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1. Introduction 
 
My goal for TREC-2001 was simple: submit some runs (so that I could attend the 
conference), spend the minimum time necessary (since I’ve been busy this year with a 
large client project), and get respectable results (marketing!).  The TREC batch filtering 
task was the obvious choice, since this year it was purely and simply a text categorization 
task.   
 
2. Learning Algorithm 
 
Given the large training set available for batch filtering, choosing a supervised learning 
algorithm that would make effective use of this data was critical. The support vector 
machine approach (SVM) to training linear classifiers has outperformed competing 
approaches in a number of recent text categorization studies, particularly for categories 
with substantial numbers of positive training examples.  SVMs require little or no feature 
selection, since they avoid overfitting by optimizing a margin-based criterion rather than 
one based on number of features.  This minimizes the complexity of the software and 
processing.   Finally, Thorsten Joachims has made publicly available an efficient 
implementation of SVMs, SVM_Light [Joachims 1999]:  

http://www.joachims.org/svm_light/ 
 
SVM_Light allows training of both linear and, via kernels, nonlinear classifiers. I used 
linear classifiers in all cases.   Indeed, I left all SVM_Light options that affect learning at 
their default values except -j, which controls the relative weight of positive and negative 
training examples in computing the margin-based loss criterion that SVM’s optimize.    
 
I modified SVM_Light to accept a comment before each example specifying a document 
ID, and to output during classification records containing score, predicted class, true class 
(if present in the test data), and document ID.  



 
 
3. Tuning the Weighting of Positive and Negative Examples  
 
My experiments focused on the relative weighting of positive and negative training 
examples.  This was due to two problems I anticipated with using SVMs:  
 
Problem 1.  Past text categorization experiments have suggested that SVMs are less 
dominant over competing algorithms on categories with very few positive training 
examples.   A plausible explanation is that the orientation of the learned hyperplane is 
being determined almost completely by the negative examples.  In some machine 
learning tasks, the positive and negative classes are equally coherent, and a classifier fit 
to either will produce good effectiveness on the binary classification problem.  This is 
rarely true in text categorization, however.  The positive class is typically a coherent 
subset (e.g. "Retail Sales") of all possible documents, but the negative class is the less 
well-defined "everything else".   Therefore, telling SVM_Light to pay more attention to 
positive examples for low frequency classes seemed like a good idea.  
 
Problem 2. SVM_Light by default optimizes a margin-based loss measure which gives 
equal weight to positive and negative examples.  It has been proven that optimizing this 
measure will tend to lead to low error rate; error rate also gives equal weight to positive 
and negative examples.  However, the TREC batch filtering task used two effectiveness 
measures, T10SU and T10F, which give unequal weights to positive and negative 
examples and, moreover, were likely to require two different classifiers to optimize.  (See 
the TREC-2001 filtering track report in this volume for more on these measures.) This 
again suggested paying attention to the weighting of positive and negative examples.   
 
A typical approach to Problem 2 would be to train using SVM_Light’s usual criterion, 
producing a linear model with a threshold of 0.  In a second phase, one would search for a 
new threshold value that optimizes the TREC effectiveness measure on the training set, 
while leaving the rest of the parameters unchanged  [Lewis, et al 1996].   Zhang & Oles 
recently used this approach with SVMs [Zhang & Oles, 2001].  This approach assumes, 
however, that the optimal orientation of the hyperplane is the same for all effectiveness 
measures, something which is not at all clear.   Further, it does nothing about Problem 1.  
I therefore took the opposite approach, which was to leave the threshold at 0, and try to 
force the fitting process for the other parameters to adapt to the TREC filtering measures.     
 
Happily, SVM_Light has a parameter that controls the relative weight of positive and 
negative examples in its loss function.   Since the T10SU measure corresponds to a 
weighting of positive examples to be 2 times more important than negative examples, an 
obvious approach would be to use that same relative weighting in training, at least in 
producing classifiers for the T10SU measure.   I rejected that approach for two reasons:  
 

1. While it has been proven that equally weighting positive and negative examples 
in SVM Light’s loss function leads to high accuracy (i.e. high utility with an equal 
weighting on positive and negative examples), this result has not been shown to carry 



through to unequal weightings of positive and negative examples.  It seemed possible, 
indeed likely, that the scaling factors for the two measures would be different.  In any 
case, as with most computational learning theory results, those for SVMs are too loose to 
constrain parameter settings tightly.  

 
2. Something had to be done about the F-measure, which does not correspond to 

any simple relative weighting of positive to negative examples.  (Indeed, the F-measure 
can’t be optimized by any predetermined threshold [Lewis 1995], but I ignored this 
problem for TREC-2001.) 
 
I therefore took a brute force approach.  I did multiple training runs for each topic with 
relative weightings of positive to negative examples of 0.4, 0.6, 0.8, 0.9, 1.0, 2.0, 4.0, and 
8.0.   
 
This gave me 8 classifiers for each topic, from which I needed to choose a single 
classifier for each of the two effectiveness measures.   I considered three methods: 
 
Method 1. Evaluate on training data: Using each classifier to classify the training data, 
comparing those classifications with the true labels, computing the effectiveness on the 
appropriate measure, and picking the classifier with best effectiveness.  The obvious 
problem with this approach is overfitting: the effectiveness estimates will be too 
optimistic. If the estimates were systematically too optimistic, then the choice of classifier 
would not be affected.  However, that seemed too much to hope for, particularly with a 
nonlinear effectiveness measure such as T10F. 
 
Method 2. Leave-one-out cross-validation: In cross-validation, one breaks the training 
data into k subsets.  A classifier is trained on the union of k-1 of the subsets, and 
evaluated on the kth subset.  The process is repeated k times, using each of the subsets as 
the validation subset once.  One then combines the results from the validation subsets to 
get an overall estimate of the effectiveness of the training procedure.   The most extreme 
and most accurate version of cross-validation is leave-one-out cross validation (LOOCV), 
i.e. doing n-fold cross validation when there are n training examples.  Cross validation 
can be used to choose a parameter setting by making a cross-validated estimate of 
effectiveness at several values of the parameter, choosing the parameter value with 
highest estimated effectiveness, and then doing a final training run with all data using the 
chosen parameter setting.  (Or one can train using all training data on all choices of 
parameter setting in advance, and then use cross-validation to pick the best of the already 
trained classifiers, as I did.) 
 
Method 3. xi-alpha estimation: SVM_Light incorporates a highly efficient approximation 
to LOOCV called xi-alpha estimation [Joachims 2000].    
 
It is important to stress that none of these three methods make any use of the test data.  
 
Given the computational expense of Method 2, I first investigated Methods 1 and 3.  I 
had high hopes for the xi-alpha estimate but found its predictions of effectiveness seemed 



both unrealistically pessimistic, and varied with the example weighting parameter in 
ways that seemed intuitively wrong.  On the other hand, the estimates of Method 1 
seemed unrealistically optimistic in many cases, as well as disagreeing strongly with the 
Method 3 estimates.   
 
I therefore used the more expensive but accurate Method 2.  SVM_Light includes support 
for LOOCV which, in the case of TREC 2001 batch filtering, meant 23,307-fold cross 
validation.  Using this to choose among 8 values of a weighting parameter in theory 
meant training 8 × 23,307 classifiers, each on 23,306 examples, for each of 84 categories.   
 
Fortunately, the properties of the SVM algorithm are such that many of the results of 
LOOCV folds can be predicted from a run on the full training data, without actually 
doing the training on the subset. SVM_Light incorporates an optimization that prunes 
away the folds that do not need to be explicitly run, and it meant that typically only a few 
hundred to a few thousand of the LOOCV folds were actually run for each setting, rather 
than 23,307 folds.  In addition, I used a slightly aggressive version of pruning (the 
options -x 1 and -o 1) known to work well on text classification problems [Joachims, 
2000] instead of the exactly correct version of pruning (options -x 1 and -o 2).  Still, 
several weeks of computing time on a 700MHz PC were required to generate the results 
for 8 parameter settings and 84 categories.   
 
A minor complexity was that SVM_Light output LOOCV and xi-alpha estimates of recall, 
precision, and error, but I really wanted estimates of T10F and T10U.  I therefore wrote 
code to work backwards from the estimates that were printed (to only 4 digits of 
accuracy) to the actual contingency table entries, taking into account knowledge of the 
number of training examples and the number of positive examples for a topic.  The code 
then computed estimates for T10F and T10U from the LOOCV contingency table entries.  
 
These LOOCV-based effectiveness predictions were used to choose two sets of 84 
classifiers, one set submitted for T10SU (run DLewis01bfUa) and one for T10F (run 
DLewis01bfFa).   
   
I also used these two sets of classifiers to rank the test documents and submitted rankings 
of the top 1000 documents for each topic (runs DLewis01rUa and DLewis01rFa) for the 
routing evaluation.     
 
4. Text Representation 
 
SVMs, like most approaches in both machine learning and IR, require text to be reduced 
to vectors of numeric feature values.    
 
Our text processing was minimal, consisting of downcasing the text, replacing numbers 
and punctuation with whitespace, and breaking the text into tokens at whitespace. No 
stemming was used.  I discarded words on the SMART stoplist.    
 



One innovation was motivated by the robustness of SVMs to large feature sets.  It is 
common in IR to give additional prominence in a document representation to words that 
occur in the document title, for instance by counting them twice.   It seems likely that this 
is a good strategy for some words but a poor one for others.  To allow the learning 
algorithm to choose, I created two sets of features: 

1. A set of binary features corresponding to the presence or absence of each word 
in the title.  

2. A set of features for the total number of words in both the title and body of the 
document.  Log TF weighting was applied to this feature set.  
 
These two sets of features were combined into a single feature set used to represent 
documents.  With respect to this feature set, there are linear models that give a variety of 
ranges of prominence to title words vs. words in the document body.  
 
No IDF weighting or other corpus weighting was used.  I did, however, apply cosine 
normalization to the feature vectors, as the default settings of SVM_Light are designed 
with this in mind.   
 
5. Results 
 
See the Appendix to these proceedings for the raw data.   Comparing each of my runs to 
the other 18 submitted runs as evaluated by the measure I submitted that run for, I found: 
 

• DLewis01bfUa,  my T10SU run, had greater than or equal to median T10SU on 
82 of 84 topics, and equaled the maximum T10SU score on 61 of 84 topics.   
 

• DLewis01bfFa,  my T10F run, had greater than or equal to median T10F on 81 
of 84 topics, and equaled the maximum T10F score on 49 of 84 topics.   
 

• DLewis01rFa, my T10F run as submitted for the routing evaluation, had greater 
than or equal to median SAP (simple average precision) on 83 of 84 topics, and equaled 
the maximum SAP score on 61 of 84 topics.  
 
What I had intended to be quick-and-dirty runs using OPS (other people’s software) were 
unusually dominant in a relatively mature TREC track.   I believe the most important 
factors in this performance were:  
       1) The good fit of the SVM approach to text classification problems, 
       2) Exploring a range of relative weightings of positive and negative examples as a 
uniform way of addressing both the scaling and thresholding problems, and 
       3) Use of the computationally expensive but very accurate LOO approach for 
choosing a distinct relative weighting for each topic.  
 
Future work will test the relative importance of these factors versus, for example, choice 
of text representation.   
 
6. Afterword: High Frequency Topics for Dinner?  Yum!  



 
Prior to the submission of TREC Filtering runs, I made two dinner bets on the outcome of 
the routing evaluation.   The outcome of one of these has been determined as of the 
writing of this paper.   Here’s the history:  
 
1. Avi Arampatzis wrote (15-August-2001) to the TREC filtering mailing list, worrying 
that using only the top 1000 docs in the routing evaluation wouldn’t be meaningful, 
because there were too many positive test documents.    
 
2. As part of the discussion of Avi’s obvservation, I wrote: "While I have not looked at 
the test data labels, I’ll go out on a limb and predict that many groups will have have [sic] 
test set precision @ 1000 over 90% for a nontrivial number of  topics.  That suggests that 
any interesting differences between systems will only kick [sic] among documents well 
below rank 1000..." 
 
4. Chris Buckley wrote "I’d be surprised with P @ 1000 of over 90% for any topics 
except those that are defined by a single keyword.  That’s a comment about reliability of 
the target categorization, not on system performance.  Ie, the system may find 950 
documents that should be in the category, but only 850 of those were actually assigned 
the category." 
 
5. I wrote Chris off the list betting dinner that some system would get P @ 1000 of over 
90% for some topic that was not defined by a single keyword.  We discussed a bit how 
"single keyword" would defined and he accepted.  (Basically, if Chris can write a single 
word query that gets P @ 1000 of  90% or more, the topic doesn’t count.)   
 
6. Separately, Paul Kantor wrote me and the list that "I will buy you a dinner if any 
system gets 90% @ 1000 for any topic."   These were much looser terms than I’d already 
proposed to Chris, so I happily accepted.  
 
7. Paul conceded on the list on September 6, 2001, after the preliminary results were 
released and several groups reported 90% @ 1000 results on 30 or so of the topics.   I had 
a nice dinner with Paul at TREC 2001.  
 
8. I am eagerly awaiting the result of Chris Buckley’s single word queries to see who 
buys dinner, perhaps in Finland at SIGIR 2002.  
            
Precision of 90% at 1000 documents seems to conflict with that fact that interindexer 
consistency rates are often 60% or lower [Cleverdon, 1991].   If two people can’t agree 
more often than that, how can a machine do better?   However, interindexer consistency 
is measuring agreement on an entire collection of documents.   (In practice it is typically 
estimated by sampling techniques.)  I made the above bets based on a suspicion that high 
scoring documents are different from collections as a whole.  That is, if a well-trained 
statistical classifier is very confident a document belongs to a class, then it must be an 
"easy" document that almost any human indexer would assign to the class.  The 
interindexer consistency, and thus the possible machine/indexer consistency, would be 



much higher than average.   Since some routing topics in TREC 2001 were clearly going 
to have 10’s of thousands of relevant documents, the top 1000 would consist of 
documents with very high scores.    
 
In addition, at the time I made the bets I already knew that SVM_Light’s LOOCV 
estimates of precision on the entire training set were above 90% for some topics.   Since 
LOOCV estimates are (almost) statistically unbiased, I was confident that results on the 
entire test set would be similar, and that on the top 1000 would be even better.  As it 
turned out, some groups had precision of 100% on their top 1000 test documents for 
some topics.  
 
On a serious note, it’s clear that Avi Arampatzis’ original worry was on the mark: 
evaluating routing runs on only the top 1000 documents meant that there was very little 
distinction among systems for high frequency topics.   I will go further, and suggest that 
any ranking-oriented evaluation is of questionable interest when one has both substantial 
training data and thousands of relevant documents.   
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