
Question Answering Using XML-Tagged Documents

Kenneth C. Litkowski
CL Research

9208 Gue Road
Damascus, MD 20872

ken@clres.com

Abstract

The official submission for CL Research's question-answering system (DIMAP-QA) for TREC-11 only
slightly extends its semantic relation triple (logical form) technology in which documents are fully parsed and
databases built around discourse entities. We were unable to complete the planned revision of our system based on
a fuller discourse analysis of the texts. We have since implemented many of these changes and can now report
preliminary and encouraging results of basing our system on XML markup of texts with syntactic and semantic
attributes and use of XML stylesheet functionality (specifically, XPath expressions) to answer questions.

The official confidence-weighted score for the main TREC-11 QA task was 0.049, based on processing 20
of the top 50 documents provided by NIST. Our estimated mean reciprocal rank was 0.128 for the exact answers
and 0.227 for sentence answers, comparable to our results from previous years. With our revised XML-based
system, using a 20 percent sample of the TREC questions, we have an estimated confidence-weighted score of
0.869 and mean reciprocal rank of 0.828. We describe our system and examine the results from XML tagging in
terms of question-answering and other applications such as information extraction, text summarization, novelty
studies, and investigation of linguistic phenomena.

1 Introduction

In previous years, DIMAP-QA was based on full
parsing of the 10 or 20 NIST-supplied top documents
of TREC texts and extracting semantic relation triples
into a database from which answers were then found
(Litkowski, 2001; Litkowski, 2002a). As noted
previously, our system was intended to be part of a
larger system of discourse analysis of the texts, which
had not been sufficiently implemented to serve as the
basis for question-answering. In addition, although our
idea of capturing semantic relation triples (identifying
discourse entities and their relations to other discourse
elements) seemed sound, the use of a traditional
database structure made it difficult to represent and
exploit the structural properties of natural language.

Extensible Markup Language (XML) provides a
more natural mechanism for representing texts. A
valid XML document is a tree and we can readily
design our entire representation on this tree structure.
The entire TREC collection (or any subset of
documents) can be represented as one tree; the next
level of the tree represents each document. At the next
level, each document may be represented as a set of
sentences, each of which may then be subdivided into
sentence segments or clauses (elementary discourse
units), which are then broken down into traditional
parse trees, ending in leaf nodes corresponding to the

words in the sentences. Each node in the tree may have
associated attribute names and values.

A key part of the XML design philosophy is the
ability to transform an XML file into usable output for
display or other purposes (e.g., populating a database).
This is accomplished via XML stylesheet language
transformations (XSLT). XSLT is based on the
creation of XPath expressions, which specify the path
from the top of the XML tree to some intermediate or
leaf node. For question-answering, an XPath
expression (query) essentially specifies search criteria
that return a string answer, based on node types and
attributes. For example, for question 1553 (“who
makes Magic Chef refrigerators?”), a single XPath
expression looks for a sentence containing “Magic
Chef” and an anaphor with an antecedent, finds the
sentence containing the antecedent, notices that the
antecedent is a predicate to “is”, and retrieves the
subject of the predicative, “Maytag”, as the answer to
the question.

Section 2 presents the TREC QA problem
description. Section 3 describes our system: sentence
splitting, parsing, discourse and sentence analysis, and
database development and XML tagging. Section 4
briefly describes question-answering against the
document databases. Section 5 provides a detailed
description of procedures used to answer questions
from XML-tagged documents. Section 6 presents and

analyzes our official results and the unofficial results
achieved using the XSLT approach. Section 7
describes anticipated next steps for improving the
question-answering capability and for using XML-
tagged documents in other applications such as
information extraction, text summarization, novelty
studies, and investigation of linguistic phenomena.

2 Problem Description

Participants in the main TREC-11 QA track were
provided with 500 unseen questions to be answered
from the AQUAINT Corpus of English News Text on
two CD-ROMs, (about one million documents),
containing documents from Associated Press
Newswire, New York Times Newswire, and Xinhua
News Agency. These documents were stored with
SGML formatting tags (XML compliant). Participants
were given the option of using their own search engine
or of using the results of a “generic” search engine. CL
Research chose the latter, relying on the top 50
documents retrieved by the search engine. These top
documents were provided simultaneously with the
questions.

Participants in the main task were required to
answer the 500 questions with a single exact answer,
containing no extraneous information and supported
by a document in the corpus. A valid answer could be
NIL, indicating that there was no answer in the
document set; NIST included 46 questions for which
no answer exists in the collection. Answers for the 500
questions were to be sorted according to a participant’s
confidence. NIST evaluators next judged whether an
answer was correct, inexact, unsupported, or incorrect.
The submissions were then scored as the sum with I
from 1 to 500 of the number of correct answers up to
I divided by I, and this sum divided by 500, called a
confidence-weighted score (CWS).

CL Research performed two runs for the main
task. However, we mistakenly submitted the second
run, based on using the top 20 documents (rather than
one for the top 10 and one for the top 20), for both run
tags. The discussion of our official submission will
thus present results for only one run.

3 System Description

The CL Research question-answering system
consists of four major components: (1) a sentence
splitter that separated the source documents into
individual sentences; (2) a parser which took each
sentence and parsed it, resulting in a parse tree
containing the constituents of the sentence; (3) a parse

tree analyzer that identified important elements of the
sentence and created semantic relation triples stored in
a database and a set of discourse constituents
(sentences and clauses, discourse entities, verbs and
prepositions) used to create an XML-tagged version of
each document; and (4) two question-answering
programs, one using the database and one using the
XML documents.

3.1 Sentence Splitting

Sentence splitting proceeded as described in
previous years (Litkowski, 2002a; Litkowski, 2001).
Using the new AQUAINT collection posed some
difficulties because of idiosyncratic markup (described
below). Unlike previous years, this phase of processing
was completely robust.

For TREC-11, the top 20 documents (as ranked by
the search engine) were analyzed for the main task,
with one database containing only the processing for
the top 10 documents and the other for the full 20
documents. Overall, this resulted in processing 10,000
documents from which 257,276 sentences were
identified and presented to the parser. Thus, we used
an average of 25.7 sentences per document (compared
to 22.8 in TREC-10, 28.9 in TREC-9 and 31.9 in
TREC-8) or 257 sentences for the 10-document set and
514 for the 20-document set.

3.2 Parser

We continued our use of the Proximity parser,
described in more detail in our previous papers
(Litkowski, 2002a; Litkowski, 2001). As described
there, the parser output consists of bracketed parse
trees, with leaf nodes describing the part of speech and
lexical entry for each sentence word. Annotations, such
as number and tense information, may be included at
any node. Usable output was generated by the parser
for 99.9 percent of the sentences that were processed.

3.3 Discourse and Sentence Analysis

The sentence parsing in the CL Research system
is part of a broader system designed to provide a
discourse analysis of an entire text or set of texts. We
are using this system for processing encyclopedia
articles, historical texts, scientific articles1, as well as
the news wire texts in TREC and the RST treebank
(Linguistic Data Consortium, 2002). Frequently, the

1See http://www.clres.com/sa-articles.xml.

http://www.clres.com/sa-articles.xml

input has already been tagged (e.g., in SGML) and our
processing may result in additional tagging.

After each sentence is identified and parsed, its
parse tree is traversed in a depth-first recursive
function. During this traversal, each non-terminal and
terminal node is analyzed, making use of parse tree
annotations and other functions and lexical resources
that provide “semantic” interpretations of syntactic
properties and lexical information.

At the top node in the tree, just prior to iteration
over its immediate children, the principal discourse
analysis steps are performed. Each sentence is treated
as an “event” and added to a list of events that
constitute the discourse. We first update data structures
used for anaphora resolution. Next, we perform a quick
traversal of the parse tree to identify discourse markers
(e.g., subordinating conjunctions, relative clause
boundaries, and discourse punctuation) and break the
sentence down into elementary discourse units. We
also identify and maintain a list of the sentence’s verbs
at this stage, to serve as the bearers of the event for
each discourse unit.

After the initial discourse analysis, the focal points
in the traversal of the parse tree are the noun phrases.
When a noun phrase is encountered, its constituents
are examined and its relationship to other sentence
constituents are determined. The relationship analysis
gives rise to a semantic relation triple, which consists
of a discourse entity (the noun phrase itself), a
syntactic or semantic relation which characterizes the
entity's role in the sentence, and a governing word to
which the entity stands in the semantic relation. A
triple is generally equivalent to a logical form (where
the operator is the semantic relation) or a conceptual
graph, except that a semantic relation is not strictly
required, with the driving force being the discourse
entity.

Each noun phrase is added to a list of discourse
entities for the entire text, that is, a “history” list. As
each noun phrase is encountered, it is compared to
discourse entities already on the history list. This
comparison first looks for a prior mention, in whole or
in part, to determine whether the new entity is a
coreferent of a previous entity (particularly valuable for
named entities). If the new entity is an anaphor, an
anaphoric resolution module is invoked to establish the
antecedent. A similar effort is made to find antecedents
for definite noun phrases. The noun phrase’s
constituents are examined for numbers, adjective
sequences, possessives (which are also subjected to the
anaphoric resolution module), genitive determiners
(which are made into separate discourse entities),
leading noun sequences, ordinals, and time phrases.

Finally, an attempt is made to assign a semantic type
to the head noun of the phrase using WordNet or an
integrated machine-readable dictionary or thesaurus.

If a noun phrase is part of a prepositional phrase,
a special preposition dictionary is invoked in an
attempt to disambiguate the preposition and identify its
semantic type. This module identifies the attachment
point of the preposition and uses information about the
syntactic and semantic characteristics of the
attachment point and the prepositional object for this
disambiguation. The preposition “definitions” in this
dictionary are actually function calls that check for
such things as literals and hypernymy relations in
WordNet. A list of all prepositions encountered in the
text is maintained as the text is processed. (See
Litkowski (2002b) for further details.)

Predicative adjective phrases, relative clauses,
subordinate clauses, and appositives are also flagged as
the parse tree is traversed. The attachment points and
spans of relative clauses and appositives are noted.

As the noun phrases are encountered, we attempt
to identify the syntactic or semantic role they play in
the sentence. These include “SUBJ,” “OBJ”, “TIME,”
“NUM,” “ADJMOD,” and the prepositions heading
prepositional phrases. Relative clauses and appositives
are inherently modifiers of their attachment points.

The governing word was generally the word in the
sentence that the discourse entity stood in relation to.
For “SUBJ,” “OBJ,” and “TIME,” this was generally
the main verb of the sentence. For prepositions, the
governing word was generally the noun or verb that
the prepositional phrase modified. (Because of the
context-sensitive dynamic parsing goals that were
added when a verb or a governing noun was
recognized, it was possible to identify what was
modified.) For the adjectives and numbers, the
governing word was generally the noun that was
modified.

A semantic relation and a governing word were
not identified for all discourse enti ties.
Notwithstanding, a list of every discourse entity is
maintained with a unique identifier and all
characteristics that can be associated with them.

3.4 Database Development and XML
Tagging

The text analysis module generates two types of
output: (1) a database of semantic relation triples and
(2) an XML tagging of the text. Either type of output
is optional. For the database, each semantic relation
triple is added as it is generated. Overall, 2,306,698
semantic relation triples were created in parsing the

257,276 sentences, an average of 9.0 triples per
sentence (compared to 9.7 in TREC-10).

Although we have achieved some degree of
success with the database approach, we have found
that it is difficult to work with. The table of semantic
relation triples is not intuitive because the flat structure
removes the tree structure that is inherent in a
grammar-based parser. For simple questions,
answering is a matter of forming a join between a
question database parsed and analyzed in the same way
as the document database. With greater complexity,
and with a document database where a simple join
does not produce an answer, the logic required to
examine a path of relations becomes more difficult.

As indicated above, the text analysis module
develops four lists at the same time as the semantic
relation triples: (1) events (the discourse segments), (2)
entities (the discourse entities), (3) verbs, and (3)
semantic relations (the prepositions). Each document
consists of one or more tagged segments, which may
include nested segments. Each discourse entity, verb,
and preposition in each segment is then tagged. A
segment may also contain untagged text, such as
adverbs and punctuation. Each item on each list has an
identification number (used in many of the functions of
the text analysis module). As indicated above, the
discourse analysis assigns attributes to each segment
(and subsegment), discourse entity, verb, and
preposition.

For segments, the attributes include the sentence
number (if the segment is the full sentence), a list of
subsegments (if any), the parent segment (if a
subsegment), the text of the segment, the discourse
markers in the sentence, and a type (e.g., a “definition”
sentence or “appositive”). For discourse entities, the
attributes include its segment, position in the sentence,
syntactic role (subject, object, prepositional object),
syntactic characteristics (number, gender, and person),
type (anaphor, definite or indefinite), semantic type
(such as person, location, or organization), coreferent
(if it appeared earlier in the document), whether the
noun phrase includes a number or an ordinal,
antecedent (for definite noun phrases and anaphors),
and a tag indicating the type of question it may answer
(such as who, when, where, how many, and how
much). For verbs, the attributes include its segment,
position in the sentence, the subcategorization type
(from a set of 30 types), its arguments, its base form
(when inflected), and its grammatical role (when used
as an adjective). For prepositions, the attributes include
its segment, the type of semantic relation it instantiates
(based on disambiguation of the preposition) and its
arguments (both the prepositional object and the
attachment point of the prepositional phrase).

After all sentences in a document have been
processed, the four lists are used to create an XML-
tagged version of the document. The XML tagging is
performed for each segment within the XML element
segment, with the attributes listed in the tag opening.
The tag content is initialized to the segment text and
we proceed to mark up this text according to the text
contained within each subsegment, discourse entity
(discent), verb (verb), and preposition (semrel) in the
segment. As these XML elements are generated, their
attributes are added to the tag opening.

The resultant XML-tagged text for individual
documents were combined into one overall file of
documents, each with a tag for the document number.
For TREC, the output consisted of groups of ten
documents from the NIST-provided top documents for
each question. Since we only processed the top 20
documents, we had 500 XML files for the top ten
documents and 500 for documents ranked 11th through
20th. These are the files used for answering the TREC
questions.

4 Question-Answering Using Document
Databases

For TREC-11, the question-answering against the
document databases was little changed from previous
years. We refer to our earlier detailed descriptions
(Litkowski, 2002a; Litkowski, 2001) and provide only
a brief overview here.

For TREC-11, a database of documents was
created for each question, as provided by the NIST
generic search engine. A single database was created
for each question in the main task. The question-
answering consisted of matching the database records
for an individual question against the database of
documents for that question.

The question-answering phase consists of four
main steps: (1) detailed analysis of the question to set
the stage for detailed analysis of the sentences
according to the type of question, (2) coarse filtering of
the records in the database to select potential
sentences, (3) extracting possible short answers from
the sentences, with some adjustments to the score,
based on matches between the question and sentence
database records and the short answers that have been
extracted and (4) making a final evaluation of the
match between the question's key elements and the
short answers to arrive at a final score for the sentence.
The sentences and short answers were then ordered by
decreasing score. The short answer for each question
(an “exact” answer), its score, and its sentence (the
“justification”) were printed to a file. This file was

then sorted by score to create a “confidence-ordered”
answer set submitted to NIST.

5 Question-Answering Using XML-
Tagged Documents

As described earlier, question-answering against
XML files essentially involves describing a path
(XPath) from the top of the tree(s) to a discourse entity
(in our case, to a discent node) which is returned as
the answer. To do this, a question is converted into an
XPath expression used to select nodes in the files. For
example, for question 1593 (“What percent of Egypt's
population lives in Cairo?”), an XPath expression is

/ / s e g m e n t [c o n t a i n s (. , ' C a i r o ')]
//discent[contains(. , 'percent') and
@tag='howmany']

The first double slash says to find any node in all
documents being searched that are marked as segment
elements and contains the word “Cairo”. The second
double slash says to find all discent elements that are
descendants of such segments containing the word
“percent” and that have an attribute tag with value
equal to “howmany”. This XPath expression will
return zero or more nodes from however many
documents are processed.

In general, question-answering consists of the
following steps: (1) analyze the question and convert
it into an XPath expression; (2) load the XML file(s)
and select the nodes satisfying the XPath expression;
and (3) if necessary, score and/or evaluate the nodes
returned and present them to the user. The second step
is the easiest, consisting of a loop over the files being
processed, with a single statement to load the file and
another single statement to select the nodes.

The first step, determining the XPath expression,
is more difficult. As can be seen for q1593, not all the
question elements are present in the query. This may
be characterized as a “backoff” strategy, beginning
with all the terms in the query and removing some that
are not necessary or are too restrictive. For q1593,
including all the terms will result in zero nodes. This
is frequently the case, with questions often providing
much more information than is likely to appear in one
sentence. The third step, evaluating the nodes selected,
is generally not as complicated; a well-formulated
XPath expression generally returns only a couple of
answers, although there are some question types that
require more extensive processing. We will describe
our observations about the first and the third steps in
more detail below.

As indicated earlier, we were not able to
implement our question-answering against the XML-

tagged documents for our official submission. Using
these documents has required an entirely new
conceptual approach, involving the resolution of many
intertwined issues. This new approach has been
evolving since our submission; many refinements are
necessary and many possibilities for making these
changes have been emerging.

To begin with, the whole tagging process
described in general terms above requires dealing with
virtually the full panoply of natural language
processing, including tokenization, sentence splitting,
parsing, word-sense disambiguation, anaphora
resolution, and discourse analysis. While we have
developed a system that comprehends all these
components, many of the components have not yet
been implemented to the state of the art. For example,
our anaphora resolution module is currently estimated
at 55 percent correct, whereas the state of the art has
been attaining levels over 80 percent. Also, our typing
and characterization of prepositional semantic
relations is currently operating at about 20 percent (see
Litkowski (2002b) for our lexicographic approach to
this problem), so that we have to rely on the
preposition itself as the bearer of information about the
semantic relation. Further, our discourse structure
analysis is an initial implementation, presently
handling only appositives and relative clauses.

A second major issue to be faced is the selection of
tags and their attribute names and values. This issue
involves identifying what information will be useful
and then developing techniques for extracting the
information, using whatever other resources may be
available (such as dictionaries and thesauruses). An
important question, given our semantic predilections,
is what semantic classes to use for characterizing
discourse entities. Another important question is how
to group information: what sentence parts should be
grouped together and which modifiers should be
separated or put into attributes of a discourse entity.

Dealing with these issues (identifying problems
with the functioning of our XML output generation
and examining representational alternatives) is very
complex and requires the development of mechanisms
for analyzing them. This has led to two steps in our
development cycle: (1) the development of an analysis
interface for assessing problems and (2) the use of the
TREC questions as guidance for inadequacies in our
representations. As will be suggested below, the use of
XSLT has demonstrated not only a capability for
dealing with these issues, but also provides a strong
indication that an XML representation of text will be
extremely useful for a wide range of applications,
including question-answering.

5.1 Step 1: An XML Analysis Interface

The generation of 1000 XML files each containing
10 TREC documents provides a large amount of data;
the XML files are approximately five times the size of
the TREC documents. The XML files can be viewed
(with retention of the nested structure) in Microsoft’s
Internet Explorer, but this does not allow any
systematic examination of the data. Conventionally,
those working with XML files develop XML
stylesheets for portraying the data (XSLT), perhaps
embedded in interactive browser web pages. However,
this requires a prior design, something not yet
developed for the files generated here. Moreover,
XLST is somewhat involved and not convenient for the
analysis required here. Instead, we developed a GUI
interface which enables lower-level access to the XML
data and provides an easier development vehicle for
the kinds of exploration needed here. Lessons learned
from this interface can guide future development of
applications using XML-tagged documents.

Our development environment (known as
XMLPartner) provides powerful tools for low-level
access to the XML data. A well-structured XML file
has the form of a completely hierarchical tree, wherein
nodes contain the data and the attributes.2 In our
system, an XML file of any size (with extremely large
files using a buffered stream) is loaded with one
statement. Similarly, a search for nodes providing the
answer to some query (the XPath expression
conforming to the XML Path Language) is
accomplished with one statement. This enables us to
focus on development of queries and examination of
search results (perhaps with further search statements).
We have developed surrounding GUI components to
facilitate examination of different aspects of the XML
data (referred to below as XML Analyzer).

5.1.1 Global Examination of Data

In the first place, we used XML Analyzer to
examine (and sometimes extract) interesting
phenomena in the text. XML Analyzer can be used as
a concordancer; a suitable XPath expression can
extract all sentences in our TREC XML files (80 MB)
that begin with “After” in four minutes. Similarly, we

can find all discourse entities that contain a capitalized
word, to examine whether we have assigned them an
appropriate named entity type. In general, we use this
basic capability to examine words, the entities and
sentences in which they occur, and their attributes.

We display results of a search with the entity (if
requested), the document title (the document number
for TREC documents), and the sentence containing the
entity. When we are searching only for sentences, no
entity is given. A user can select a sentence and ask to
see all the entities in that sentence. A user can select
an entity and request all other entities which co-refer
to it or have it as an antecedent.

5.1.2 Detailed Investigation of Discourse
Entities

The XML Analyzer can be used to examine details
about particular discourse entities. For example,
question 1502 asks “when was President Kennedy
killed”. In the NIST top 10 documents for this
question, a search on “Kennedy” in discourse entities
identified 152 occurrences (the Kennedy clan).
Narrowing the search to those also containing
“Edward” gave 7 instances; expanding this to include
entities where “Edward” was contained in the
antecedent attribute identified an additional 14
instances. An examination of the attributes of these 21
instances showed 14 as the subject, one as the object,
one as a possessive pronoun and three as a genitive
determiner, and two as a prepositional object.

Use of the XML Analyzer in this way suggests
that a user can examine the different relations in which
an entity participates. For those as subject, we can
examine the verbs to determine what kind of actions
the subject performs (for action verbs) or what
properties the subject has (for stative verbs). For those
as possessive pronoun or genitive determiner, the user
can examine what kinds of possessive relationships the
entity can have (e.g., as brother, his back, or his
commitment). For those as prepositional object, we can
examine the relations the entity has with other entities.
More generally, this suggests the possibility of an
interactive web page allowing a user to explore the
different relations in which a discourse entity
participates, perhaps moving to other discourse entities
with which it shares a relation.

5.2 Step 2: Answering Questions with
XPath Expressions

As our first step in developing techniques for
answering questions, we examined whether the

2Indexing of XML documents includes traditional
indexing for information retrieval, but is also “XML-
aware”, meaning that searches can be efficiently
performed on any XML tags, attributes, and values.
We envision that XML output generated by our
system would be subjected to XML-aware indexing.

answers (as contained in the patterns) occurred as
discourse entities in our XML output. For virtually all
cases, the answers were present in distinct entities; in
those where they were not, we identified several bugs
we were able to correct in our XML output processing.

This process generalizes well with our interface:
create an XPath expression, determine whether it leads
to appropriate discourse entities, and if not, make
changes in some part of our system, either correcting
bugs or altering our XML representation. This process
has involved learning the intricacies of XPath
expressions, which have proved capable of returning
the exact answer to almost all TREC questions.

We developed XPath expressions for a contiguous
20 percent sample of the TREC questions, providing a
basis for drawing conclusions. In general, the XPath
expressions are highly confirmatory of techniques
developed over the years in the QA track. The XPath
expressions show that simple string patterns are quite
effective and that syntactic and semantic information
can be quite useful. Our development of these
expressions shows that characterizing the patterns in
the underlying text via XML elements and attributes is
worthwhile for QA, and potentially other applications.
We demonstrate this by showing the XPath
expressions for several question types. In each of these
cases, the development of an XPath expression
proceeds by (1) further characterization of the question
type, (2) development of a query component that
selects segments, and (3) refinement of the query in
specifying characteristics of the discourse entity.

5.2.1 WhatIs and WhatNP Questions

What questions have the highest frequency,
constituting more than 40 percent of the questions, and
have the most subtypes. Four principal varieties are:
(1) “What (is|was) (the NP ... | NP called | the ORD
NP | NP1's NP2 | NP)?”, where NP is a noun phrase
and ORD is an ordinal (e.g., ‘first’); (2) “What NPA
(is (NP2 | PP) | did (NP2)? V (PREP)?)”, where NPA
is NP1 or NP1's NP3, PP is a prepositional phrase,
PREP is a preposition, and the internal ‘?’ indicates
an optional element; (3) “What is NP’s (real |
original | nick) name?”, and (4) “What (do NP V |
does NP stand for)?”, where V is a verb.

For the most general variety (“What (is|was) the
NP ... ?”), a canonical answer would be “X (is|was)
the NP ... ?”. Examples are “What is the oldest college
bowl game?” (1529), “What is the most populated
country in the world?” (1544), and “What is the text of
an opera called?” (1583). A suitable XPath expression
can ask //segment[contains(.,’(is|was) the NP ...’)],

i.e., a simple string match, or perhaps suitable subsets
of the NP. To get at the specific discourse entity, the
XPath expression wou ld cont inue wi th
//discent[contains(.,'NP') and @synrole='obj']
/ p r e c e d i n g - s i b l i n g : : v e r b [. = ' w a s ']
/preceding-sibling::discent[@synrole='subj'], which
says “find a discourse entity containing NP with
syntactic role ‘object’ that is preceded by a verb equal
to ‘was’ and that is preceded by a discourse entity with
syntactic role ‘subject’”. This discourse entity is the
answer to the question.

Another possibility for the general “What (is|was)
the NP ... ?”, as well as the third variety above “What
is ... name?” and the second alternative of the fourth
variety “What does NP stand for?”, is a search for a
relative clause, appositive, or parenthetical. As
mentioned earlier, our text analysis and XML-tagging
modules generally identify these as subsegments. Our
segment search for these can be formulated as
//segment[contains(.,’NP’) and (child::segment or
contains(.,’, or’) or contains(.,’(‘))], which looks for
a segment that contains the NP and contains either a
nested segment or a simple string (a comma and “or”
or an opening parenthesis). In these cases, the desired
discourse entity would be obtained by first looking for
//discent[contains(.,’NP’)] and then either
/preceding-sibling::discent or /following-
sibling::discent. In the case asking what something
stands for, the NP is usually an abbreviation or
acronym. In this case, it is possible to build a more
elaborate XPath expression that tests whether the
letters of the answer node(s) correspond to the NP.
With our low-level access to the answer nodes,
however, it may be more efficient to perform this test
in a post-processing phase that evaluates the answers.

A post-processing phase becomes even more
important in handling the second variety listed above
(“What NPA (is (NP2 | PP) | did (NP2)? V
(PREP)?)”). For this variety, the segment search is
generally of the form //segment[contains(.,’NP2') and
(child::verb[@root=’V’] or contains(.,’PP’))],
looking for elements of NP2, the root form of V, or
elements of the prepositional phrase, usually the
prepositional object, depending on the specific
subvariety. The desired discourse entity may be present
in the same discourse entity containing NPA
(//discent[contains(.,’NPA’)]), such as q1525, “What
university did Thomas Jefferson found?”, where our
text processing created a single named entity
“University of Virginia”. However, in the more general
case, the head noun of NPA would be a hypernym of
an answer (such as q1499, “Which African country’s
major export is coffee?”). In this case, we might return

all discourse entities in segments containing “major”,
“export”, and “coffee” (//discent, i.e., without any
further restrictions) and in post-processing ask whether
any of them are hyponyms of “African country”, using
WordNet as the basis for such tests.

5.2.2 When Questions

When questions comprise 20 percent of the TREC
set. In our analyses, only two varieties were needed: (1)
“WHEN (was|did) NP VP?”, where VP includes a
verb and other constituents, and (2) “WHEN was NP
V?”. WHEN can be either “When”, “What year”, or
some other time question. Although the second variety
is a subset of the first, the second is distinguished in
having a verb as the final element (e.g., q1502, “What
year was President Kennedy killed?”).

Since our parser’s grammar labels time
expressions, identification of time patterns for our
segment search was not necessary. Instead, for the first
variety, the XPath expression was generally
//segment[contains(.,’NP’) and contains(.,’VP’)]. For
the second variety, synset expansion of the verb was
necessary, //segment[c ontains(.,’NP’) and
(contains(.,’V’) or contains(.,’V1') or ...
contains(.,’VN’))], where the VI are verbs from V’s
synset. To get at the discourse entity,
//discent[@tag=’when’] was sufficient.

5.2.3 Where Questions

Where questions constituted 10 percent of the
TREC set. Most of these questions followed the pattern
“Where is NP”. There were some minor variations,
e.g., with “where” replaced by “At what place” or
with “What NP ... LPrep?”, where LPrep is a
locative preposition. In all cases, the segment search
was specified by //segment[contains(.,’NP’)] and the
discourse entity search by //discent[@tag=’where’].

5.2.4 Other Question Types

Who questions comprised more than 10 percent of
the TREC set. Their complexity was comparable to the
What questions; the discussion above on those
questions generally covers the issues involved in the
Who questions. How questions, including “how
many”, “how much”, and “how measured”, comprise
the remainder of the TREC set. The XPath expressions
for these questions generally follow the patterns for the
When and Where questions, replacing the tag value
to “howmany”, “num”, “howmuch”, or “howmeas”,
which were created during the text analysis.

6 TREC-11 Results and Analysis

6.1 Official Results Using Document
Databases

CL Research submitted 2 runs for the main task,
both using the document database approach used in
previous years. Our intent was that one run would be
based on the top 10 NIST documents and the other
based on the top 20. However, an error in submission
resulted in the set for the top 20 being submitted twice.
Our official confidence-weighted score (CWS) was
0.049, with 36 correct answers, 10 inexact answers,
and 2 unsupported answers.

Our official submission was significantly affected
by an oversight in which Associated Press Newswire
texts were not properly subjected to the sentence
splitter. The effect (for 101 questions) was that whole
paragraphs were evaluated and scored as a single
sentence. The scoring used in our system gave a large
number of these paragraphs unduly high scores. These
paragraphs, from which an answer was extracted, were
thus given a high ranking, significantly affecting the
CWS. We have not yet reprocessed those texts to
determine the overall effect on our document database
submission. By changing the scores for these answers
to the average of our scores for Xinhua and New York
Times documents, the estimated CWS was changed to
0.080. However, the effect is likely to be more
significant, since the selection of these paragraphs as
answer sources precludes the possible selection of
correct answers from lower ranked passages.

Notwithstanding this difficulty, our document-
based question-answering produced results consistent
with our system’s performance in the past two years.
We calculated the mean reciprocal rank for our exact
answers (0.128) and for the sentences (0.232)
containing them. As indicated earlier, we made no
significant changes in our document-based question-
answering, so these results were expected.

6.2 Unofficial Results Using XML-Tagged
Documents

To assess the potential benefit from using XML-
tagged documents, we selected a contiguous set of 100
questions (1493-1592) and developed XPath
expressions by hand for them to determine if we could
obtain exact answers. This set was started after we had
gained some familiarity with using the tagged
documents and our XML Analyzer. We have not yet
automated the creation of XPath expressions; we have
found it necessary to develop an understanding of the

patterns suitable for the different question types and
varieties, as described in the previous section. We
selected a contiguous set to compare our results to a
contiguous subset of the full set of questions, rather
than a random subset that might not generalize.

We applied the XPath expressions against the
XML-tagged files for these 100 questions, first against
the top 10 documents and then against the next 10
documents if we did not obtain an answer against the
first 10. We constructed an answer set file conforming
to the NIST specifications, using the first answer
returned or NIL if no answers were returned. We did
not use any scoring system to order the answers, but
rather gave a score of 1005 to all non-NIL answers and
1000 to all NIL answers. As a result, sorting the
answers by score ordered the answer file with the
highest question number first. This answer file was
then scored with the NIST Perl script.

Since many questions had no answers in the top
20 documents, we also formed a subset of 75 questions
for which answers were present, but including the six
questions in this subset for which no answers were
present in the TREC collection, to test the effect of
posing an XPath expression to the top 20 documents.

We developed the XPath expressions for these
questions to conform as much as possible to linguistic
intuitions, rather than just attempting to get the correct
answer so that we will be able to develop appropriate
mechanisms for automating the process. For the most
part, the expressions have the simplicity described in
section 5, with only a few requiring complex
expressions. The expressions had a very high
specificity in retrieving answers. The 75 XPath
expressions returned a total of only 171 answers (2.3
per question), of which 97 were exact answers (1.3 per
question). (For q1587, “What did Sherlock Holmes call
the street gang that helped him crack cases?”, which
NIST characterized as not having an answer, the
XPath expression returned “Baker Street Irregulars”,
although this answer would have been judged as
unsupported.) Table 1 shows the confidence-weighted
scores based on our official submission and based on
the XML-based answers.

Table 1. Confidence-Weighted Scores for
Question Samples

Sample CWS
Official (100) 0.192
XML-based (100) 0.816
Official (75) 0.266
XML-based (75) 0.869

As can be seen, the question subset we have
chosen is much better than our official results for the

full set (0.049). In table 2, we show the mean
reciprocal rank for these subsets.

Table 2. Mean Reciprocal Ranks
for 75 Question Sample
Sample CWS

Official (first answer only) 0.160
XML-based (first answer only) 0.800
Uofficial (top 5 answers) 0.243
XML-based (top 5 answers) 0.828

In this table, the first two rows correspond to the
percent of answers that are correct, while the second
two rows consider the top 5 answers, as in previous
years. These results, again, are higher than our overall
results, where we answered only 36 questions correctly
and our overall mean reciprocal rank was 0.128. Thus,
this sample may overstate how much we would achieve
with XPath expressions for all 500 questions.

In general, our results using the XML-tagged
documents and XPath expressions were quite
surprising. While our XML-tagging is comprehensive,
it is far from complete, as indicated above. In addition,
the question types and varieties did not seem to require
an elaborate typing of answers (such as Harabigiu et al.
(2002) or Hovy et al. (2002)). Rather, the XML-based
approach seems closer to the pattern-matching
methods described in Soubbotin (2002), Brill et al.
(2002), and Ravichandran & Hovy (2002), with
additional benefits achievable by having structural
information available. However, it is not clear how
much taggging is necessary for question-answering.
This is an issue for further research; we believe our
methodological approach is well-suited to examining
this issue, using the many levels of detail available.

7 Future Developments

As mentioned earlier, many components of our
XML-tagging system can be improved, including our
discourse analysis, anaphora resolution, semantic
typing, and disambiguation components. As these
improvements are made, they can be examined
specifically for their contribution to question-
answering. In addition, we see the XML-tagging
approach as having potential benefits for investigation
of linguistic phenomena, information extraction,
novelty detection, and text summarization.

We will be generalizing our XML Analyzer to
handle arbitrary tagging systems used in tagging text,
such as part-of-speech taggers, chunkers, word-sense
taggers, and discourse taggers. This will entail only
minor changes and will facilitate examination of

linguistic phenomena, including the possibility of
adding tags, one of the basic objectives of XSLT.

In developing XPath expressions to answer
questions, the final component of the expression
requests discourse entity nodes with specific properties.
By focusing instead on all discourse entities having
particular properties over a range of documents, the
XML Analyzer can be reconfigured to act as an
information extraction tool. A specification of the
discourse entity type desired to propagate a database
can be used to build suitable XPath expressions to
extract this data.

The TREC top documents were noteworthy for
frequently containing the same or a very similar
document several times (perhaps differing only in the
document number). The low-level functionality
available to us for examining XML nodes makes it
easy to recognize such duplication. This can be
extended to recognize near duplication based on
varying criteria, such as synonymy. Using the Kennedy
example described earlier, for example, it would be
straightforward to examine the various relations in
which Kennedy participates for synonymy and novelty.

Finally, the low-level functionality also allows us
to summarize the characteristics of a text at any node
level (e.g., frequency, types of nodes, and novelty).
These characteristics can then be used to create various
text summaries, and indeed, to create new XML
documents by combining nodes from the original
document. For example, encyclopedia articles
frequently discuss a topic by defining it in several
places using a copulative and possessive properties; the
corresponding nodes from the original article can be
used to generate an overall definition.

8 Summary

CL Research has made a preliminary investigation
of the feasibility of massive XML tagging of source
documents for the purpose of answering questions. Our
results strongly suggest that this is a viable approach.
Further, the development of the infrastructure
necessary to evaluate this approach suggests that XML
tagging may be useful in several other text processing
tasks.

References

Brill, E., Lin, J., Banko, M., Dumais, S., & Ng, A.
(2002). Data-Intensive Question Answering. In E. M.
Voorhees & D. K. Harman (eds.), The Tenth Text
Retrieval Conference (TREC 2001). NIST Special
Publication 500-250. Gaithersburg, MD., 122-131.

Harabigiu, S., Moldovan, D., Pasca, M., Surdeanu,
M., Mihalcea, R., Girju, R., Rus, V., Lacatusu, F.,
Morarescu, P., & Bunescu, R. (2002). Answering
complex, list, and context questions with LCC’s
Question-Answering Server . In TREC-10
Question-Answering. In E. M. Voorhees & D. K.
Harman (eds.), The Tenth Text Retrieval Conference
(TREC 2001). NIST Special Publication 500-250.
Gaithersburg, MD., 355-361.

Hovy, E., U. Hermjakob, & C. Lin. (2002a). The
Use of External Knowledge in Factoid QA. In E. M.
Voorhees & D. K. Harman (eds.), The Tenth Text
Retrieval Conference (TREC 2001). NIST Special
Publication 500-250. Gaithersburg, MD., 644-652.

Linguistic Data Consortium (2002). The
Rhetorical Structure Theory Discourse Treebank. ISBN
21-58563-223-6. Philadelphia, PA.

Litkowski, K. C. (2001). Syntactic Clues and
Lexical Resources in Question-Answering. In E. M.
Voorhees & D. K. Harman (eds.), The Ninth Text
Retrieval Conference (TREC-9). NIST Special
Publication 500-249. Gaithersburg, MD., 157-166.

Litkowski, K. C. (2002a). CL Research
Experiments in TREC-10 Question-Answering. In E.
M. Voorhees & D. K. Harman (eds.), The Tenth Text
Retrieval Conference (TREC 2001). NIST Special
Publication 500-250. Gaithersburg, MD., 122-131.

Litkowski, K. C. (2002b). Digraph Analysis of
Dictionary Preposition Definitions. Proceedings of the
ACL SIGLEX Workshop: Word Sense Disambiguation.
Philadelphia, PA., 9-16.

Ravichandran, D. & E. Hovy. (2002). Learning
Surface Text Patterns for a Question Answering
System. Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics.
Philadelphia, PA., 41-7.

Soubbotin, M. M. (2002). Patterns of Potential
Answer Expressions as Clues to the Right Answer. In
E. M. Voorhees & D. K. Harman (eds.), The Tenth
Text Retrieval Conference (TREC 2001). NIST Special
Publication 500-250. Gaithersburg, MD., 122-131.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

