

CLARIT Experiments in Batch Filtering:

Term Selection and Threshold Optimization in IR and SVM Filters

David A. Evans, James Shanahan, Norbert Roma, Jeffrey Bennett, Victor Sheftel,

Emilia Stoica, Jesse Montgomery, David A. Hull, Waibhav Tembe

Clairvoyance Corporation, Pittsburgh, PA

1. Introduction

The Clairvoyance team participated in the Filtering
Track, submitting two runs in the Batch Filtering
category. While we have been exploring the question of
both topic modeling and ensemble filter construction (as
in our previous TREC filtering experiments [5]), we had
one distinct objective this year, to explore the viability of
monolithic filters in classification-like tasks. This is
appropriate to our work, in part, because monolithic
filters are a crucial starting point for ensemble filtering,
and it is possible for them to contribute substantially in
the ensemble approach. Our primary goal in
experiments this year, thus, was to explore two issues
in monolithic filter construction: (1) term count selection
and (2) filter threshold optimization.

In fact, our pre-TREC experiments were conducted in a
brief period and we were unable to complete all the
tests we had planned. Our official submissions reflect
essentially our first, baseline results. They are overall
poor in comparison to other results reported this year.

However, an additional focus of our work relates to the
general problem of exploiting training data, in particular,
where there are only a few positive-example documents
for a topic. We regard such cases as more realistic
(e.g., in commercial settings) than the categorization-
oriented tasks we have seen in TREC filtering in the
past, e.g., based on the Reuters collection. Thus, in a
series of follow-up experiments, we explored the
strengths and limitations of classifier-based approaches
(using kernel methods) and CLARIT-IR-based ones on
the fifty TREC-2002 “Assessor” Topics.

In our CLARIT-IR-based experiments, we aimed to
establish a more accurate baseline than the one
reflected in our official submissions. We also sought to
vary the term-extraction techniques we used, to
optimize performance on a topic-by-topic basis.

In our kernel-based (SVM) experiments, we used non-
mathematical (non-QP) based approaches to learning
SVMs. We used both NLP-based features and simple
white-space-delimited ones; and we developed a
preliminary approach to thresholding the classifier
margin.

In the following sections we first describe our official
submitted runs and results and then present in greater
detail the post-TREC experiments that we conducted.

2. Official Batch Filtering Runs

Our official batch filtering runs reflected a straight-
forward extraction of term vectors from positive training
documents, the setting of thresholds based on
calibration of the term vectors over the training data,
and the use of the term vectors to score (retrieve/rank)
documents in the test collection.

2.1. Preparing Filters and Testing

As a general approach to handling the available
training data, we divided the training corpus equally
into two parts, one half of which we used for
constructing filters (i.e., extracting terms, assigning
weights, and determining the optimal term profile
cutoff), the other half of which we used for validation
(including score-threshold setting). We constructed
monolithic filters for each topic automatically, based on
the positive examples of each topic. In fact, we used a
slightly modified version of the training database: we
added two additional, identical positive example
“documents” for each topic. These were created by
the system from the topic’s title and its short and long
descriptions, with all meta-language (“Retrieve
documents which…,” “Find documents that…”)
automatically removed. We chose to add these
artificial documents to increase the number of training
documents and to emphasize terms that we
anticipated would be especially useful in the filter.

Terms for all topics in this combination of positive
examples and artificial documents were generated by
CLARIT NLP (yielding morphologically normalized
single words, phrases, and sub-phrases), then
weighted, ranked, and selected for extraction (to
represent the term profile in the filter) using our
thesaurus extraction method “Prob2” (as given in
Figure 1). We used Prob2 as our default and only
term-extraction method based, in part, on our
observations of Prob2’s overall robust performance
compared to other term-extraction methods in our
TREC 2001 experiments. While keeping the method
of selecting terms for topics constant, we

experimented with optimizing the number of terms for a
given topic.

We investigated several techniques for determining how
many terms to include in the filter for a given topic. We
settled on a method based on the 2nd derivative of a
topic’s term weight profile (w″). In short, this approach
examines a set of terms ranked according to term
weight, and disregards all terms occurring after the
point where the term weight profile begins to level off.
This point is determined by the condition 0 > w″ > ε. (In
our case, we set ε to 0.01.) In this way, all terms that
did not show evidence of being particularly
characteristic of a topic (according to their rank in the
term weight profile) were disregarded. We applied this
method of term count selection to construct filters for
each topic. We imposed the additional condition that no
topic filter use fewer than five terms. For each of our
submitted runs, the average number of terms in a filter
was 26, and the maximum was 104.

Once we established which terms (and how many) to
use in constructing a filter, it remained for us to
determine the threshold for each topic. This was one of
the chief issues we wanted to explore, and so we took a
different approach for each of our submissions. In our
runs CCT11BFC and CCT11BFD, the filter was applied
to the entire training corpus. That is, the threshold was
optimized over both the first half of the corpus, which
we used for constructing the filter, as well as the second
half, which had thus far been unused. For CCT11BFC,
the filter’s threshold was set using the beta-gamma
method on normalized linear utility, T11SU, to decrease
the likelihood that we would over-fit the training data.
(Cf. [13;14] for discussion of the beta-gamma threshold
setting method.) For this run, beta-gamma values were
0.1 and 0.4, respectively. To further decrease the
possibility of over-fitting the training data, we employed
an additional “global threshold multiplier” that relaxed
the optimal threshold a bit further. For run CCT11BFC,
this global multiplier was set to 0.95.

Our other submission, CCT11BFD, was identical to
CCT11BFC, with two exceptions. For this run we
employed no beta-gamma regulation at all, and instead
lowered the global threshold multiplier to 0.85. Finally,
all filters for both CCT11BFC and CCT11BFD were run
on the full testing set.

2.2. Official Test Results

Table 1 presents a summary of various batch filtering
runs in terms of normalized linear utility (T11SU) and F-
Beta. Row one of this table gives the median of all
submitted runs from all groups for TREC-2002 batch
filtering. The second and third rows summarize the
results for our two submitted runs. The remaining rows
show results for other unofficial runs we completed,
including an Adatron SVM [1;6;11] run.

Figure 1. Term-extraction formulae

Run Description T11SU F-Beta

Median for all Submitted Runs 0.316 0.129
CCT11BFC 0.186 0.147 Submitted

Results CCT11BFD 0.184 0.145
CCT11BFA 0.147 0.130
CCT11BFB 0.165 0.129

Unofficial
Results

Adatron 0.328 0.035

Table 1. Results of official and pre-TREC batch
experiments (on all 100 topics)

2.3. Observations on Official Runs

On the whole, our official results were unsatisfactory.
Our failure to perform well may have been due to
several factors. We may have selected terms poorly
for various topics, and therefore had a poor
characterization of these topics. It was also possible
that we chose appropriate terms, but too many or too
few of them. Finally, we may have correctly chosen
our terms and term counts, and still have performed
poorly on various topics due to poor thresholding. We
did several analyses to see which of these factors
actually was responsible for our weak performance.

As we investigated topics where we performed poorly,
we saw little indication that we had grossly erred in our
method of choosing which terms to extract from
positive examples. Thus, our decision to use a single
feature-extraction method (Prob2) that had performed
well and robustly in the past does not seem to have
harmed our effort significantly.

−+−−

+−
+−+= 1)

R
1R

log(1)
1RN
2RN

log(x 1)log(RProb2(t)
ttt

t

N is the number of documents in the (reference) corpus;
Nt is the number of documents in the (reference) corpus
that contain term t; R is the number of documents (for
training or feedback) that are relevant to the topic; Rt is
the number of documents (for training or feedback) that
are relevant to the topic and contain term t; TF is the
(raw) frequency of term t in a document; and NTF is the
normalized frequency of term t in a document.

R

(t)NTF
 x IDF(t)Rocchio(t) DocSetD

D∑
∈=

R

(t)TF
 x IDF(t)t)RocchioFQ(DocSetD

D∑
∈=

2
t

tt

)N(R
xN4xR

GL2(t)
+

=

Additionally, there was little evidence that our term
count optimization was faulty. We conducted post-
submission experiments where we added terms to
(poorly performing) topic profiles in which we had
originally used relatively few terms. We likewise did
experiments where we removed terms from topic
profiles in which we had originally used many terms. In
neither case did we see a dramatic change in the
performance of filters upon the addition or removal of
terms from the profile.

We did see, however, that setting filter thresholds
improperly had a remarkable impact upon a filter’s
performance. In particular, we observed that for many
of the topics where we performed poorly, we had set
the filter threshold much too low, thereby allowing for
the retrieval of many non-relevant documents. Results
of our post-submission experiments indicate that the
negative effects of poor thresholding far outweigh the
positive effects of good term and term count selection.

We saw this principle at work, for example, in Topic
144, Mountain Climbing Deaths, which was one of the
topics on which we performed extremely poorly. Upon
examining the actual terms (and number of terms) in
the profile, we could see that they were a fair
characterization of the topic. Our recall figure was quite
high (0.965—we retrieved 55 of 57 total relevant), and
initial precision was quite high: roughly the first third of
the documents we retrieved were relevant—a good
indication that our terms and term weights were on
target. The explanation for such poor performance,
then, can be found in our set precision figure (0.026):
we retrieved far too many non-relevant documents
(2048 out of 2104).

Furthermore, we observed the positive effect that
conservative thresholding can have in overcoming the
lesser negative effects of poorly chosen terms or term
counts. We saw this in some topics where we
performed quite well in comparison to the TREC
median (T11SU), even though many of the highly
ranked documents were not relevant. Our good
performance (relative to the median) is likely the result
of choosing terms that were at least adequate, and,
especially, having a threshold that was conservative
enough to prevent over-delivery of non-relevant
documents. Topic 122, Symptoms Parkinson’s Disease,
was one topic where we observed this behavior.

The results of our analyses, then, clearly demonstrate
that having good terms and term counts is outweighed
by setting an improper threshold. On the other hand,
accurately choosing a proper threshold helps even in
instances where term and term count selection are not
especially good. The greater danger lies in using a
threshold that is too relaxed rather than setting too
conservative a threshold. Thus, our decision to
override and lower the threshold for each topic set
automatically on the training data was the principal
cause of our poor overall performance.

3. Post-TREC Experiments: IR-Based Filters

We were naturally interested in assessing the problem
of threshold setting in our post-TREC follow-up
experiments. In particular, we wanted to establish our
baseline performance in threshold setting and to look
more closely at the problem of term selection.

We confined our evaluation to the first fifty (“Assessor”)
topics, because they proved to be the most valuable
(and valid) ones in the test suite, and because these
topics also seem more realistic than the artificially
generated “Intersection” topics. In our subsequent
analysis, we report both our post-TREC results and
official TREC results on Assessor topics only.

3.1. Revised (Corrected) Term/Threshold Selection

In our first post-TREC experiment, we repeated our
basic TREC runs with “normal” threshold setting. That
is, we did not force the threshold (set on the training
data) to be more relaxed when running on the test
collection. This experiment used only the simplest
approach to term selection (based on Prob2 extraction
and 2nd-derivative term-count selection), threshold
calibration on the full training database (using beta-
gamma threshold setting), and direct ranking of the
test collection. We called this run Prob2-2D.

In our second post-TREC experiment, we first split the
training data into halves and used one half (including
approximately half the positive examples) for candidate
term selection and the other half for validation. In this
approach, we were interested in trying several different
term-extraction methods and predicting which method
would give the best terms for each topic. Thus, we
used each method (and 2nd-derivative term-count
selection) on the positive training documents for a topic
in the first half of the training corpus to create a term
vector for each topic, and then tested the performance
of each vector against the second half of the training
corpus. Based on which vector gave the best
performance (T11SU score), we chose the term-
extraction method used to create that vector as the
“best” for that topic. We then repeated the procedure
in our first post-TREC experiment, but with the term-
extraction method set to the “best” method for each
topic. We called this run Opt-2D.

The steps in our process are given in Figure 2. Note
that the split of the training data into halves (or any
other arbitrary proportion) to yield a sub-corpus for
topic modeling (term extraction) and a sub-corpus for
validation (testing a model), is based on a pseudo-
random assignment of documents to one or the other
portion. This means that, in the case of some topics,
there might be very few positive examples of a topic in
any one of the training sub-corpora. A paucity of data
can lead to poor training, of course, but we decided not
to intervene to insure optimal splits in training data
precisely because we wanted to assess, as well, the
robustness of our generalized topic-modeling process.

Figure 2. Procedure for creating a CLARIT filter profile

The formulae for our term-extraction methods—Prob2,
Rocchio, RocchioFQ, and GlobalLocal2 (GL2)—are
given in Figure 1. In both experiments, we used the full
training corpus as the reference corpus. Processing
time for these filters averaged 17 seconds per topic for
training and testing combined. Filter length for Prob2-
2D averaged 33.34 terms and for Opt-2D 15.76.

3.2. Post-TREC Experiment Results

As can be seen from the results in Table 2, both Prob2-
2D and Opt-2D clearly out-perform our submitted
(official) runs. (The values in Table 2 for our official
runs reflect our performance on the Assessor topics
only.) Compared to the median reported for the group
on Assessor topics, both Prob2-2D and Opt-2D have
lower T11SU scores. However, in terms of F-Beta, both
post-TREC runs show rather impressive performance.

In our Opt-2D runs, the Prob2 extraction method was
chosen only 6 times, whereas Rocchio was chosen 30
times, RocchioFQ 8 times, and GL2 6 times. In terms
of individual-topic results, Opt-2D gave significantly
better performance (>0.10 absolute difference in score)
than Prob2-2D on 10 topics for T11SU and 9 topics for
F-Beta. In contrast, Opt-2D was significantly worse on
11 topics for T11SU and on 7 for F-Beta. In the
aggregate, however, the effect of term-extraction
method optimization appears to be negligible.

Run Description T11SU F-Beta
Median for all Submitted Runs 0.377 0.234

CCT11BFC 0.243 0.259 Submitted
Results CCT11BFD 0.243 0.259

Prob2-2D 0.309 0.323 Post-TREC
Experiments Opt-2D 0.315 0.326

Table 2. Results of post-TREC-batch experiments

We note, however, that our choice of an optimum
method was based on the performance of a candidate
filter on half the training corpus. In those cases where
we had poor training splits, our choice was not well
informed. Clearly, this is an area for further work.

The overall strong performance on F-Beta for both
runs confirms our hypothesis that the basic method we
have used is robust and practical. It also confirms that
the poor results in our official runs were due to
improper threshold setting, in particular, our decision to
relax the threshold values that were determined for
filters on the training corpus.

4. Post-TREC Experiments: Kernel-Based Filters

In addition to our IR-based runs, we decided to expand
our evaluation of kernel techniques for batch filtering in
a series of post-TREC experiments. The essential
questions we focused on include how well kernel
methods perform on topics with limited training data
and how flexible the learned thresholds can be when
data is sparse. We explored both our kernel-Adatron
and a new version of an SMO algorithm.

4.1. General Note on Kernel (SVM) Methods

Support vector machines (SVM) are a general purpose
machine learning approach [2;12], with our interest
being principally in learning classification models from
labeled data. Our batch filtering SVM study was limited
to learning a binary SVM classifier for each topic
(positive and negative class). This corresponds to
searching for (or learning) a hyperplane that provides
maximum separation between the positive and
negative training examples. Since text classification
problems are of high dimensionality (which are
generally linearly separable), it is sufficient to search

1. Split the training set. First, sort (scramble) the document ids. (For a database with 10 docs, such
"scrambling" might produce: 0 2 4 6 8 1 3 5 7 9.) Next, apply the desired Training/Validation split. (For the
TREC experiments, the split is 50/50, based on choosing every other document for a split.) Pick one split for
Training, one for Validation. (In the TREC experiments, the 2nd half (“odd” documents) was chosen for
Training/term-extraction and the 1st half (“even” documents) was chosen for validation/optimization.) The pre-
scrambling makes it possible to select any subset with reduced bias. (If one chose a 60/20/20 split for the 10-
document collection, above, the system would deliver the subsets "0 3 6 9 1.4", "7 2," and "5 8".)

2. Choose extraction method. If the extraction method is fixed (e.g., Prob2), skip this step and go to Step 3.
For each candidate extraction method (e.g., Prob2, Rocchio, RocchioFQ, and GL2), create a filter using the
Training half of the training corpus. Optimize the term count by applying the 2nd derivative method. Choose
Max(MinimumTermCount, 2ndDerivTermCount). (The MinimumTermCount used in post-TREC experiments is
10.) Truncate the term vector to the specified term count. Set the threshold using beta-gamma optimization
(β=0.1,γ=0.4) over the entire training set. Retrieve over the Validation half of the training set (using the
optimized threshold) and compute utility (T11SU). Choose the extraction method with the highest score.

3. Extract final filter. Extract terms from the entire training set using the chosen method. Optimize the term
count (using 2nd derivative, as described above), subject to the MinimumTermCount. Truncate the vector to
that count. Set the threshold on the entire training set using beta-gamma optimization.

for this hyperplane in the term/word space, thus
avoiding the use of more complex feature spaces that
can be induced easily using kernel (non-linear
similarity) functions. Hyperplane selection is based
upon ideas from statistical learning theory [12], where
the hyperplane that is furthest away (has maximum
margin) from all training data and that provides
(tolerable) class separation is chosen. Large margin
separation has been theoretically shown to lead to
improved generalization.

More formally, SVM models or classifiers denote a
separating hyperplane between two classes, whereby
datapoints falling on one side of the hyperplane denote
one class and datapoints falling on the other denote the
other class. In linear kernel-based SVMs, hyperplanes
are typically represented in primal form as follows
(where <.,.> denotes inner/dot product):

()��������	
����� +=

where W is a weight vector, and b is the bias or
threshold. See Figure 3 for a graphic depiction of a
hyperplane for a linearly separable dataset. An
alternative and more general representation of a
hyperplane that is commonly used in SVMs is the
following dual representation:

 += ∑
=

bX,XyαSignClass(X) ii

L

1i
i

Here, the alphas (αi) denote the Lagrange multiplier
associated with each example. This representation
permits the learning of such classifiers using well-
known optimization techniques such as quadratic
programming. After learning, only a small percentage
of the training data will have non-zero Lagrange
multipliers. These examples are known as the support
vectors. For dot-product (linear) kernels the dual
representation of a hyperplane can be mapped to the
primal form, thus, yielding a computationally more
efficient model, akin to the more traditional information
retrieval model. The above dual representation of a
hyperplane can be further generalized by considering
different forms of the similarity function or kernels such
as polynomial, LSI Kernels [4], and String Kernels [9].
For our current purposes of text classification, linear
kernels were deemed to be sufficient.

4.2. Learning SVMs

Support vector machines are commonly trained using
either mathematical programming (MP) approaches
such as quadratic programming or by strategies that
avoid the use of the MP techniques. The latter
techniques have the added attraction of being easier to
implement, while providing similar levels of performance
as their MP counterparts. For our experiments, we
implemented and evaluated two non-MP based
approaches: the kernel-Adatron (KA) algorithm [1;6;11]
and variations of the sequential minimal optimization
(SMO) algorithm [10;7]. Both of the algorithms are
outlined briefly below.

Figure 3. A linearly separable dataset in a two-
dimensional space for a two-class problem (where
the “o”s correspond to one class, and the “x”s
denote the other)

Kernel-Adatron Learning Algorithm. One of the
simplest strategies for learning a support vector
machine is to update the Lagrange multipliers, α,
associated with each example iteratively. This
approach has been taken in the kernel-Adatron
algorithm proposed by various researchers (cf. [6] and
[11]). The Adatron was originally proposed by Anlauf
and Biehl [1] in the field of statistical mechanics. It is
an on-line learning algorithm for learning perceptrons.
In [1], it was proved that the Adatron converges to a
maximum margin solution; that is, the discovered
hyperplane is a fixed point of the adaptive algorithm for
linearly separable data. In [6] and [11], the Adatron
algorithm was extended to learn the dual
representation of a separating hyperplane in which the
dot product is replaced with the more general kernel,
thereby expanding the domain of application of the
Adatron to non-linear problems. (A simplified version of
the pseudo-code for the kernel-Adatron algorithm is
presented in Figure 4.) We limited our implementation
to training hard-margin SVMs.

SMO Learning Algorithm. The Sequential Minimal
Optimization (or SMO) algorithm is an alternative
method for training SVMs [10]. Traditionally, training
an SVM required the solution of a very large quadratic
programming (QP) optimization problem. SMO breaks
this large QP problem into a series of the smallest
possible QP problems, where only two Lagrange
multipliers, αI, are optimized at each iteration. Since
only two parameters are considered at a time, while all
others are fixed, it is possible to derive an analytical
solution as opposed to the numerical methods used in
MP solutions. This avoids using a time-consuming
numerical QP optimization as an inner loop in the
algorithm. On each iteration, SMO chooses two
Lagrange multipliers to optimize jointly (typically the

x

x

x

x

o o

o

o

x1

x2

0)(>Xf

0)(<Xf

1

0,

=
=+><

Wwhere

bXW

b

Figure 4. Partial pseudo-code for Kernel-Adatron algorithm

Figure 5. Partial pseudo-code for SMO algorithm

Decision Variable Explored Values
Learning Algorithm Adatron, SMO, SVMLight
C (Upper bound for Lagrange multipliers) 3, 10
Learning Rate (Adatron) 0.75
Tolerance 0.001
Type of kernel Linear
Class Ratio 1:4, 1:10 , use all training data
Sampling Strategy Random
Term type NLP; single words
Term Ranking Algorithm • Use all terms

• Mutual Information: Use k terms that have highest MI for each topic
Number of terms k k = 1,000, 10,000, All
Term weighting Normalized TF∗IDF

Table 3. Decision variables and explored values for current experiments using SVM text classifiers

1. Given Training data S where each example i is of the form (xi,1,…, x i,n,yi), and a learning rate η
2. Set α vector to zeros; (could use bo=0)
3. For i = 1 to |Train|

XXyz ii

Train

i
ii ,

||

1
∑

=

= α

4. For i = 1 to |Train|

1. Let δi =η(1-yi zi) be the proposed change to the multiplier αi
2. If ((αi + δi) ≤ 0) set αi to 0 else αi := αi + δi

5. (if b used, b=0.5 (min(zi+) + max(zi-)) where zi+ denotes those patterns i with class label +1 and zi-
denotes those patterns i with class label -1)

6. If maximum number of presentations of the pattern set (epoch) has been exceeded OR (min(zi+) -
max(zi-)) == 2.0

 then stop otherwise goto step 1

1. Given Training data S where each example i is of the form (X1,y1,…, Xn,yn)
2. Set α vector to zeros; bo=0 (the bias term);
3. ExamineAll = true
4. Compute error vector E; Ei= – yi
5. If ExamineAll then //loop thru all examples

For (int i =0; i < TrainDB.count; i++)
Set i2 to I; Use heuristics to find a partner i1
Try to optimize(alpha[i1], alpha[i2])

Else //loop thru all examples with non-bounded alphas
For (int i =0; i < TrainDB.count; i++)

If alpha(i) > 0 and alpha(i) < C
 Set i2 to I; Use heuristics to find a partner i1

Try to optimize(alpha[i1], alpha[i2])
If (ExamineAll), then ExamineAll= false
Else if (NumberOfUpdates == 0), then ExamineAll =1

6. if more alpha updates are possible (i.e., ExamineAll or NumberOfUpdates > 0) Goto step 5

examples that have the largest polar error), finds the
optimal values for these multipliers analytically, and
updates the SVM to reflect the new optimal values. (A
simplified version of the pseudo-code for the SMO
algorithm is presented in Figure 5.) For our
experiments, we implemented two variants of the SMO
algorithms proposed by Keerthi et al. [7] that provide
better heuristics for determining which pair of Lagrange
multipliers to update next and that provide better
stopping criteria. For our current study, two variations of
the SMO algorithm were implemented and evaluated:
SMOK1 and SMOK2, corresponding to modification 1
and modification 2, respectively, as proposed in [7].

4.3. Preprocessing

We examined two representations of documents: one
using CLARIT NLP-based (single or multi-word) terms
and the other using single white-space-delimited words.
The latter approach involved the following steps:
replace all numbers and punctuation by spaces;
eliminate stopwords such as articles and prepositions,
etc. In both preprocessing approaches each term is
associated with a TF∗IDF weight, where TF denotes the
frequency of a term in a document, and IDF is
calculated based on the distribution of the term in the
training corpus. The TF∗IDF weights were then
normalized leading to documents vectors of unit length.

For some of our experiments we chose a subset of
terms in the term-space of the training corpus. In such
cases, we ranked terms based upon their mutual
information with the class label and the k terms with
highest mutual information were selected to represent
each document. The mutual information MI(xi, c)
between a feature, xi, and a category or topic, c, is
defined as follows:

{ }{ }
∑ ∑
∈ ∈

=
���� �

�

�

����

�

�
��������

������
����	�������
���

Following feature selection, the document vectors were
again normalized to unit length.

A learning step follows where for each topic/class/
category a topic-specific binary classifier is learned from
the training data that models the topic (positive class)
and the not-topic (or negative class). While it is possible
to learn a topic SVM classifier by using all available
training data, it is computationally attractive to reduce
the number of training data, especially the number of
negative examples. We currently achieve this through
random sampling of the negative class, though all
explicitly labeled negative documents are used.
Typically, given n positive training examples for a topic,
we chose m∗ n negative documents. We explore
different values of m in our experiments.

4.4. Experiment Results using SVMs

For each of our experiments, we trained a linear
TF∗IDF kernel-based SVM (i.e., linear kernel, where
each term is weighted using TF∗IDF) for each topic

using the training data. For most machine learning
processes, with SVM-based approaches being no
exception, there are many parameters and decisions
that need to be made in order to generate a model that
performs well on unseen data. Some of these are
domain specific (e.g., text vs. images), while others are
algorithm specific (e.g., the upper bound for Lagrange
multipliers, C). The domain-specific decision variables
for text include the following: (1) the number of terms
used to represent each topic; (2) the number of on-
topic training documents; (3) the ratio of positive to
negative documents; (4) the sampling strategy for the
negative class; and (5) the representation of a
document using single words or NLP-based terms. In
an ideal setting one could potentially chose the optimal
configuration for a topic using, for example, n-fold
cross validation. However, due to time limitations, we
were unable to carry out such experiments in our post-
TREC work. Instead, we report results where the
different experiment variables are set to equivalent
values across all topics for a particular experiment.
The decision variables and explored values for our
experiments are presented in Table 3.

The results of the more interesting experiments are
presented in Table 4, where each row denotes one
experiment on 50 Assessor topics. We report the
T11SU and F-Beta measures for each experiment.
For our some of our experiments we used different
document sampling strategies. One was based upon
a sampling of positive to negative documents (denoted
as a ratio in Table 3). The other was based on using
all labeled documents and fixed sample size of all
unlabeled documents in the training size (denoted as
an integer in the Class Ratio column in Table 4).
Experiments on the 50 Intersection topics were not
carried out, apart from one experiment, which was
performed with the kernel-Adatron algorithm using all
NLP-based terms and a 15,000 sample of the training
set, yielding a T11SU performance of 0.328 (and 0.342
on the fifty Assessor topics).

For each experiment, training a battery of 50 binary
classifiers (one classifier corresponding to each
Assessor topic) took approximately twenty minutes (or
approximately 24 seconds per topic), while evaluation
took approximately two to three hours. The CC SVM
toolkit is developed in Java and experiments were
carried out under Linux and Windows XP on a 866-
MHz Pentium III computer with 1 gigabyte of RAM.

Among the results, the best overall performance was
given by an SMOK2 run (SMOK2-θ.45) representing
one of our first experiments in thresholding the margin
scores given by the SVM. In particular, we found the
margin that gave optimal T11U utility on a resample of
the training corpus, MarginMaxU, and used the following
formula to compute the new threshold, θOpt,,, where
ThresholdDiscount was set to 0.45 for this run:

() 11MarginiscountThresholdDθ MaxUOpt −+∗=

Algorithm C Class Ratio Term Type # Terms T11SU F-Beta
SMOK1 3 4 SingleWds 1000 0.347 0.144
SMOK1 3 10 SingleWds 1000 0.356 0.129
SMOK1 3 4 SingleWds 10000 0.367 0.173
SMOK1 3 10 SingleWds 10000 0.368 0.170
SMOK2 10 14125 NLP All 0.356 0.077
SMOK2 10 14125 SingleWds All 0.373 0.142
Adatron N/A 14125 NLP All 0.341 0.053
Adatron N/A 14125 SingleWds All 0.366 0.149
SMOK2 10 7605 SingleWds All 0.376 0.147
Adatron N/A 7605 SingleWds All 0.363 0.154

SMOK2-θ.45 10 7605 SingleWds All 0.408 0.271

Table 4. Results of SVM experiments on 50 Assessor topics

Post-TREC Experiments--Performance on T11SU

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
10

2

R
10

4

R
14

4

R
11

6

R
13

3

R
14

6

R
14

8

R
13

5

R
12

1

R
10

1

R
12

0

R
12

5

R
12

6

R
10

9

R
12

8

R
13

8

R
13

9

R
11

4

R
10

3

R
11

3

R
14

1

R
12

2

R
14

0

R
10

5

R
10

6

R
10

7

R
10

8

R
11

0

R
11

1

R
11

5

R
11

7

R
11

8

R
12

3

R
12

7

R
13

0

R
13

1

R
13

2

R
13

4

R
13

7

R
14

2

R
14

5

R
14

7

R
12

9

R
15

0

R
13

6

R
12

4

R
14

3

R
14

9

R
11

2

R
11

9

T
11

S
U

SMO Adatron TREC-med TREC-max Prob2-2D Opt-2D

Figure 6. T11SU comparative results for SVM-and IR-filters on topics ranked by TREC median performance

Post-TREC Experiments--Performance on F-Beta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
10

2

R
10

4

R
14

4

R
13

5

R
11

6

R
13

3

R
14

6

R
14

8

R
12

1

R
10

1

R
12

0

R
10

9

R
12

5

R
12

6

R
14

1

R
13

9

R
13

7

R
13

8

R
12

8

R
11

4

R
12

7

R
11

7

R
11

5

R
12

2

R
12

9

R
11

3

R
10

5

R
10

3

R
13

0

R
14

5

R
12

4

R
13

6

R
11

0

R
13

1

R
14

0

R
11

9

R
13

2

R
11

2

R
14

7

R
10

8

R
13

4

R
10

6

R
11

8

R
14

9

R
15

0

R
12

3

R
14

2

R
10

7

R
11

1

R
14

3

F
-b

et
a

SMO Adatron TREC-med TREC-max Prob2-2D Opt-2D

Figure 7. F-Beta comparative results for SVM-and IR-filters on topics ranked by TREC median performance

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

R
10

2

R
10

4

R
14

1

R
10

9

R
12

6

R
12

9

R
10

5

R
11

6

R
12

2

R
10

3

R
12

1

R
13

5

R
14

6

R
11

3

R
12

5

R
14

8

R
14

0

R
12

0

R
13

6

R
10

1

R
13

2

R
13

8

R
11

2

R
12

4

R
14

4

R
14

7

R
11

0

R
11

4

R
12

7

R
13

3

R
13

4

R
14

5

R
14

9

R
10

6

R
11

9

R
12

8

R
13

1

R
14

2

R
14

3

R
15

0

R
10

7

R
10

8

R
11

1

R
11

5

R
11

7

R
11

8

R
12

3

R
13

0

R
13

7

R
13

9

135120 24 20 19 17 16 16 15 14 14 14 13 12 12 12 11 9 8 7 7 7 6 6 6 6 5 5 5 5 5 5 5 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3

Topics in Descending Order of Number of Positive Training Documents

T
11

S
U

SMO Adatron TREC-med TREC-max Prob2-2D Opt-2D

Figure 8. Comparison of SVM-based and IR-based filters: T11SU scores x Topic x Training Data

-0.600

-0.400

-0.200

0.000

0.200

0.400

0.600

0.800

R
12

2

R
14

2

R
11

8

R
10

8

R
13

2

R
13

9

R
14

7

R
10

7

R
14

0

R
10

3

R
11

3

R
14

1

R
10

5

R
14

8

R
12

8

R
12

7

R
10

1

R
12

5

R
12

3

R
15

0

R
13

3

R
11

9

R
12

0

R
13

6

R
11

2

R
11

7

R
11

5

R
11

1

R
11

4

R
13

8

R
10

6

R
12

9

R
10

4

R
10

2

R
14

3

R
14

9

R
13

4

R
13

1

R
11

0

R
14

5

R
11

6

R
14

6

R
12

4

R
13

0

R
12

6

R
13

7

R
10

9

R
13

5

R
12

1

R
14

4

15 4 3 3 7 3 6 3 11 14 12 24 16 12 4 5 7 12 3 4 5 4 9 8 6 3 3 3 5 7 4 17 120 135 4 5 5 4 5 5 16 13 6 3 19 3 20 14 14 6

SMO Adatron Prob2-2D Opt-2D

Figure 9. Difference from TREC med F-Beta-scores x Topic x Training Data, ranked by Prob2-2D�TREC med

4.5. Observations on SVM Filters

Overall, the performance of the learnt SVM classifiers
is good compared to the submission results for other
groups. The T11SU utility measure is average, while
the F-Beta measure is low, apart from the SMOK2-
θ.45 run with its more reasonable performance of
0.271. The lack of higher performance for the SVMs
is partly due to the experimental setup, which did not
employ cross-validation; i.e., for each experiment,
each topic SVM was trained using the same
parameter settings, thereby limiting potential
performance of the learnt SVMs. Allowing the
determination of a customized setting (potentially
optimal) for each topic should lead to improved
performance. In addition, our preliminary work on

thresholding the margin value of the SVM output has
given very encouraging results. This is consistent
with results form other groups for this particular
dataset [3]. However, for some other datasets in the
past, this did not improve performance [8].

Given the results of our limited experiments, we can
make the following observations:

• Using a simple tokenizing-based representation of
a document (in lieu of NLP) actually boosts
performance.

• Sampling negative class documents does degrade
evaluation performance, while it improves the
efficiency of classification and learning.

• Using all available terms gives the best
performance, though sampling terms does not

degrade performance substantially, while it
improves the efficiency of classification and
learning.

• The kernel-Adatron algorithm gives a very
reasonable performance, though it is a much
simpler algorithm that the examined SMO
variations.

• Using cross-validation for customizing the
parameters of learning should improve the quality
of the learnt SVM classifiers.

• Our simple thresholding results are encouraging.
Using a principled approach to thresholding (such
as beta-gamma or other distribution based
approaches) may prove practical and effective.

5. Concluding Thoughts

As the additional analyses in Figures 6–9 show, our
experiments on the TREC Assessor topics
underscore the comparative strengths and differences
in the two filter types we have developed. For IR-
based filters, we see responsiveness and delivery of
relevant documents even when there are limited
training data. They also were very fast to train and
run and generally required only a handful of features
(cf. Figure 10). The IR-based filters failed to return
relevant documents in only one case out of fifty
topics. However, a measure that rewards the delivery
of no documents, such as T11SU, penalizes the IR-
based approach. In contrast, we see consistent
positive (or neutral) performance from SVM-based
filters, giving high precision, if under-delivery, on
unseen data. However, for many of the SVM runs (on
on more than twenty topics) there were no documents
returned at all.

The challenge in many practical (commercial)
applications is limited training data and the need to
optimize performance in virtually real time.
Some of the best methods for classifier training, such
as kernel-based approaches, require significant
amounts of data and may depend on sensitive
parameter tuning. However, we see in our own
experiments that kernel methods can give high
precision and accuracy. If we can overcome their
high-precision bias using thresholding or uneven-
margin-based learning and adapt them to sparse
data, they may become an attractive solution. We
also see the robustness and generally good
performance of IR-based approaches. Perhaps the
ideal application will combine features of both and
optimize the choice of classifier—IR or SVM—for
each topic on a case by case basis

convict child rapist (40.4) child rapist (39.6)

convict child rapist marc dutroux (39) eefje (38.1)

rapist marc dutroux lambrecks (37.6) marchal (38.1)

child rapist marc dutroux (37.6) lambrecks (37.6)

eefje lambrecks (37) dardenne (37.3)

Figure 10. CLARIT terms/weights for topic 103

References

[1] Anlauf JK, Biehl M, The adatron: an adaptive

perceptron algorithm. Europhys. Letters, 10, 1989,
687–692.

[2] Boser BE, Guyon IM, Vapnik VN, A training algorithm
for optimal margin classifiers. In D. Haussler, editor, 5th
Annual ACM Workshop on COLT. Pittsburgh, PA: ACM
Press, 1992, 144–152.

[3] Cancedda N, Cesa-Bianchi N, Conconi A, Gentile C,
Goutte C, Li Y, Renders JM, Shawe-Taylor J,
Vinokourov A, Kernel Methods for Document Filtering.
TREC 2002 Notebook Papers, 2002.

[4] Cristianini N, Lodhi H, Shawe-TaylorJ, Latent Semantic
Kernels. Journal of Intelligent Information Systems
(JJIS) Vol. 18, No. 2, 2002.

[5] Evans DA, Shanahan JG, Tong X, Roma N, Stoica E,
Sheftel V, Montogomery J, Bennett J, Fujita S,
Grefenstette G, Topic-Specific Optimization and
Structuring. A Report on CLARIT TREC-2001
Experiments. In EM Voorhees and DK Harman
(Editors), The Tenth Text REtrieval Conference (TREC-
2001). NIST Special Publication 500-250. Washington,
DC: U.S. Government Printing Office, 2002, 132–141.

[6] Frieß T-T, Cristianini N, Campbell C, The kernel
adatron algorithm: A fast and simple learning procedure
for support vector machines. 15th Intl. Conf. Machine
Learning. Morgan Kaufmann Publishers, 1998.

[7] Keerthi SS, Shevade SK, Bhattacharyya C, Murthy
KRK, Improvements to Platt's SMO algorithm for SVM
classifier design. Technical report, Dept of CSA, IISc,
Bangalore, India, 1999.

[8] Lee K-S, Oh J-H, Huang JX, Kim J-H, Choi K-S, TREC-
9 Experiments at KAIST: QA, CLIR and Batch Filtering.
TREC Proceedings 2000, 300ff.

[9] Lodhi H, Shawe-Taylor J, Christianini N, Watkins C,
Text classication using string kernels. Advances in
Neural Information Processing Systems, 13, 2001.

[10] Platt J, Fast Training of Support Vector Machines using
Sequential Minimal Optimization, in Advances in Kernel
Methods - Support Vector Learning, Schölkopf B,
Burges C, Smola A, eds., MIT Press, 1998.

[11] Santamaria J, Pantaleon C, Principe JC, Minimising
BER in DFE with the Adatron Algorithm, Neural
Networks for Signal Processing XI (NNSP 2001),
Falmouth, MA, 2001, 423–432.

[12] Vapnik V, The Nature of Statistical Learning Theory.
New York, NY: Springer, 1995.

[13] Zhai C, Jansen P, Stoica E, Grot N, Evans DA,
Threshold Calibration in CLARIT Adaptive Filtering. In
EM Voorhees and DK Harman (Editors), The Seventh
Text REtrieval Conference (TREC-7). NIST Special
Publication 500-242. Washington, DC: U.S.
Government Printing Office, 1999, 149–156.

[14] Zhai C, Jansen P, Roma N, Stoica E, Evans DA.,
Optimization in CLARIT TREC-8 Adaptive Filtering. In
EM Voorhees and DK Harman (Editors), The Eighth
Text REtrieval Conference (TREC-8). NIST Special
Publication 500-246. Washington, DC: U.S.
Government Printing Office, 2000, 253–258.

