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1 Introduction

The main investigation of our participation in the WEB track of TREC-10 concerns
the e�ectiveness of a novel probabilistic framework [1] for generating term weighting
models of topic relevance retrieval. This approach endeavours to determine the weight
of a word within a document in a purely theoretic way as a combination of di�erent
probability distributions, with the goal of reducing as much as possible the number of
parameters which must be learned and tuned from relevance assessments on training
test collections.

The framework is based on discounting the probability of terms in the whole col-
lection, modeled as deviation from randomness, with a notion of information gain
related to the probabilty of terms in single documents. The framework is made up
of three components: the \information content" component relative to the entire
data collection, the \information gain normalization factor" component relative to
a subset of the data collection (the elite set of the observed term), and the \term
frequency normalization function" component relative to the document length and
to other collection statistics. Each component is obtained by computing a suitable
probability density function.

One advantage of the framework is that we may easily compare and test the behaviour
of di�erent basic models of Information Retrieval under the same experimental con-
ditions and normalization factors and functions. At the same time, we may test and
compare di�erent term frequency normalization factors and functions.

In addition to testing the e�ectiveness of the term weighting framework, we were
interested in evaluating the utility of query expansion on the WT10g collection.
We used information theoretic query expansion and focused on careful paremeter
selection.

In our experiments, we did not use link information, partly because of tight scheduling
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- the WT10g collection was made available to us as late as late May 2001 - and partly
because it has been shown at TREC-9 that it is not bene�cial to topic relevance
retrieval.

In the rest of the paper, we �rst introduce the term weighting framework. Then
we describe how collection indexing was performed, which probability functions were
used in the experiments to instantiate the term weighting framework, and which pa-
rameters were chosen for query expansion. A discussion of the main results concludes
the paper.

2 The term weighting framework

The framework presented here can be found in [1].

The fundamental weighting Formula is the product of two information content func-
tions:

w = Inf1 � Inf2 (1)

Both Inf1 and Inf2 are decreasing functions of two probabilities P1 and P2, respec-
tively. The function Inf1 is related to the whole document collection D, whilst Inf2
to the elite set Et (this notion roots back to Harter's work [5]) of the term t, namely
the set of all documents in which the term t occurs.

P1 is obtained as follows. We assume that words which bring little information are
randomly distributed on the whole set of documents. By contrast, informative words
diverge from the randomic behaviour and therefore they receive little probability
according to a suitable model of randomness for Information Retrieval. This is the
the inverse document frequency \component" of our model, in the sense that similar
to the standard IR models based on the idf measure, the informative words have
a small probability to occur within a document. We provide di�erent basic models
which de�nes such a notion of randomness in the context of Information Retrieval.
A model of randomness is derived by a suitable interpretation of the probabilistic
urn models of Types I and II [4] into the context of Information Retrieval. Basically,
a model of Type I is a model where balls (tokens) are randomly extracted from an
urn, whilst in Type II models balls are randomly extracted from an urn belonging to
a collection of urns (documents). Among type I models there is the Poisson model,
the Bose-Einstein statistics, the Geometric distribution, whilst a type II model is
the inverse document frequency model. Therefore, the frequency of a word within a
document with the lowest probability P1 as predicted by such models of randomness
or, equivalently, the words whose probability is less expected by the chosen model of
urns, are \highly informative" words.

Inf1 = � logP1 large for informative words in the collection

If we observe the elite set Et of the term, then we may derive a second conditional
probability P2 of term occurrence within a document in its elite set. The information



content of a highly informative term, as obtained by means of Inf1, will be tuned
according to its elite set.

This weight tuning process corresponds to the information gain \component" of our
model. We will take as weighting formula only a fraction Inf2 of Inf1. This fraction
of the information content corresponds to the \gain" associated to the decision of
accepting the term as an informative descriptor of the document. We assume, as in
decision theory, that this information gain and thus inf2 is inversely related to its
odds P2.

Di�erently from P1, which is in general very small, P2 should be in general close to
certainty, especially when tf is large. If we observe many occurrences of the term t,
then the observed term should have a very high probability P2 of being a descriptor
of the document. We assume that P2 is the conditional probability of observing,
within an arbitrary document of the elite set, tf + 1 occurrences of a given word in
the hypothesis that one has already observed tf occurrences. The higher the term
frequency tf , the higher the conditional P2. Since the gain is inversely related to its
odds:1

Inf2 = 1� P2 rate of the information content gained with t

The weight of a term in a document is thus a function of two probabilities P1 and
P2 which are related by the following relation:

w = Inf1 � Inf2 = (� log2 P1) � (1� P2) (2)

The term weight w of Formula 2 can be seen as a function of 4 random variables:

w = w(F; tf; n;N)

where
tf is the within document term frequency
N is the size of the collection
n is the size of the elite set Et of the term,
F is the term frequency in its elite set

However, the size of tf depends on the document length: we have to derive the
expected term frequency in a document when the document is compared to a �xed
length (typically the average document length). We should determine what is the
distribution that the tokens of a term follow in the documents of a collection at
di�erent document lengths. Once this distribution is obtained, the normalized term
frequency tfn is used in the Formula 2 instead of the non-normalized tf .

One formula we have formally derived and successfully tested on previous TREC
collections is:

tfn = tf � log2

�
1 +

c � avg l

l

�
(with c � 1) (3)

1We also used an alternative monotone decreasing function, namely Inf2 = � log
2
P2. Experi-

mentally, this decreasing function seems to be a little less e�ective than Inf2 = 1 � P2. Also, the

function 1�P2 will be easily generalized below to the increment rate of two Bernoulli's trials, whilst

a similar generalization with Inf2 = � log
2
P2 is problematic.



where avg l and l are the average length of the document collection and the length
of the observed document respectively.

Our term weight w of Formula 2 will be thus a function of 6 random variables:

w = w(F; tfn; n;N) = w(F; tf; n;N; l; avg l)

where
l is the document length

avg l is the length mean

We postpone the discussion about the probability functions used to instantiate this
framework and the choice of parameter c to Section 4.2. We �rst describe, in the
next section, how collection indexing was performed.

3 Test collection indexing

Text segmentation. Our system �rst identi�ed the individual terms occurring in the
test collection, ignoring punctuation and case. The whole body of each document was
indexed except for HTML tags, which were removed from documents. Pure single
keyword indexing was performed, and link information was not used.

Document pruning. As we had very limited storage capabilities, we performed some
document pruning. We removed very long or short documents as well as documents
which were deemed to be nontextual or nonenglish textual. Speci�cally, we pruned
the documents with more than 10,000 words (2,897) or less than 10 words (57,031);
also, we removed the documents that contained more than 50% of unrecognized En-
glish word (86,146), according to a large morphological lexicon for English (Karp et
al, 1992). In all, we removed 118.087 documents (this is not the exact sum of the
three categories due to document overlap). The price we paid for this computational
gain is that some relevant documents were lost. More exactly, we removed 162 out
of 3363 relevant documents (4.81%). Thus, it should be emphasized that our actual
performance retrieval was probably lower than the performance that we would have
obtained by considering the whole set of documents.

Word pruning. Incorrect words a�ect collection statistics and query expansion. In
order to reduce the inherent web word noise, we removed very rare, ill-formed or
exceedingly long words. Speci�cally, the words contained in no more than 10 doc-
uments, which were apparently exclusively mispelled words, were dropped from the
document descriptions. The words containing more than three consecutive equal
characters or longer than 20 characters were also deleted. In this way, the number
of distint words in the collection decreased dramatically, from 1,602,447 (after steps
1 and 2) to only 293,484.

Stop wording and word stemming. As we were primarily interested in early precision,
we used a very limited stop list and did not peform word stemming at all.

The system has been implemented in ESL, a Lisp-like language that is automatically



translated into ANSI C and then compiled by gcc compiler. The system indexes
two gigabytes of documents per hour and allows sub-seconds searches on a 550 MHz
Pentium III with 256 megabytes of RAM running Linux.

4 Term weighting models

The term-weighting framework described above was instantiated to a number of mod-
els using the Bose-Eistein statistics and the inverse document frequency (expected
and non) combined with the weight normalization factor Inf2 and frequency normal-
ization function tfn. We �rst describe the basic models and then the 2 normalization
factors L and B for Inf2.

Bose-Einstein statistics

The operational model of the Bose-Einstein statistics is constructed by approximating
the factorials by Stirling's formula. The model BE (BE stands for Bose-Einstein) is:

Inf1(tf) = log2
(N + F � tf � 2)!F !(N � 1)

(F � tf)!(N + F � 1)!
(4)

Let � = F
N

be the mean of the frequency of the term t in the collection D, then
the Bose-Einstein probability that a term occurs tf times in a document can be

approximated by P1(tf) =
�

1
1+�

�
�
�

�
1+�

�tf
. The right hand side is known as the

geometric distribution with probability p =
1

1 + �
. Hence:

Inf1(tf) = � log2

�
1

1+�

�
� tf � log2

�
�

1+�

�
(5)

The approximations of Equation 4 by Stirling's formula and by Equation 5 were
indistinguishable in the experiments, therefore Equation 5 is preferred to Equation
4 for its simplicity.

The inverse document frequency model I(n)

We use a standard tf-idf probability distribution. The probability P1(tf) is obtained
by �rst computing the probability of choosing a document containing the given term
at random and then computing the probability of having tf occurrences of the same
term in a document:

Inf1(tf) = tf � log2
N + 1

n+ 0:5
(6)



The inverse expected document frequency model I(nexp)

A di�erent model can be obtained by Bernoulli's law. Let nexp the expected number
of documents containing the term under the assumption that there are F tokens in
the collection. Then

nexp = N � Prob(tf 6= 0) = N � (1�B(N;F; 0)) = N � (1�

�
N � 1

N

�F
)

The third basic model is the tf-Expected idf model I(nexp):

Inf(tf) = tf � log2
N + 1

nexp + 0:5
(7)

4.1 Term frequency normalizations: the probability P2

We assume that the probability that an observed term contributes to select a relevant
document is high if the probability of counting one more token of the same term in
a relevant document is similarly high. This probability approaches 1 for high values
of tf .

Laplace's normalization L

The �rst model of P2(tf) is obtained by the conditional probability p(tf +1jtf; d) of

Laplace's Law of Succession: P2(tf) =
tf

tf + 1

The normalization L (for Laplace) is:

Inf2 =
1

tf + 1
(8)

Bernoulli's normalization B

To obtain an alternative estimate of P2 with Bernoulli's trials we use the following
urn model. Let B(n; F; tf) be

B(n; F; tf) =

�
F

tf

�
ptfqF�tf

where p = 1
n
and q = n�1

n
.

We add a new token of the term to the collection, thus having F + 1 tokens instead
of F . We then compute the probability B(n; F + 1; tf + 1) that this new token falls
into the observed document, thus having a within document term frequency tf + 1
instead tf . The process B(n; F + 1; tf + 1) computes the probability of obtaining



one more token of the term t in the document d out of all n documents in which t

occurs when a new token is added to the elite set. The ratio

B(n; F + 1; tf + 1)

B(n; F; tf)
=

F + 1

n � (tf + 1)

of the new probability B(n; F + 1; tf + 1) to the previous one B(n; F; tf) tells us
whether the probability of encountering a new occurrence by chance is increased or
diminished.

Instead of using P2 we normalize with the probability increment rate

IncrementRate = 1�
B(n; F + 1; tf + 1)

B(n; F; tf)

that is the normalization B is:

Inf2(tf) =
F + 1

n � (tf + 1)
(9)

4.2 The parameter c for the baseline models

Independently from the model used, namely independently from the probability dis-
tributions P1 and P2 chosen, in TREC-9 and TREC-10 the best matching value for
c was 7. The parameter c seems to be proportional to the size of the collection and
inversely proportional to the size of the indexing vocabulary. A similar observation
held also for the TREC-1 to TREC-8 collections.

We conjecture that the parameter c is connected to the Zip�an law which relates the
size of vocabulary to the size of the collection. This relationships which is not linear
a�ects the size of term frequency in the collection and thus the term frequency in
the document.

5 Query expansion

For TREC-9, the results about the use of query expansion were not as good as with
previous TRECs. Several groups reported that expansion did not improve or even
hurt retrieval performance [6]. As groups participating in TREC-9 web track had
little opportunity for parameter tuning and the WT10g collection is very di�erent
from the previous collections, these result may have been in
uenced by poor choice
of query expansion parameters.

We encountered a similar problem with our own information theoretic-based expan-
sion method [3, 2]. The weight of a term of the expanded query q� of the original
query q is obtained as follows:

weight(t 2 q�) = (� � tfqn + � � tfnKL) � Inf1 � Inf2

where



� tfqn is the normalized term frequency within the original query q (i.e. tfq
maxt2qtfq

)

� tfnKL is a term frequency in the expanded query induced by using a normalized
Kullback-Leibler measure

tfnKL =
tfKL

max
t2q�

tfKL
(10)

tfKL = PR(t) � log
PR(t)

PC(t)

where PX(t), with X = R;C, is the probability of occurrence of term t in the
set of documents X (estimated by the relative frequency of the term in X), R
indicates the pseudo-relevant set, C indicates the whole collection.

� � = 1, � = 0:2

� jRj = 3 with the number of terms of the expanded query equal to 10.

� Inf1 and inf2 as de�ned in Relation 1

This method was used with good results on TREC-8; however, when we ran it with
the TREC-8 parameters against the TREC-9 collection the retrieval performance
was badly a�ected, whether using the new weighting functions discussed above or
the Okapi formula. Thus, we focused on better selection of the values used for query
expansion parameters for the WT10g document set, by performing parameter tuning
on the TREC-9 test collection. We considered three parameters, namely the number
of pseudo relevant documents, the number of expansion terms and the ratio between
� and � in Rocchio's formula.

One of the most striking characteristics of the WT10g collection is that the quality
of baseline retrieval is lower than that obtained for past TREC collections. In an
attempt to reduce the chance to select terms from mostly nonrelevant documents
we chose fewer pseudo-relevant documents than typically used for query expansion.
We set the number of pseudo-relevant documents at 3. In order to compensate for
the lower quality of the terms used for expansion, we also adjusted the values of �
and �. Since the original query should become more important as the quality of the
expansion terms and their weights diminishes, we set the ratio between � and � to 5
(i.e., � = 1, � = 0:2) and reduced the number of terms used for query expansion to
10. In this way, it should be easier for the expanded query to keep the focus on the
original topic, even in the presence of bad term suggestions.

Finally, it should be noted that the removal of bad words performed at indexing time
(see discussion above) may have considerably reduced the number of typographical
errors in documents, which was pointed out as one of the causes for poor query
expansion.



6 Runs at TREC 10

We submitted 4 runs, 2 of them with our query expansion technique.

Runs fub01ne and fub01ne2: I(nexp)L

The baseline model fub01ne for Inf1 is I(nexp) and the normalization formula for
Inf2 is Laplace's law L namely the term weight is:

w =
1

tfn+ 1
�

�
tfn � log2

N + 1

nexp + 0:5

�
(11)

tfn is de�ned as in Equation 3 with c = 7. Run fub01ne was performed without
query expansion, whilst run fub01ne2 with.

Run fub01be2: BEL. This was the best performing run at TREC-10. The baseline
model fub01be for Inf1 is BE and the normalization formula for Inf2 is Laplace's
law L namely the term weight is:

w =
1

tfn+ 1
�

�
� log2

�
1

1 + �

�
� tfn � log2

�
�

1 + �

��
(12)

tfn is de�ned as in Equation 3 with c = 7. The automatic query expansion was
performed.

Run fub01idf: I(n)B

The baseline model fub01idf for Inf1 is I(n) and the normalization formula for Inf2
is Bernoulli's rate B namely the term weight is:

w =
F + 1

n(tfn+ 1)
� tfn log2

N + 1

n+ 0:5
(13)

tfn is de�ned as in Equation 3 with c = 7. The automatic query expansion was not
performed.

7 Results and conclusions

In Table 1 we show the retrieval performance of all possible models that can be gen-
erated by the term weighting framework using the probability functions introduced
above, without and with query expansion.

The main conclusions that can be drawn from the experimental results are the fol-
lowing.

- On the whole, the term weighting framework was e�ective, with very good absolute
and comparative retrieval performance (run fub01be2 achieved the best perfor-
mance of all o�cial submissions in the title-only, automatic topic relevance task),



Method O�cial run AvPrec Prec-at-10 Prec-at-20 Prec-at-30
Model performance without query expansion

BEL 0.1788 0.3180 0.2730 0.2413
I(n)L 0.1725 0.3180 0.2740 0.2353

I(nexp)L fub01ne 0.1790 0.3240 0.2720 0.2440
BEB 0.1881 0.3280 0.2980 0.2487
I(n)B fub01idf 0.1900 0.3360 0.2880 0.2580

I(nexp)B 0.1902 0.3340 0.2860 0.2580
Model performance with query expansion

BEL fub01be2 0.2225 0.3440 0.2860 0.2513
I(n)L 0.1973 0.3200 0.2730 0.2380

I(nexp)L fub01ne2 0.1962 0.3280 0.2760 0.2507
BEB 0.2152 0.3400 0.2870 0.2527
I(n)B 0.2052 0.3380 0.2970 0.2680

I(nexp)B 0.2041 0.3360 0.2990 0.2660

Table 1: Comparison of performance of models and normalization factors.

although noteworthy di�erences in performance were observed depending on which
combination of probabilistic distributions and normalization techniques was used.

- Query expansion with the chosen parameters improved performance for almost
all term weighting models and evaluation measures, with more tangible bene�ts for
average precision.

More work is necessary to investigate the relative strengths and weaknesses of each
model as well as to study the relationships to other term weighting approaches. More-
over, further experiments should be performed to control the e�ect on performance
of a wider range of factors, including word stemming, document pruning, and word
pruning.
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