
NTT Question Answering System in TREC 2001

Hideto Kazawa, Hideki Isozaki and Eisaku Maeda

NTT Communication Science Laboratories, NTT Corporation

2-4 Hikaridai, Seikacho, Sorakugun, Kyoto, Japan

{kazawa,isozaki,maeda}@cslab.kecl.ntt.co.jp

Abstract

In this report, we describe our question-answering system SAIQA-e (System for Advanced
Interactive Question Answering in English) which ran the main task of TREC-10’s QA-track.
Our system has two characteristics (1) named entity recognition based on support vector ma-
chines and (2) heuristic apposition detection. The MPR score of the main task is 0.228 and
experimental results indicate the effectiveness of the above two steps in terms of answer ex-
traction accuracy.

1 Introduction

To design a QA system, there are several choices to make. One is about what kind of technology
the system should be based on. To date, some research works have attempted the Information
Retrieval (IR) approach, assuming that the most relevant passages include the answers of questions.
Generally speaking, this IR approach is fast and robust, but is unable to specify the ‘exact answer’,
i.e., what part of the passage is really the answer. Another approach is the Information Extraction
(IE) approach, where the system extracts candidate strings from documents and evaluates the
validity of the candidates. This approach has the advantage of being able to specify the locations
of exact answers although it is usually slow and often fails because of complicated natural language
processing.

For TREC-10’s QA track, we adopted the IE approach because we think that knowing the exact
locations of answers is one of the important goals of QA. It also seems easier to reach the goal
with the IE approach. To avoid ‘deep’ natural language processing, we decided to use only shallow
linguistic analysis, i.e., part-of-speech tagging and base noun phrase (NP) chunking. To proceed
with this decision, we mainly focused on the following problems.

1. Learning extraction rules

Shallow linguistic analysis only gives ‘low level’ information and writing extraction rules man-
ually with this information is quite a complicated job. Additionally, the written rules often
lack readability and are hard to maintain. Therefore, we applied a machine learning method,
support vector machines (SVM), to learn some extraction rules. SVM has shown a high
performance in many pattern recognition and natural language processing tasks.

2. Detecting apposition

To answer a certain kind of question, detecting an appositive relation is very important. As
we looked further into this issue, however, we found that such detection is not easy because
apposition is often determined by long-range constraints in sentences and cannot be identified
only by neighborhood information. We therefore created a simple but effective heuristics to
detect appositive relations.

This paper is organized as follows. In Section 2, we briefly describe the overall structure of our
QA system SAIQA-e (System for Advanced Interactive Question Answering in English). Then, we

1



Question
analyzer

Solver
Chooser

Name
(principal)

Description

Quantity

Paraphrase

Passage
Retriever

Answer
Integrator

Question Answer

Question analysis Answer extraction Answer completion

Date

Name
(auxiliary)

Figure 1: SAIQA-e overview

explain the approaches to our main problems, i.e., learning extraction rules and detecting apposition,
in detail in Sections 3 and 4. Finally, in Section 5, we analyze results of SAIQA-e on the main task
of TREC-10’s QA track.

2 System overview

SAIQA-e first classifies a question into several categories (Figure 1). Then, it passes each question
to an answer extraction subsystem, one that is specific to the question’s category. Each extraction
subsystem extracts candidate answers from a document set and scores them by heuristic measures.
Finally, these candidate answers are merged when multiple candidates are located within a 50-byte
length. If a question is categorized as ‘unknown’ or a specific solver does not extract five candidates,
the system evokes a passage retrieval system, which extracts 50-byte passages. These passages are
added to the candidates.

In the following, we describe the details of each component.

2.1 Question analysis

In the question analysis stage, each question is classified into one of the categories shown in Figure
2. The category is determined by a manually created decision tree and the following features of the
question: question words (who, what, when,...), positions of the question words (start/middle/end
of the question), first verb, head word of the first NP, head word of the second NP, and the word
between the first and the second NPs.

Here, we explain the question categories.

• Name

2



What are the speed hummingbirds fly? (Q953)Quantity

What 's the easiest way to remove wallpaper? 
(Q1386)

Unknown

What is the abbreviation for Texas? (Q1172)
What does I.V. stand for? (Q1176)

What is Shakespeare’s nickname? (Q1294)

Abbreviation
Full name

Nickname

Paraphrase

When was Lyndon B. Johnson born? (Q1060)Date

Who was Galileo? (Q896)

What is an atom? (Q897)

Person

Others

Description

Person
Location

Organization

Others

Who discovered x-rays? (Q945)
Where is John Wayne airport? (Q922)

What is the name of the chocolate company in 
San Francisco? (Q943)

What is the Ohio state bird? (Q1001)

Name

ExampleQuestion type

Figure 2: Question categories

This category has four subcategories: Person (including entities treated like person, such as
gods and comic characters), Location, Organization, and Others (including class names like
animal species).

• Description This category has two subcategories, Person and Others.

The distinction between Name-Person and Description-Person might be a little confusing, so
let us present examples. “Who is the U.S. president?” is a Name-Person question because it
asks about the name of a person who is the U.S. president. On the other hand, “Who is George
W. Bush?” is a Description-Person question because it requires descriptive information about
a person whose name is George W. Bush.

• Quantity This category has nine subcategories: Count, Age, Duration, Length, Money,
Ratio, Size, Speed, and Others. As you can see, this category is rather broad and contains
few related concepts. However, the expressions of these concepts are usually associated with
numerical words and accordingly their extraction steps are expected to be similar. Based on
this, we grouped these subcategories into one Quantity category.

• Date This category has four subcategories: Day, Day of the week, Year, and Others.

• Paraphrase This category has three subcategories: Abbreviation, Fullname, and Nickname.
The category is created because these expressions are often related to the original expressions
in unique ways (for example, an abbreviation follows an original expression in parentheses)
and can be identified in a unified fashion.

The questions that are not classified into any above categories are labelled as ‘Unknown’ ques-
tions.

2.2 Answer extraction and evaluation

After the question is categorized, the answers are extracted from a document set and evaluated by
heuristic measures. We have several extraction subsystems, each of which is intended to deal with

3



only restricted types of questions. Each question is passed to the corresponding subsystem, while
‘Unknown’ questions skip this extraction step and are passed directly to the next answer integration
step. Here, we describe the subsystems.

Principal Name Solver

This subsystem deals with Name-Person, Name-Location, and Name-Organization questions.
It was separated from the other Name solver because detecting names of person/location/organization
in documents is harder than other name detection and we wanted to focus our resources on
this problem.

The subsystem first retrieves articles ranked by the fequency of keywords and their proximity.
Then, an SVM-trained named entity detection module extracts person/location/organization
names from these articles. These names are evaluated by heuristic measures such as the
proximity to the keywords.

The issue of SVM learning of named entity detection is discussed in Section 3.

Auxiliary Name Solver

This subsystem deals with Name-Others questions. The extraction and evaluation are similar
to Principal Name Solver’s, but the name detection rules are manually created. Additionally,
the evaluation heuristics are less accurate because Name-Others questions cover such diverse
kinds of entities that it is hard to develop accurate category-specific measures such as those
used in Principal Name Solver.

Description Solver

This subsystem accepts Description-Person and Description-Others questions. The extraction
and evaluation are quite different from the name solvers’.

The subsytem first retrieves all articles including the name of the requested entity. (It is easy
to identify the name in the question.) Then, the NPs appositively connected to the name are
extracted as the descriptive answers. The answers with the same head are grouped as variant
expressions of the same description. Finally, the most specific expressions of the groups are
scored by the number of group members. (That is, a more frequent description is considered
to be more trustable.)

Apposition detection plays the main role in Description Solver. We discuss this in Section 4.

Quantity/Date Solver

These subsystems deal with Quantity and Date questions. They are almost the same as
Auxiliary Name Solver and the differences are in the extraction rules.

Paraphrase Solver

This solver deals with Paraphrase questions and the subsystem is quite different from other
solvers.

For example, for Paraphrase-Abbreviation questions (for example, “What is the abbreviation
for the United Nations”), it retrieves all articles in which the fullname (United Nations)
appears. Then, a regular expression is used to extract all abbreviations from the articles.
Finally, a sequence of upper characters in the fullname (UN) is compared to a sequence of
upper characters in the abbreviations. This comparison is done approximately so that some
missing characters are tolerated and the matching degree is translated into the score of the
abbreviation.

4



2.3 Answer integration

After the answer extraction and evaluation stage, the answers are extended to 50 bytes and merged
when the 50-byte passages contain multiple answers. Then, we add ‘no answer’ in the following
manner.

1. If a question is classified into a category other than ‘unknown’ and the specific solver does
not return as many as five answers, then ‘no answer’ (i.e., ‘NIL’) is added to the candidates.
After that, the output of the passage retrieval system is added.

2. If a question is classified into the ‘unknown’ category and the passage retrieval system does
not return as many as five answers, then ‘no answer’ (i.e., ‘NIL’) is added to the candidates.

We set all ‘final answers’ as ‘1’, because SAIQA-e’s outputs have already been sorted according
to their relevance and we consider the first-ranked answer as the most trustable one.

3 Named Entity Recognition based on Support Vector Ma-

chines

Named entity (NE) recognition systems are useful for determining whether a certain pronoun des-
ignates a person or an organization or location. Although we have had our own Japanese NE
systems, we did not have any experience on developing English NE systems. Therefore, we decided
to develop one by using a corpus-based approach. Since we did not have any training data for
English NE tasks, we prepared our own training data.

We employed support vector machines (SVM) for the English NE system. Such a system was
proposed by Yamada et al. [YKM01] for Japanese NE recognition. His system is a simple application
of Kudo’s chunking system [KM01] that shows the best performance for the CoNLL-2000 shared
task. We also implemented an SVM-based NE system for Japanese. This SVM-based NE system
employs a different approach, but according to our experiments, this system is better than the other
Japanese NE systems we have (a C4.5-based rule generation system [Iso01] and a system based on
maximum entropy (ME) modelling). In the following sections, we describe our English NE systems.

3.1 Support Vector Machines

First, we introduce SVM briefly. The non-linear SVM classifier [SBS99] uses a decision function for
an input vector ~x given by

f(~x) = sign(g(~x))

where sign(y) = −1 for y < 0 and sign(y) = 1 for y > 0, and

g(~x) =

`∑

i=1

wik(~x,−→z i) + b.

k(~x, ~z) is called a kernel function. Several kernel functions are known. By considering Japanese NE
results, we decided to use a second-order polynomial kernel function k(~x, ~z) = (1 + ~x · ~z)2. The ~zis
are called support vectors that are representatives of training examples. wis and b are constants
determined by the training examples.

3.2 The first NE system

The first English NE system we implemented was a simple variation of ME-based NE systems pro-
posed by Borthwick [Bor99] and Uchimoto [UMM+00]. In this sytem, each word is classified into 21
classes: {person,organization,location,facility,artifact} × {single,begin,middle,end}

5



∪ {other}. Here, (person,single) is a label for a one-word person name like “George.” (per-
son,begin) is the first word of a certain multi-word expression for a person’s name (e.g., “George”
in “George Bush”). (person,middle) indicates an internal word (e.g., “Walker” in “George Walker
Bush”). (person,end) is the last word (e.g., “Bush” in “George Bush”). When a word does not
belong to any of the named entities defined above, it is labeled as other.

In ME-based NE systems, the Viterbi algorithm is employed to get the best combination of
labels. Since the ME model gives conditional probabilities, this is easy.

However, SVM does not tell us such probabilities. In addition, ordinary SVM can only solve
two-class problems. Therefore, we built 21 SVM classifiers, i.e., one SVM for each class. For the
application of the Viterbi algorithm, we used the sum of g(~x) instead of the sum of logarithms of
probabilities. We used Kudo’s TinySVM because of its faster speed over the well-known SVM light
[SBS99] for this kind of task.

Since this first NE system classifies every word in a given document, the training data for each
class has 105-106 examples. As a result, its training took a very long time.

In our case, we applied the NE system to the TREC data after the training. It turned out that
it was also too slow in the application phase. Because of this slowness, we could not try various
combinations of possible features. In addition, we could not improve the QA system, which depends
on the NE system. Therefore, we abandoned the first NE system.

3.3 The second NE system

We implemented another NE system in which hand-crafted rules were designed to detect NE candi-
dates (roughly, noun phrases containing capitalized words) and then SVMs classified them into four
classes: C = {person, organization, location, other}. For efficiency, we removed two classes,
i.e., facility and artifact, because they had only small numbers of positive training examples
and their results were not very good.

In the second NE system, the features for classification include word strings, their memberships
in word lists, their part-of-speech tags, word counts, neighbor words, appositive information, in-
formation about preceding occurrences in the same documents, and other surface features usually
used in other NE systems. Since SVM allows only numerical values in the input, we have to convert
features into a set of numerical vector components.

One example is represented by one numerical vector. Suppose an NE candidate’s head word is
Washington. Then, we introduce an axis for the feature head word is Washington, and its value is
1. At the same time, the vector’s incompatible axes like head word is University have 0 as their
values. In TinySVM, we have only to enumerate non-zero components.

For each candidate, the outputs of four functions, gperson, gorganization, glocation,
gother, are compared and the function that gives the largest value is chosen as class (argmaxc∈Cgc(~x)).

The second NE system was found to be much faster than the first NE system, but it was still
too slow for application to all TREC documents. Instead, we embedded the second NE system into
the QA system and to be called on demand.

4 Description solver and Apposition detection

To determine which parts of documents contain descriptions of entities is difficult even for humans,
but we provisionally adopted the following assumption.

• The description of an entity is expressed as the appositive modifier of the entity.

For example, in the sentence ”George W. Bush, the U.S. president, said...”, ‘George W. Bush’
is appositively modified by ‘the U.S. president’. Therefore, ‘the U.S. president’ should be some
description of ‘George W. Bush’. This assumption makes the detection of an appositive relation
the principal task in answering a description question.

6



Q. category Num. of Q. MPR (strict)

Name-{Per,Loc,Org} 131 0.349
Name-Others 76 0.096
Desc-{Per,Others} 128 0.247
Quantity 68 0.219
Date 48 0.119
Paraphrase 14 0.193
Others 27 0.151
Total 492 0.228

Table 1: Results of TREC10 QA track (main task)

In detecting appositive relations, punctuation disambiguation plays an important role. By
‘punctuation disambiguation’, we mean distinguishing the syntactic roles of commas. For exam-
ple, in the sentence “When I was a kid, things were simple.”, the comma is used as a marker of
syntactic movement. On the contrary, in the sentence “George, the son of the former president,
is a popular man.”, the comma shows an appositive relation between ‘George’ and ‘the son of the
former president’. Note that in both examples, the commas are placed between noun phrases. This
indicates that we cannot disambiguate this kind of comma usage only from neighbor information
and punctuation disambiguation requires ‘long-range’ information.

We first used some off-the-shelf parsers to detect apposition. Unfortunately, we found that
these parsers often failed around commas. We then created several heuristics to disambiguate
punctuations and then to identify appositive relations. These heuristics classify punctuations into
appositive markers, movement markers, and coordination markers (such as in “cats, dogs and
birds”).

Here are examples of the heuristics.

1. If a sentence starts with a subordinating conjunction, the leftmost comma in the sentence is
a movement marker. (For example, “When I was a kid, TV was not popular.”)

2. If a sentence contains the sequence of ‘(NP ,)+ NP CC NP’, these commas are coordination
markers.

5 Main task results

Table 1 shows the evaluation returned by NIST for each question category. These categorizations
were manually done after the result was submitted.

Name-Person/Location/Organization result in the highest score (0.349) among all categories.
This provides moderate but convincing evidence that our machine learning approach in NE recog-
nition improves the answer extraction accuracy. The second highest is Description. Actually, this
result was a little surprising for us because the extraction of the description was based on only a
simple assumption (See Section 4).

References

[Bor99] Andrew Borthwick. A Maximum Entropy Approach to Named Entity Recognition. PhD
thesis, New York University, 1999.

[Iso01] Hideki Isozaki. Japanese named entity recognition based on a simple rule generator and
decision tree learning. In Proceedings of Association for Computational Linguistics, pp.
306–313, 2001.

7



[KM01] Taku Kudo and Yuji Matsumoto. Chunking with support vector machines. In Proceed-

ings of NAACL, 2001.

[SBS99] Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors. Ad-

vances in Kernel Methods. MIT Press, 1999.

[UMM+00] Kiyotaka Uchimoto, Qing Ma, Masaki Murata, Hiromi Ozaku, Masao Utiyama, and
Hitoshi Isahara. Named entity extraction based on a maximum entropy model and
transformation rules (in Japanese). Journal of Natural Language Processing, Vol. 7,
No. 2, pp. 63–90, 2000.

[YKM01] Hiroyasu Yamada, Taku Kudo, and Yuji Matsumoto. Japanese named entity extraction
using support vector machines (in Japanese). In IPSJ SIG Notes, 2001. NL-142-17.

8


