we can impose more con-
straints on a candidate. For example, the question
#1851 — Which country colonized Hong Kong? is re-
formulated as “<CLAUSE> colonized Hong Kong”,
where <CLAUSE> can be any string. To further
restrict the candidate, we impose a second con-
text for the candidate to satisfy: “<CLAUSE> is a
country”. The search thus becomes a conjunction of
the two strings “<CLAUSE> colonized Hong Kong”
and “<CLAUSE> is a country” (they can be found
in separate web pages).

We score the candidates once they are extracted. A
candidate that passes the validity checks starts with
a score of 0.65. For each additional occurrence of
the candidate found in any of the expected contexts
derived from the question, the difference to one is di-
vided by 2, thus raising the score to 0.825, then 0.9125
and so on. A candidate that does not meet the valid-
ity criteria but appears where an answer was expected
receives a score of 0.1. Fach additional occurrence of
the candidate boosts the score by 0.1, as long as the
resulting score does not exceed 0.6. Therefore, a pre-
sumably invalid candidate never has a higher score
than a presumably valid candidate.

After we find an answer on the web, we use Okapi
to perform a search in the TREC-11 document collec-
tion in order to have a document number to accom-
pany the candidate. For the questions where either
no candidate is found on the web or none of them
can be matched with a document number, QUAN-
TUM proceeds without the web module, as described
in Sect. 4.

To test the performance of the web module, we
conducted experiments with TREC-9 and TREC-10
questions. In the TREC-9 and TREC-10 document
collection, we seldom find an expected context (we
do for only 10% of the questions). However, when
we search on the web, we find at least one occurrence
of an expected context for 43 % of the questions. Of
these, the answer identified by unification is correct
51% of the time, and 45% of them appear at first
rank. In clear, 10% of the TREC questions are cor-

Run name # right | Score | Max | Min
UdeMmainNoW 37 0.080 | 0.266 | 0.003
UdeMmainWeb 29 0.057 | 0.222 | 0.001

Table 2: Confidence-weighted scores of the 2 main-task
runs compared to the maximum and minimum possible
scores given the number of correct answers.

rectly answered only by searching for expected con-
texts of answers on the web and by performing basic
validity checks.

We also tried to run QUANTUM with and with-
out the web module, and then to keep the best-
scoring candidate of either version. Results were
worse than with the web module alone, probably
because scores obtained with expected contexts and
with Eq. 1 should be weighted to be appropriately
comparable.

6 Confidence

Answers for the main task have to be submitted to
NIST in decreasing order of confidence. To do so, we
simply sort them according to their score. Table 2
shows how the sorting affected our runs by compar-
ing their confidence-weighted score to a hypothetical
maximum score (all correct answers at the top of the
sorted list) and minimum score (all correct answers at
the end of the sorted list), given the number of correct
answers. Our ordering could be improved consider-
ably.

7 List task

The only supplemental difficulty of the list task is the
identification of the desired number of items speci-
fied in the question. We had to adapt the new ques-
tion analysis patterns we added this year in the same
way that we adapted last year’s main task patterns
for the list task. Once the system has analyzed a
list question with the appropriate set of patterns, it
proceeds exactly as for the main task (unfortunately,
only the no-web version described in Sect. 4 was ready
for TREC-11), except that it keeps the desired num-
ber of candidates instead of only the best one. For
simplicity, duplicate candidates are eliminated even
if they come from different documents (they might
not be real duplicates because one candidate might
be supported by its document and the other not).

8 Discussion

When we conducted our pre-competition tests on the
TREC-10 question corpus, we estimated that the no-
web version of QUANTUM could correctly answer
14 % of the questions, and that the web version would
perform even better with a correct answer for 17 %
of the questions. This was an improvement over
last year’s version of QUANTUM, which correctly an-
swered 12 % of the questions (this data comes from
last year’s best run — with 50-character answers, but
keeping only 1 answer per question). However, our es-
timations were made using an automated evaluation
procedure that could not detect unsupported answers
nor inexact ones (the lenient evaluation).

Table 3 shows the official evaluation details of our
2 main-task runs. We will exclude the effect of con-
fidence weighting from our analysis and we will use
Table 4 to compare a strict evaluation (the percent-
age of right answers) against a lenient evaluation that
includes inexact and unsupported answers (as an au-
tomatic evaluation script would do).

The lenient evaluation in Table 4 is closer to our
pre-competition estimations. The web module is
clearly an improvement to QUANTUM (15% of cor-
rect answers when using the web and 9% without).
However, because of the important number of web
answers that are unsupported (40 unsupported an-
swers when using the web, 2 without), a strict evalu-
ation cuts the performance by half, making the web
version even worse than the no-web version (6% of
correct answers when using the web, 7% without).

As for answer exactness, the proportion of exact
answers over all the supported answers is about 16 %
for both runs. We consider this a satisfactory result
given the simplicity of the method we have chosen
(single NPs only) and given that some of the errors
are tagging errors, thus not related to the method
itself.

The list-task run achieved an accuracy of 0.07,
while our last year’s best run achieved an accuracy
of 0.15. Since all the answers that QUANTUM found
this year are distinct and very few are unsupported,
we attribute the performance decrease to the addi-
tional constraints on answer length (candidates are
much smaller than 50 characters and some are inex-
act).

9 Conclusion
Even though we fine-tuned last year’s version of

QUANTUM by adding more question analysis pat-
terns, by introducing function-specific weights in the

Run name Web # wrong # unsupp’d # inexact # right CWS
UdeMmainNoW no 454 2 7 37 0.080
UdeMmainWeb yes 425 40 6 29 0.057

Table 3: Detailed evaluation of the 2 main-task runs with their confidence-weighted score (CWS).

Run name ‘Web Strict | Lenient
UdeMmainNoW no 7% 9%
UdeMmainWeb yes 6% 15%

Table 4: Strict (right answers only) and lenient (right,
inexact and unsupported answers) evaluations of the 2
main-task runs. The score is the ratio over 500 questions.

computation of the candidates’ scores and by decreas-
ing the influence of WordNet to the benefit of Alem-
bic, the increasing difficulty of the task resulted in a
lower performance for this year. We feel that answer
exactness can be achieved reasonably well by retriev-
ing single-NP answers only, but candidate scoring,
document support and no-answer questions are still
challenging issues.

For the first time, we used the web as a source of
answers. We derived from the questions the context
in which we expected the answers to appear. Not
taking into account answer exactness and document
suppport, we found that 10 % of TREC-style ques-
tions can be correctly answered this way. We plan to
go further in this direction by improving the gener-
ation of expected contexts and the validation of the
candidates’ semantic types.

Acknowledgments

We wish to thank Louis-Julien Guillemette whose
programming skills gave QUANTUM access to the
web. We also wish to express our greatest appre-
ciation to the technical support staff of the DIRO de-
partment of the U. de Montréal. As Murphy’s law
would have predicted, the lab’s file server crashed
during the week of the competition. Without their
fast and skillful response, we could not have made it
on time this year.

This project was financially supported by the Bell
University Laboratories (BUL) and the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC).

References

[1] L. Plamondon and L. Kosseim. QUANTUM: A
Function-Based Question Answering System. In
Proceedings of the 15th Conference of the Cana-
dian Society for Computational Studies of In-
telligence (AI 2002), pages 281-292, Calgary,
Canada, 2002.

[2] L. Plamondon, G. Lapalme, and L. Kosseim. The
QUANTUM Question Answering System. In Pro-
ceedings of The Tenth Text Retrieval Conference
(TREC-X), pages 157165, Gaithersburg, Mary-
land, 2001.

[3] S.E. Robertson and S. Walker. Okapi/Keenbow
at TREC-8. In Proceedings of TREC-8, pages
151-162, Gaithersburg, Maryland, 1998.

[4] J. Aberdeen, J. Burger, D. Day, L. Hirschman,
P. Robinson, and M. Vilain. MITRE: Descrip-
tion of the Alembic System as used for MUC-6.
In Proceedings of the Sizth Message Understand-
ing Conference, San Francisco, California, 1995.
Morgan Kaufman Publishers.

[5] C.L.A. Clarke, G.V. Cormack, T.R. Lynam, C.M.
Li, and G.L. McLearn. Web Reinforced Question
Answering (MultiText Experiments for TREC
2001). In Proceedings of The Tenth Text Retrieval
Conference (TREC-X), pages 673-679, Gaithers-
burg, Maryland, 2001.

[6] E. Brill, J. Lin, M. Banko, S. Dumais, and
A. Ng. Data-Intensive Question Answering. In
Proceedings of The Tenth Text Retrieval Confer-
ence (TREC-X), pages 393-400, Gaithersburg,
Maryland, 2001.

