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Abstract 
Video shot boundary detection and keyframe extraction is an important step in many video-processing 
applications.  We observe that video shot boundary is a multi-resolution edge phenomenon in the feature space. In 
this experiment, we expanded our previous temporal multi-resolution analysis (TMRA) work by introducing the 
new feature vector based on motion, incorporating functions to detect flash and camera/object motion, and 
selecting automatic thresholds for noise elimination based on the type of video. The framework is used to extract 
meaningful keyframes. Experiments show that our new system can detect and characterize both the abrupt (CUT) 
and gradual (GT) transitions effectively. It has good accuracy for both the detection of transitions as well as their 
boundaries. 

1. Introduction 
Due to the presence of many types of transitions and the wide varying lengths of GTs, the task of detecting the 
type and location of transitions in video is a complex task. In fact, the transition of video is not a single resolution 
phenomenon. For example, although longer GT can't be observed at a high temporal resolution, it is apparent at a 
low temporal resolution of the same video stream.  Thus the detection of transitions of video shots is a temporal 
multi-resolution problem. Information across resolutions can also be used to detect as well as locate both the CUT 
and GT transition points. Since wavelet is well known for its ability to model   sharp discontinuities and to 
process signals according to scales [1], we employ Canny-like B-Spline wavelets in this multi-resolution analysis. 
This work provides: a) an unified approach for CUT and GT detection; b) accurate location of gradual transition 
boundary; c) adaptive threshold value selection based on video variance within a sliding window; d) flash 
elimination by characterizing the phenomenon in multi resolution; e) motion elimination by computing quadratic 
similarity measures within the transition and its neighborhood; and f) keyframe extraction. 

2. Basic Theory 

2.1 Video Representation 
We model the video according to the content of the video frames in the stream. The feature for representing the 
content of video frames could be of any type: color, shape, texture or motion. Thus video is modeled in a N-
dimensional feature space of :  (a) gray-level representation,  (b) RGB value, and (c) Optic flow/motion vector 
value. The dimension of the space depends on the dimensionality of the chosen features. Since the color-
histogram representation has been found to be useful for the video segmentation problem, we use the N-color 
histogram for each frame of video. Our experiment shows that the local histogram-based method has difficulties 
in improving both the recall and precision of the shot boundary detection at the same time. In addition it has 
difficulty locating precise boundary of GT due to the flash and camera/object motions. To overcome this problem 
we constructed a motion-based feature using the motion-vectors of MPEG compressed stream. Besides the use of 
these features, we also use derivatives to detect the transitions. The maximas of the first order derivative or zero 
crossing in the second order derivative will correspond to transition points. In this paper, the first order derivative 
was taken for easier implementation. 
 
By empirically observing GTs that exists in most video streams, we find that different types of GTs exist like fade 
in/fade out, dissolve, wipe, morph etc. Moreover, the length of the transition may vary greatly too. Different shot 
transitions have different characteristics, so it is hard to use just one single feature and single algorithm to capture 
the characteristics of all kinds of shot transitions efficiently. Just as the assumptions most existing algorithm 
follows, one can clearly observe that the content between shots change much more than intra-shot change. 
However different types of shot transitions are observable at different scales in the feature space. Whatever the 
type or length of the transition, there will always be a change big enough that we can detect. The difference is 



only the resolution of our observation. For CUT, we could see the change both in a detailed observation (between 
two successive frames), or a coarse observation (across several frames), while GT only shows the change in a 
coarse observation. So the transition must be defined with respect to different resolutions. By viewing the video at 
multiple resolutions,  the CUT and those GTs could be unified. The only difference is that GTs means boundaries 
of signal in low resolutions while CUT means in all the resolutions. By making this fundamental observation that 
a video shot boundary is a multi-resolution phenomenon, we can characterize the transitions with the following 
features: the scale of the transition, the strength of the transition, and the singularity of the transition point. We 
have developed a unique multi-resolution analysis technique to detect and characterize both the CUT & GT shot 
boundaries.  

2.2 Applying Wavelet 
The multi-resolution phenomenon has been widely studied in other areas, and wavelets provide a good 
mathematical basis for such an analysis. In the analysis, we need to construct a scale space. The Gaussian scale-
space approach is widely adopted as the Gaussian function is the unique kernel, which satisfies the causality 
property as guaranteed by the scaling theorem. Because the first order derivative of the Gaussian function could 
be a mother wavelet, one can easily show that the sharper variation points of the signal corresponds to the local 
maxima of the wavelet transform. Thus a maxima detection of the wavelet transform is equivalent to boundary 
detection. If the mother wavelets is the Canny wavelet, which is the first order derivative of the Gaussian , then 
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From the right side of equation (4), we can see that the resulting output is a smoothed signal generated by a 
Gaussian filter that calculates the first order derivatives. It could be shown here that this wavelet transform is 
equivalent to smoothening the signal by applying the different scale Gaussian filters and then calculate the first 
order derivatives. The detailed derivation of Equations (1-5) can be found in [3].  The local maximas of the 
resulting signal will indicate where the transitions happen, and the magnitude of the maximas will show the 
strength of the transitions.  Tracing the maximas in different resolutions is equivalent to finding transition points 
in different resolutions. In many cases, the presence of noise may result in maximas too. We distinguish the real 
transitions from the noise by examining the cross-resolution information. A real transition will still be a maxima 
in all resolutions.  However, the noise may be lost or eroded in a lower resolution of the smooth function [3]. 

3. Implementation 
 
 
 
 
 
 
 

 
 
 

Figure 1. TMRA system for shot boundary detection 
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The TMRA system has 3 phases. In the feature extraction phase, feature vectors suitable for the TMRA are 
computed. In the shot boundary detection phase, transitions are characterized and the TMRA algorithm is applied 
to obtain the transition boundaries. This result will include many wrong transitions (insertions). In the elimination 
phase, motion analysis and flash detection are applied to remove insertions due to motion and abrupt flash noises. 
Figure 1 shows the system architecture for shot boundary detection. The following sections discuss in detail each 
of these three phases.  

3.1 Feature extraction 
We extract motion vector feature and the color histogram feature. The DC64 color histogram is computed by 
extracting the DCT DC value for each block in the frame. The value is quantized to 64 values. The MA64 
direction histogram is computed using the motion vectors for each macro block and quantizing the angle values to 
60 bins.  Since the motion vectors tend to be sparse, a 3X3 median filtering is applied to the motion vectors. Also 
boundary blocks are not considered in the formation of the feature vectors, as they tend to be erroneous. The last 4 
bins contain the macroblock type count of forward predicted, backward predicted, intra and skip macroblocks. 

3.2 TMRA Algorithm 
In this phase, TMRA algorithm is applied to determine the potential transition point and their type. It performs the 
wavelet transformation on the color and motion based feature vectors. 

3.2.1 Locating potential transitions 
The goal of video segmentation is not only to detect the occurrence of a transition, but also to locate the exact 
positions of the CUT/GT to segment the video. In a GT, both the start position and end position need to be 
detected. Low resolution of the wavelet coefficients helps to detect the occurrence; where as high resolution helps 
to characterize the start and end of the transition. In the higher resolution, the boundaries would show up as the 
maxima points. To identify this boundary we use both the DC64 and MA64 wavelet coefficients. For low 
resolution (Resolution 3) DC64 wavelet coefficients are used and for high resolution (Resolution 0) MA64 
wavelet coefficients are used. The DC64 feature space fails to characterize the beginning and ending frames of the 
transitions accurately at the high resolution. This is due to the fact that the rate of change in DC64 feature space is 
not high and doesn't result in a distinguishable peak.  Hence we designed a new feature space based on direction 
of motion along with counts representing static (skip) and  intra (blocks having significant change) blocks.  As a 
result of this we observe that even a gradual change resulted in an abrupt spike (peak) at the start and end of the 
transition. This is captured as the boundary of the transition. After we identify the local maxima points at some 
lower resolution (also called potential transitions),  we use these local maxima points as the anchor points, and 
trace up to the higher resolution of the motion-based wavelet coefficients. 

3.2.2 Adaptive thresholding 
The problem of choosing appropriate threshold is a key issue in applying TMRA for shot boundary detection. 
Heuristically chosen global threshold is not suitable as the shot content changes from scene to scene. So adaptive 
thresholds are better than a simple global threshold. Here we use a sliding window method to calculate the 
thresholds.  Our system has one weighting factor which can adaptively adjust based on the sliding window size 
and the standard deviation of dc64 feature of the neighborhood frames.. For different video clips, their standard 
deviations (see equation 5) are different. The standard deviation of home videos is larger than the general videos. 
The choice of sliding window size is also very important. In our system, we scan the whole wavelet coefficients 
of DC64 and choose the sliding window size as the sum of max interval of peak points and max interval of valley 
points (see equation 6). This removes most of the noise peak points due to brightness/contrast variations, blurring 
and small motions. The weighting factor can be used to adjust the threshold, which is chosen in the range of 
0.8~1.5. In general, for home video, the weighting factor can be larger, in the range of 1.2~1.5, whereas for other 
video, it can be in the range of 0.8~1.1.  
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where N denotes the total frame number of the video sequence; f denotes the feature (DC64). 
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where Np denote the number of the peak points and Nv denote the number of valley points.  )( p
iD  is the interval 

of neighborhood  peak points whereas  )(v
iD  is the interval of neighborhood valley points.  pdis and  vdis  are 

maximum intervals of peak points and valley points, respectively. 

3.3 Elimination and Keyframe Extraction 
The last phase of the TMRA algorithm is the elimination of wrong transitions due to motion and abrupt flashes in 
the shot. Also representative keyframes are extracted for each shot. The following sections give a brief description 
on the method to characterize such activities in the multi resolution framework.  

3.3.1 Flash detection 
With our TMRA, flash is easily detected by testing the changes of frame's wavelet coefficients at all resolutions. 
For abrupt noise, the magnitude of coefficient value also decreases as the resolution decreases. 

3.3.2 Camera/Object motion detection 
With our ATMRA, we detect camera and object motion points. In principle, for the correct transitions (CUT/GT), 
the mean absolute differences (MAD) of DC64 and MA64 should be consistent. At CUT and GT points, the 
MADs are consistent across both the DC64 and MA64 feature space. If MAD changes are not consistent across 
DC64 and MA64 around the potential transition points, then it is likely to be a wrong transition caused by the 
camera/object motion.  
Summarizing our motion detection method: first we compute three kinds of quadratic differences (distance 
between mean absolute difference of feature vector) for each potential transition we have found. They are 
represented as QMADbefore(similarity before the transition), QMADintra (similarity within the transition), 

QMADafter (similarity after the transition)  as shown in Equations (7-9). Here 
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normalizing factor. For each transition, we compute these three parameters for DC64 and MA64 feature, 
respectively.   
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where: start and end represents the begin and end frame number of the potential transition. k represents the 
computing range ( 92 ≤≤ k  ).  fi denotes the feature.  
 
We  remove those potential transitions that meet the following condition:  
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3.3.3 Keyframe extraction 
Keyframes are very useful to summarize videos, and to provide access points into them. In this paper we also 
derive distinct keyframes to represent each shot. The keyframes are extracted as a by-product of multi-



resolution analysis for shot boundary detection. We extend the concept of finding the scene transitions as local 
maxima's in the feature space; the local minima's can be chosen to represent the keyframe. Only the Resolution 
3 (low resolution) is used to find the local minima points. For every shot two minima's are identifies, one in the 
DCT DC feature space and the other in the MA64 feature space. The color histogram distance between these 
two representative frames are computed and thresholded to chose either one or both the frames. Also a time 
constraint of 1 sec distance between the two keyframes is imposed. This ensures that the keyframes are distant 
and well represents the action in the video. The DCT DC selection results in color constant keyframes, where as 
the MA64 minima represents minimal motion angle change in the consecutive frames.  

4. Experimental Results 
The effectiveness of the algorithm was evaluated on TREC-2002 test data set. We submitted 2 runs represented as 
Nus1 and Nus2. The video contained a total of 2090 transitions. About 70% of them were cuts and 30 % gradual 
transitions and others. The results suffer from a poor detection of gradual transitions. We observed that our 
system throws many short gradual transitions (SGT) for single long gradual transitions. Also Fade-In-Out was 
considered as two separate transitions. We never eliminated the start and end transitions. By changing the SGT 
value to 4 we see that there is a 7% improvement in GT recall and 5% improvement in GT precision.  Also we 
made small experiments to merge neighboring SGT's. The results show a 7% improvement in GT recall and 15 % 
improvement in Frame recall.  These results are tabulated in the following table. 
 

All Cuts Gradual System Description 
Rec Prec Rec Prec Rec Prec F-Rec F-Prec 

Nus1 0.621 0.615 0.742 0.670 0.313 0.411 0.301 0.833 
Nus2 0.594 0.614 0.707 0.693 0.306 0.369 0.331 0.848 

Nus1*(with SGT=4) 0.63 0.625 0.732 0.692 0.374 0.42 0.268 0.838 
Nus1*(With Merge) 0.6 0.675 0.685 0.75 0.382 0.465 0.455 0.654 

 

5. Conclusion 
In conclusion, it has been demonstrated that TMRA framework offers a general and novel approach to flexibly 
and accurately probe the structure and content of digital video and meantime, it provides the ability to incorporate 
the new function to expand and improve the performance. Our future work is (1) to improve gradual transition 
detection and frame recall, (2) to investigate the active learning via artificial neural network to classify the 
CUT/GT, (3) to investigate the usage of other features for analyzing the video data, especially at semantic level, 
(4) to improve and to incorporate it into our video retrieval system. 
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