
Rutgers Filtering Work at TREC 2002: Adaptive and Batch

Andrei Anghelescud, Endre Borosi, David Lewism, Vladimir Menkova, David Neuc and Paul Kantors

angheles@cs.rutgers.edu, boros@rutcor.rutgers.edu, ddlewis@worldnet.att.net

vmenkov@aplab.rutgers.edu, djneu@acm.org, kantor@scils.rutgers.edu
∗

ABSTRACT
This year at TREC 2002 we participated in the adaptive
filtering sub-task of the filtering track with some models
for training a Rocchio classifier. Results were poorer than
average on the utility type measures. Using simple feature
selection produced better than average results on an F-type
measure. The key to our approach was the use of pseudo-
judgments, and an approach to threshold updating. We also
participated in the batch filtering sub-task of the filtering
track and investigated the use of rank based feature selection
techniques in conjunction with a very simple classification
rule.

1. INTRODUCTION
In the adaptive filtering sub-task of the filtering track,

systems utilize a training set consisting of a small set of
documents which are labelled either relevant or irrelevant .
This is supplemented by a training set, from which one may
draw inferences about the corpus, and may hazard some con-
jectures as to the relevant documents. In the work reported
here, a simple version of “pseudo-relevance feedback” is used
to expand the terms appearing in the 3 relevant documents,
and the original topic statement.

∗Research supported in Part by the National Science Foun-
dation under Grant NumberEIA-0087022. PBK and KBN
are supported in Part by Advanced Research and Develop-
ment Activity (ARDA)’s Advanced Question Answering for
Intelligence (AQUAINT) Program under contract number
2002-H790400-000, the HITIQA project, of SUNY Albany
and Rutgers. EB is supported in part by the Office of Naval
Research (Grant N00014-92-J-1375). The views expressed in
this article are those of the authors, and do not necessarily
represent the views of the sponsoring agency. Author Affil-
iations: d =c Division of Computer Sciences, Rutgers, the
State University of New Jersey; i Rutgers Center for Oper-
ations Research; (m). Independent Consultant, Chicago IL.
a. Independent Consultant, Penticton, British Columbia
Canada; s SCILS and DIMACS, Rutgers, the State Univer-
sity of New Jersey

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Our approach in preparing to study the problem of adap-
tive filtering attempts to:

–Incorporate major techniques common to high-scoring
AF approaches in recent TRECs.

–Allow easy modification of aspects we are likely to be
doing experiments on.

–Be efficient enough to do many tuning runs.
–Be as simple as possible to implement given the above

constraints.
We prepared the AP 1988-1990 data, which served as a

“sandbox” for the selection of parameters in the adaptive
Rocchio model. We used the LEMUR [10] toolkit to manage
the text, build indices, etc.

We introduced a number of parameters controlling how
many examples will be pseudo-labeled and with what weights:

In the batch filtering sub-task of the filtering track, sys-
tems utilize a training set consisting of documents which are
labelled either relevant or irrelevant for a given information
needs to develop static classifiers which attempt to distin-
guish the documents labelled relevant from those labelled
irrelevant. In our opinion, efforts to attack this problem are
often complicated by several characteristics of textual data.

Textual data is generally represented by using the terms
in the text as features. Such data is inherently highly dimen-

sional — the number of features being potentially equal to
the number of words in the English language. In addition,
misspellings, the improper, or colloquial use of words, and
the fact that many very common words (e.g. “a”, “and”,
“the”, etc.) are virtually useless for distinguishing relevant
documents from irrelevant ones, regardless of the informa-
tion need, lead textual data to be noisy. Finally, most terms,
even those not considered “noise” under the previous de-
scription, are not needed to distinguish relevant documents
from irrelevant documents.

The aforementioned characteristics of textual data indi-
cate that it might be possible to represent a document col-
lection using only a subset of the original feature set which
is much smaller than the original feature set, yet possesses
properties which serve to facilitate the process of distin-
guishing relevant documents from irrelevant documents.

The idea we pursued in the batch filtering sub-task of the
filtering track was to employ a heuristic designed to generate
such feature subset and to then train an extremely simple
classifier on the training set represented only in terms of the
selected feature set.

2. ADAPTIVE FILTERING: BUILDING A
CLASSIFIER

2.1 Initialization
Initial training for each topic uses the training set (on

which relevance status with respect to the topic is known
only for three of the documents), and the topic description.

FOR EACH Topic
B1. Read topic description
B2. Read initial 3 positive training examples for this

topic. Give each of these examples a weight of 1.0.
B3. Call scoring model learning algorithm (Rocchio) to

produce linear model based on the topic description and the
initial positive examples.

B4. Call the “pseudolabeling algorithm” to run the linear
model trained in Step B3 against all training documents.
It will return some portion of the training documents, and
will have associated with them positive or negative pseu-
dolabels, and fractional weights. Essentially, the documents
that achieve a high score on vector retrieval with the ini-
tial query and 3 positive documents are taken as “relevant”,
those with low score are taken as “not relevant”. Our algo-
rithm actually has a number of parameters that control (a)
the dividing line between “pseudo-relevant” and “pseudo-
irrelevant” documents (which we refer to, together, as the
“pseudo-labelled” documents) (b) the fractions of each class
that are sampled into the updated Rocchio classifier and (c)
the weights that each type of “pseudo” document are as-
signed in step B5. Eventually these weights are expressed
in terms of the number of “equivalent documents” that the
pseudo-labelled documents represent.

B5. Call the classifier learning algorithm, which changes
the query, a la Rocchio, and selects a threshold that maxi-
mizes the target score, on the training set.

Numerous implementation details are not described here.
Note that the idea of an “outer loop” over topics represents
just one way to approach the problem, which may not be
optimal for specific choices of the learning algorithm.

For further analytical work we have since modified the
code to save the classifiers or the internal state of the train-
ing algorithm to persistent storage after initial training. This
will potentially be useful for multiple experiments with the
same starting point, as well as for comparative experiments
(studying improvement of classifier over time).

2.2 Adaptive Phase of Training
In adaptive filtering, we run through the test documents

in the specified order, applying classifiers, getting judgments
only for documents judged relevant, and updating the clas-
sifiers.

FOR EACH Topic
FOR EACH Test Document
C1. Apply current classifier for topic to test document,

computing score and determining if score is above threshold.
IF score is ≥ threshold
C2.1. Pass document ID, topic ID, score, and label (“rel-

evant”) to routine that writes output for evaluation
C2.2. Pass document ID and topic ID to judging rou-

tine, which will return label (Relevant vs. Nonrelevant vs.
Unjudged).

ELSE
C3.1 Label = Unknown
C4. Pass current classifier, document ID, Label, and a

weight of 1.0 to Learner (which for the baseline will be an
object that in turn calls Rocchio and TROT).

2.3 the Rocchio Algorithm
The Rocchio algorithm [9] produces a linear model, which

must then be specified with a threshold. The basic inputs
to the algorithm are:

1. An initial “query” vector
2. A set of document vectors. Each vector is accompanied

by a weight and a label.
3. The Rocchio weighting parameters (α, β, γ)
4. Feature weighting parameters
5. Feature selection parameters and rules
The Rocchio algorithm [9, 4] is a batch algorithm. It pro-

duces a new weight vector w from an existing weight vector
w1 and a set of training examples. The jth component wj

of the new weight vector is:

wj = αw1,j + β

∑

i∈C xi,j

nC

− γ

∑

i6∈C xi,j

n− nC

(1)

where n is the number of training examples, C = {1 ≤
i ≤ n : yi = 1} is the set of positive training examples (i.e.,
members of the class of interest), and nC is the number of
positive training examples. The parameters α, β, and γ
control the relative impact of the original weight vector, the
positive examples, and the negative examples, respectively.

Typically, classifiers produced with the Rocchio algorithm
are restricted to having nonnegative weights, so that instead

of using the raw w from Equation (1), one uses w
′

where

w
′

=

{

w if w > 0
0 otherwise.

This is turned into a classifier by the relatively expen-
sive process of recomputing the threshold after each new
judgment is received on a submitted document. The com-
putation of the threshold can be somewhat accelerated with
a full Rocchio model, but we have not found a way to ac-
celerate it meaningfully when a non-linear step such as the
selection of a number of “top features” is included.

2.4 Retaining only the top 30 terms in a query
To improve performance, we limited the number of terms

appearing in a query.
The specific algorithm is given in pseudocode as

Algorithm 1: Query term selection

Require: query vector Q, k
1: for t ∈ Q do

2: if t < 0 then

3: t = 0
4: end if

5: end for

6: S = reverse(sort(Q))
Ensure: S[1 : min(|S|, k)], the top k positive components

of Q

3. ADAPTIVE TRAINING HEURISTICS
To find a Rocchio classifier we started at “plausible” val-

ues for all of the parameters in the model, and conducted a
“greedy” search on each of the parameter values separately.

Original results concentrated on the utility based mea-
sures, and were terrible. This led to the development of
a “TREC-specific” feature, which stops sending examples

for judgment if the rate of success falls too low. One such
heuristic is to stop when the number of consecutive negatives
exceeds the total accumulated positive judgments obtained.
Such heuristics have no meaning in the real world situations
to which adaptive filtering will be applied.

An alternative heuristic, which can be justified for real
applications, is to reduce the number of components in the
updated Rocchio vector to a very small number. In one
such run the number of components is reduced to 30. These
30 components are selected on the basis of their individual
explanatory power, with regard to the specific measure of
performance under considerations. In the submitted run,
this was an F-measure.

Since F measures can be rewritten as 1

β 1

p
+(1−β) 1

R

they are

very sensitive to finding any relevant documents. If (g,G)
are the numbers of relevant documents (found, in the col-
lection) respectively, and n documents are returned,

F = 1/(βn/g + (1 − β)G/g) = g/(βn+ (1 − β)G)

.
So a system that “hangs in there” and eventually produces

even a single relevant document will score better than a more
discriminating system that returns no relevant documents,
and quits sooner.

The results of our early experiments show only that we
have set up a workable laboratory for exploring a host of
possible combinations of the five key ingredients of an adap-
tive algorithm: these ingredients are a compression rule; a
representation rule; a matching scheme, a learning scheme,
and a fusion or selection scheme for combining multiple ap-
proaches to each of these five components. As is well known
in the information retrieval community, the adaptive filter-
ing task is extremely difficult, but we are optimistic that
previously unexplored combinations of approaches may yield
meaningful improvements in performance. The results are
showin in Table 2, which appears at the end of the paper.
The meaning of the row and column labels is as follows.

1. label of the run, which is composed of 3 parts - the
value of the weight of the unjudged documents (pa-
rameter thres.unjWt - U-xx → thres.unjWt=xx) fol-
lowed by the name of the parameter that is changed
and the utility that is optimised (for example ”best.f”
means that the f-beta utility is optimised)

The parameter related labels have the following mean-
ings:

• A+ : α = 2.0

• A- : α = 0.5

• C+ : γ = 0.25

• C- : gamma = 0.0625

• ND+ : neg density s.t. 2000 pseudo negatives are
selected

• ND- : neg density s.t. 500 pseudo-negatives are
selected

• PD- : pos density = 0.5, corresponding to 10
pseudo-positive documents

• PW+ : pos weight of 5

• PW- : pos weight of 1

• NW+ : neg weight of 10

• NW- : neg weight of 2

• def : default values, α = 1.0, β = 1.0, γ = 1
8
,

ND s.t. 1000 pseudo-negative documents are se-
lected, PD s.t. 20 pseudo-positive documents are
selected, PW = 2, NW=5%

2. the number of topics that obtained a positive score in
the test

3. min score - the lowest topic score

4. the total score (sum of all topic scores)

5. average T11U score

6. average T11F score

7. average T11SU score

8. the number of topics in this run that found at least 1
positive doc

9. the number of topics in this run that found at least 3
positive docs

10. the number of topics for which at least one document
was sent to the

11. the ”giveup threshold” for which these results were
obtained oracle.

3.1 Ratio Based Scoring
In order to provide variety, we also used an alternate scor-

ing scheming in which documents are ordered by a measure
of the ratio of their similarities to the centroids of the posi-
tive and negative examples. Thus it builds on the relevance
feedback information available to Rocchio, with a key dif-
ference. Scores are calculated using the (regularized) ratio
of distances between normalized vectors. Specifically, if p,n
are the unit vectors corresponding to the centroids of the
positive and negative examples, and d is the unit vector
corresponding to the document being scored, then

sC(d) =
1 − (n,d)

1 − (p,d)
(2)

If the denominator vanishes, the value 106 is used as a de-
fault.

In practice this was more effective with a “Quitting” rule
that cust off submission if, after the first 50 documents are
submitted, we have not achieved a postive utility score.

4. BATCH FILTERING: BOOLEAN MODEL
Assume that there are n > 0 distinct terms in the docu-

ment collection and associate an index in V = {1, 2, . . . , n}
with each of these terms. Letting B = {0, 1}, we represent
each document in the collection as an n-dimensional Boolean
vector x ∈ B

V . Each component of x corresponds one of the
distinct terms in the document collection, with xi = 1 if the
ith term is present in the document and xi = 0 if the ith

term is absent from the document.
For a subset S ⊆ V , and vector a ∈ B

V , we shall let
a[S] ∈ B

S denote the projection of a onto S and for X ⊆ B
V

we shall write X[S] as the projection of X on S, that is,

X[S] = {a[S] | a ∈ X}. For a subset S ⊆ V let us denote
by χS ∈ B

n its characteristic vector, i.e.

χS
j =

{

1 if j ∈ S,
0 otherwise.

We shall refer to the set of relevant documents as T and
the set of irrelevant documents as F and shall assume that
T ∩ F = ∅, that is, there do not exist vectors a ∈ T and
b ∈ F such that a = b.

A set S ⊆ V is said to be a support set for T and F
if it has the property that T [S] ∩ F [S] = ∅. That is, S
is a support set if each relevant document represented in
terms of the selected features subset can be distinguished
from each irrelevant document represented in terms of the
selected features subset.

The document model described above does not preserve
information about the order in which terms appear in the
document and therefore is often referred to as the bag-of-

words representation. In addition, the Boolean nature of
this representation lies in contrast to a popular represen-
tation known in the information retrieval literature as the
vector space model, in which the components xi correspond
to the (relative) frequency of the term in the document.

4.1 Measure of Separation
For a subset S ⊆ V , we measure the distance between the

projections T [S] and F [S] of the sets T and F ∈ B
V onto

B
S , by the so called average Hamming distance. The use of

Hamming distance based separation, rather than measures
based on the l1, l2 or l∞ norms, as is often the practice when
the employing the vector space model, is suggested by the
Boolean nature of our document model.

The Hamming distance between the vectors a[S] ∈ T [S]
and b[S] ∈ F [S] is defined as dS(a, b) =

∑

j∈S:aj 6=bj
1. The

average Hamming distance between the sets T [S] and F [S]
then is defined as

∆avg(S) =
1

|T ||F |

∑

a∈T

∑

b∈F

dS(a, b). (3)

4.2 Ranking Functions
For each i ∈ V , each of the ranking functions presented

here utilizes the following four values

• ai ≡ the number of relevant documents containing the
ith term

• bi ≡ the number of irrelevant documents containing
the ith term

• ci ≡ the number of relevant documents which do not
contain the ith term

• di ≡ the number of irrelevant documents which do not
contain the ith term

For each i ∈ V , the relationship between ai bi, ci and di

and the document collection is given by the following 2 × 2
contingency table

y ∈ T y ∈ F
xi = 1 ai bi ai + bi = θi

xi = 0 ci di ci + di = θi

ai + ci = |T | bi + di = |F | m

where the marginals θ and θi represent the number of docu-
ments containing the ith term and the number of documents
which do not contain the ith term respectively, and y ∈ B is
defined as

y =

{

1 if x ∈ T,
0 otherwise.

Obviously, the marginals |T | and |F | are constant for all
terms while the marginals θi and θi vary for each term.
The total number of documents in the collection is m =
ai + bi + ci + di which is obviously also a constant.

For the simplicity of notations, we shall view all ranking
functions as functions of the four parameters a, b, c and d,
though clearly there are only two independent values among
these.

In [2] we analyzed and compared a number of possible
ranking functions, and based on that study, we selected 5
such functions for this TREC experiment:

Function α

α =

∣

∣

∣

∣

a

a+ c
−

b

b+ d

∣

∣

∣

∣

=
|ad− bc|

|T ||F |
(4)

is the absolute value of the difference between the number of
relevant-irrelevant document pairs in the training collection
which provide evidence that the ith term is a good classifier
of relevant documents and the number of relevant-irrelevant
document pairs which provide evidence that the ith term is
a good classifier of irrelevant documents, normalized by the
total number (i.e. both correctly distinguished and incor-
rectly distinguished) of relevant-irrelevant document pairs.

Function β

β =
ad+ bc

(a+ c)(b+ d)
=

ad+ bc

ab+ ad+ bc+ cd
=
ad+ bc

|T ||F |
(5)

is the total number of relevant–irrelevant document pairs
correctly distinguished by the ith term, normalized by the
total number of relevant-irrelevant document pairs in the
training collection.

Function γ

γ =
ad

(a+ c)(b+ d)
=

ad

|T ||F |

is an obvious variant of both α and beta.
Function δ

δ =
|ad− bc|

√

(a+ b)(c+ d)(a+ c)(b+ d)
=

ad− bc
√

θθ|T ||F |
(6)

is the absolute value of the Pearson Product Moment Cor-

relation coefficient or simply the correlation coefficient for
the Boolean variables xi and y as defined above. It mea-
sures the degree to which these two variables have a linear
relationship.

Function ρ

ρ =
(a+ b+ c+ d) (ad− bc)2

(a+ b)(c+ d)(a+ c)(b+ d)
=
m(ad− bc)2

θθ|T ||F |
(7)

is the χ2 statistic for the Boolean variables xi and y as
defined above and provides another measure of association
for these two variables.

Note that ρ is a onotone funcion of δ, so that our prece-
dure, as described below, effectively gives a “double weight”
to this particular measure of effectiveness.

4.3 Training the Batch Classifier
This section describes the feature selection method and

the simple classifier used in the batch filtering sub-task of
the filtering track.

The set of unique terms in the training set T ∪ F was
ranked by each of the five ranking functions α, β, γ, δ, ρ de-
scribed in §4.2. Five intermediate feature sets, Sα, Sβ, Sγ ,
Sδ, Sρ, were constructed using the top rankingK = 50 terms
of the corresponding ranking functions. Letting

S̃ = Sα ∪ Sβ ∪ Sγ ∪ Sδ ∪ Sρ

we assigned a score ψ ∈ {1, · · · , 5} to each of the terms in
tiledS, defined as the number of sets Sξ, ξ ∈ {α, β, γ, δ, ρ}
in which the term appeared. The final feature set S was
constructed by selecting the K = 50 terms with the highest
ψ scores.

Next, to each term in i ∈ S we assigned the weight

ω(i) =

ai+0.5
ai+ci+1

bi+0.5
bi+di+1

which can be seen to be the Bayesian weight of evidence,
and to each document y ∈ T [S]∪F [S] we assigned the score

Ω(y) =
∑

j∈S

log(ω(i))yj .

That is, each document projected onto the selected feature
set S is assigned a score equal to the sum of the logarithms
of the Bayesian weights of evidence for the terms it contains.

The batch filtering task requires the definition of a static
classification rule which specifies whether each document in
the test set should be considered relevant and retrieved, or
irrelevant and ignored. The rule we utilized specifies that
y ∈ T [S] ∪ F [S] will be retrieved if and only if Ω(y) ≥ τ for
some τ ∈ R. The threshold τ was selected so as to optimize
the utility measure TU11 = 2R − I over the training set,
where R is the number of relevant documents retrieved by
the system and I is the number of irrelevant documents
retrieved by the system.

5. RESULTS

5.1 Filtering Results
Our training results, using a variety scoring measures, for

a great variety of training runs, are shown at the end of the
paper in Table 2. In the final analysis, our results at TREC
were in the middle of the pack.

These are summarized in Table 1.

Method Mean T11

dimacsddl02a 0.110
dimacs11aAPQ 0.142
dimacsddl02b 0.293
dimacs11aP1Q 0.272
dimacs11a30Q 0.337

Table 1: TREC 2002 Results for the Assessor topics,

various runs

The best results were achieved by the run submitted as
dimacs11a30Q. This was a Rocchio method, trained on a
set of documents similar to the one used at TREC. The “

30” indicates that only the top 30 terms, that is, the 30
terms with highest weight in the updated query vector were
included. “ AP” includes only the terms with positive weight
are retained. “ Q” indicates that for our final submission
we cut off submission if we did not achieve a positive score
after submitting 50 documents for judgment. “ P1Q” used a
ratio scoring scheme, together with the “ quit at 50 if score
is negative rule. This is, of course, a “ TREC strategy”
and not a procedure that would be useful in a real world
application.

We have subsequently learned that with proper learn-
ing parameters, as chosen by the group from the Chinese
Academy of Sciences, it is possible for a Rocchio approach
similar to ours to achieve very good results. We are not
certain as to which steps of our approch blocked us from
realizing this high level of performance. One possibility is
that even the small number of pseudo-negative cases that we
introduce into the training is sufficient to keep us away from
the region of good performance. Another is that the space
of parameters is too large, and the dependence of the learn-
ing too complex, to be successfully explored “one variable
at a time”, which was essentially the heuristic used. Other
inhibiting factors may have included the heursitcs used to
cut off submission if we did not achieve a positive score after
the first 50 judgments. Nonetheless, our submission that did

use this heuristic fared better than those that did not.

5.2 Batch Results
On the assessor judged topics our TU11 score was less

than the median fifteen times, equal to the median twenty
times, and greater than the median fifteen times and never
attained the maximum.

On the intersection topics our TU11 score was less than
the median once, equal to the median six times, and greater
than the median forty-three times and attained the the max-
imum twenty-one times. Unfortunately, for many of these
topics, submitting no documents at all was an effective TREC
strategy.

6. CONCLUSIONS
This work is part of a larger effort to develop an array

of approaches to filtering problems, and to integrate or fuse
them for greater effectiveness. In this first effort it would ap-
pear that we have adopted tools that are capable of “state of
the art” perfromance on the adaptive filtering task, but have
not yet learned how to ensure that this level of performance
is achieved.

7. ACKNOWLEDGMENTS
This research is supported in part by the National Sci-

ence Foundation, which is not, however, responsible for any
positions expressed in this report. We thank our colleagues
in the Monitoring Message Streams project: Fred Roberts
(Principal Investigator), David Madigan, Ilya Muchnik, S.
Muthukrishnan, Rafi Ostrovsky, and Martin Strauss for help-
ful conversations.

8. REFERENCES
[1] Endre Boros, Takashi Horiyama, Toshihide Ibaraki,

Kazuhisa Makino, and Mutsunori Yagiura. Finding
essential attributes from binary data. Annals of

Mathematics and Artificial Intelligence, accepted.

[2] Endre Boros and David J. Neu. Rank based feature
selection in information retrieval. Technical report,
RUTCOR, Rutgers University, 2002.

[3] William B. Frakes and Ricardo Baeza-Yates, editors.
Information Retrieval: Data Structures and

Algorithms. Prentice-Hall PTR, 1992.

[4] Donna Harman. Relevance feedback and other query
modification techniques. In William B. Frakes and
Ricardo Baeza-Yates, editors, Information Retrieval:

Data Structures and Algorithms, pages 241–263.
Prentice Hall, Englewood Cliffs, NJ, 1992.

[5] D. D. Lewis. Feature Selection and Feature Extraction
for Text Categorization. In Proceedings of Speech and

Natural Language Workshop, pages 212–217, San
Mateo, California, 1992. Morgan Kaufmann.

[6] Tom M. Mitchell. Machine Learning. McGraw-Hill,
1997.

[7] Gottfried E. Noether. Introduction to Statistics: The

Nonparametric Way. Springer-Verlag, 1991.

[8] S.E. Robertson and K. Sparck Jones. Relevance
weighting of search terms. Journal of the American

Society for Information Science, 27(3):129–146, 1976.

[9] J. J. Rocchio, Jr. Relevance feedback in information
retrieval. In Gerard Salton, editor, The SMART

Retrieval System: Experiments in Automatic

Document Processing, pages 313–323. Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1971.

[10] Chengxiang Zhai, Thi Nhu Truong, John Lafferty,
Jamie Callan, David Fisher, Fangfang Feng, James
Allan, and Bruce Croft. Lemur.
http://www-2.cs.cmu.edu/ lemur, 2001.

Test label 2 3 4 5 6 7 8 9 10 11
U-0.0 A+ 9 -83 67 1.340 0.166 0.266 27 24 50 n/a
U-0.0 A- 8 -234 -529 -10.796 0.158 0.250 31 23 49 n/a
U-0.0 C+ 12 -67 109 2.180 0.195 0.274 35 30 50 n/a
U-0.0 C- 13 -86 -79 -1.580 0.175 0.268 30 23 50 n/a
U-0.0 ND+ 14 -77 143 2.860 0.191 0.278 33 25 50 n/a
U-0.0 ND- 14 -77 120 2.400 0.190 0.275 34 25 50 n/a
U-0.0 NW+ 13 -80 53 1.060 0.179 0.282 30 24 50 n/a
U-0.0 NW- 11 -109 -142 -2.840 0.173 0.269 31 25 50 n/a
U-0.0 PD- 11 -61 49 1.043 0.168 0.273 27 20 47 n/a
U-0.0 PW+ 8 -374 -703 -14.060 0.165 0.224 33 26 50 n/a
U-0.0 def 16 -51 325 6.771 0.191 0.287 32 23 48 n/a
U-0.1 A+.best.f 15 -34 499 9.9800 0.2040 0.3030 34 26 50 184
U-0.1 A-.best.f 15 -63 103 2.1460 0.1730 0.2690 30 22 48 293
U-0.1 C+.best.f 17 -44 347 7.2290 0.2110 0.2880 36 30 48 161
U-0.1 C-.best.f 11 -54 260 5.4170 0.1750 0.2850 28 20 48 186
U-0.1 ND+.best.f 17 -50 405 8.4380 0.1940 0.2930 32 23 48 211
U-0.1 ND-.best.f 16 -50 370 7.7080 0.1930 0.2900 32 23 48 212
U-0.1 NW+.best.f 12 -50 338 7.0420 0.1870 0.2890 30 22 48 249
U-0.1 NW-.best.f 13 -50 317 6.6040 0.1900 0.2880 32 24 48 192
U-0.1 PD-.best.f 13 -56 242 5.1490 0.1630 0.2960 27 18 47 147
U-0.1 PW+.best.f 14 -65 181 3.6200 0.1960 0.2800 34 25 50 217
U-0.1 PW-.best.f 15 -30 331 6.8960 0.1820 0.2900 30 24 48 191
U-0.1 def.best.f 16 -50 368 7.6670 0.1930 0.2900 32 23 48 211

U-0.25 A+.best.f 16 -34 567 11.3400 0.2100 0.3060 34 26 50 176
U-0.25 A-.best.f 16 -63 144 3.0000 0.1780 0.2740 30 22 48 235
U-0.25 C+.best.f 16 -44 381 7.9380 0.2100 0.2910 35 30 48 157
U-0.25 C-.best.f 12 -53 278 5.7920 0.1750 0.2860 28 20 48 184
U-0.25 ND+.best.f 17 -49 443 9.2290 0.1960 0.2950 32 24 48 244
U-0.25 ND-.best.f 16 -49 395 8.2290 0.1950 0.2920 32 24 48 216
U-0.25 NW+.best.f 12 -50 353 7.3540 0.1880 0.2900 30 22 48 246
U-0.25 NW-.best.f 12 -48 313 6.5210 0.1920 0.2900 32 25 48 335
U-0.25 PD-.best.f 13 -55 248 5.2770 0.1630 0.2960 27 18 47 146
U-0.25 PW+.best.f 14 -70 141 2.8200 0.1930 0.2810 34 24 50 188
U-0.25 PW-.best.f 15 -30 356 7.4170 0.1820 0.2910 30 23 48 194
U-0.25 def.best.f 16 -49 394 8.2080 0.1940 0.2920 32 24 48 210

U-0.5 A+.best.f 16 -33 566 11.3200 0.2100 0.3070 34 25 50 176
U-0.5 A-.best.f 15 -52 185 3.8540 0.1800 0.2760 30 23 48 231
U-0.5 C+.best.f 16 -41 390 8.1250 0.2060 0.2920 34 28 48 313
U-0.5 C-.best.f 12 -35 306 6.3750 0.1730 0.2880 27 20 48 185
U-0.5 ND+.best.f 17 -48 468 9.7500 0.1950 0.2960 32 24 48 223
U-0.5 ND-.best.f 16 -48 418 8.7080 0.1940 0.2930 32 24 48 223
U-0.5 NW+.best.f 12 -49 369 7.6880 0.1870 0.2920 29 22 48 252
U-0.5 NW-.best.f 13 -47 291 6.0620 0.1890 0.2860 32 25 48 337
U-0.5 PD-.best.f 13 -54 258 5.4890 0.1640 0.2970 27 18 47 143
U-0.5 PW+.best.f 13 -68 121 2.4200 0.1910 0.2800 34 23 50 334
U-0.5 PW-.best.f 15 -27 329 6.8540 0.1820 0.2910 30 23 48 212
U-0.5 def.best.f 16 -48 411 8.5620 0.1930 0.2930 32 24 48 222

U-0.75 A+.best.f 15 -33 557 11.1400 0.2070 0.3060 34 25 50 174
U-0.75 A-.best.f 16 -61 175 3.6460 0.1850 0.2740 31 24 48 209
U-0.75 C+.best.f 17 -41 436 9.0830 0.2090 0.2990 34 28 48 319
U-0.75 C-.best.f 12 -35 358 7.4580 0.1740 0.2910 27 20 48 185

continued on the next page

continued from the previous page
Test label 2 3 4 5 6 7 8 9 10 11

U-0.75 ND+.best.f 17 -47 473 9.8540 0.1990 0.2970 32 24 48 231
U-0.75 ND-.best.f 16 -47 430 8.9580 0.1980 0.2940 32 24 48 212
U-0.75 NW+.best.f 12 -48 377 7.8540 0.1900 0.2930 29 23 48 256
U-0.75 NW-.best.f 13 -47 314 6.5420 0.1910 0.2860 32 25 48 169
U-0.75 PD-.best.f 13 -54 273 5.8090 0.1640 0.2980 27 18 47 195
U-0.75 PW+.best.f 14 -67 181 3.6200 0.1930 0.2830 34 23 50 206
U-0.75 PW-.best.f 15 -26 322 6.7080 0.1850 0.2930 30 24 48 170
U-0.75 def.best.f 16 -47 427 8.8960 0.1980 0.2940 32 24 48 212

Table 2: Utility scores of running Rocchio with different parameters

