
Applying Support Vector Machines to the TREC-2001 Batch
Filtering and Routing Tasks

David D. Lewis
Independent Consultant

858 W. Armitage Ave., #296
Chicago, IL 60614

Dave@DavidDLewis.com
www.daviddlewis.com

1. Introduction

My goal for TREC-2001 was simple: submit some runs (so that I could attend the
conference), spend the minimum time necessary (since I’ve been busy this year with a
large client project), and get respectable results (marketing!). The TREC batch filtering
task was the obvious choice, since this year it was purely and simply a text categorization
task.

2. Learning Algorithm

Given the large training set available for batch filtering, choosing a supervised learning
algorithm that would make effective use of this data was critical. The support vector
machine approach (SVM) to training linear classifiers has outperformed competing
approaches in a number of recent text categorization studies, particularly for categories
with substantial numbers of positive training examples. SVMs require little or no feature
selection, since they avoid overfitting by optimizing a margin-based criterion rather than
one based on number of features. This minimizes the complexity of the software and
processing. Finally, Thorsten Joachims has made publicly available an efficient
implementation of SVMs, SVM_Light [Joachims 1999]:

http://www.joachims.org/svm_light/

SVM_Light allows training of both linear and, via kernels, nonlinear classifiers. I used
linear classifiers in all cases. Indeed, I left all SVM_Light options that affect learning at
their default values except -j, which controls the relative weight of positive and negative
training examples in computing the margin-based loss criterion that SVM’s optimize.

I modified SVM_Light to accept a comment before each example specifying a document
ID, and to output during classification records containing score, predicted class, true class
(if present in the test data), and document ID.

3. Tuning the Weighting of Positive and Negative Examples

My experiments focused on the relative weighting of positive and negative training
examples. This was due to two problems I anticipated with using SVMs:

Problem 1. Past text categorization experiments have suggested that SVMs are less
dominant over competing algorithms on categories with very few positive training
examples. A plausible explanation is that the orientation of the learned hyperplane is
being determined almost completely by the negative examples. In some machine
learning tasks, the positive and negative classes are equally coherent, and a classifier fit
to either will produce good effectiveness on the binary classification problem. This is
rarely true in text categorization, however. The positive class is typically a coherent
subset (e.g. "Retail Sales") of all possible documents, but the negative class is the less
well-defined "everything else". Therefore, telling SVM_Light to pay more attention to
positive examples for low frequency classes seemed like a good idea.

Problem 2. SVM_Light by default optimizes a margin-based loss measure which gives
equal weight to positive and negative examples. It has been proven that optimizing this
measure will tend to lead to low error rate; error rate also gives equal weight to positive
and negative examples. However, the TREC batch filtering task used two effectiveness
measures, T10SU and T10F, which give unequal weights to positive and negative
examples and, moreover, were likely to require two different classifiers to optimize. (See
the TREC-2001 filtering track report in this volume for more on these measures.) This
again suggested paying attention to the weighting of positive and negative examples.

A typical approach to Problem 2 would be to train using SVM_Light’s usual criterion,
producing a linear model with a threshold of 0. In a second phase, one would search for a
new threshold value that optimizes the TREC effectiveness measure on the training set,
while leaving the rest of the parameters unchanged [Lewis, et al 1996]. Zhang & Oles
recently used this approach with SVMs [Zhang & Oles, 2001]. This approach assumes,
however, that the optimal orientation of the hyperplane is the same for all effectiveness
measures, something which is not at all clear. Further, it does nothing about Problem 1.
I therefore took the opposite approach, which was to leave the threshold at 0, and try to
force the fitting process for the other parameters to adapt to the TREC filtering measures.

Happily, SVM_Light has a parameter that controls the relative weight of positive and
negative examples in its loss function. Since the T10SU measure corresponds to a
weighting of positive examples to be 2 times more important than negative examples, an
obvious approach would be to use that same relative weighting in training, at least in
producing classifiers for the T10SU measure. I rejected that approach for two reasons:

1. While it has been proven that equally weighting positive and negative examples
in SVM Light’s loss function leads to high accuracy (i.e. high utility with an equal
weighting on positive and negative examples), this result has not been shown to carry

through to unequal weightings of positive and negative examples. It seemed possible,
indeed likely, that the scaling factors for the two measures would be different. In any
case, as with most computational learning theory results, those for SVMs are too loose to
constrain parameter settings tightly.

2. Something had to be done about the F-measure, which does not correspond to

any simple relative weighting of positive to negative examples. (Indeed, the F-measure
can’t be optimized by any predetermined threshold [Lewis 1995], but I ignored this
problem for TREC-2001.)

I therefore took a brute force approach. I did multiple training runs for each topic with
relative weightings of positive to negative examples of 0.4, 0.6, 0.8, 0.9, 1.0, 2.0, 4.0, and
8.0.

This gave me 8 classifiers for each topic, from which I needed to choose a single
classifier for each of the two effectiveness measures. I considered three methods:

Method 1. Evaluate on training data: Using each classifier to classify the training data,
comparing those classifications with the true labels, computing the effectiveness on the
appropriate measure, and picking the classifier with best effectiveness. The obvious
problem with this approach is overfitting: the effectiveness estimates will be too
optimistic. If the estimates were systematically too optimistic, then the choice of classifier
would not be affected. However, that seemed too much to hope for, particularly with a
nonlinear effectiveness measure such as T10F.

Method 2. Leave-one-out cross-validation: In cross-validation, one breaks the training
data into k subsets. A classifier is trained on the union of k-1 of the subsets, and
evaluated on the kth subset. The process is repeated k times, using each of the subsets as
the validation subset once. One then combines the results from the validation subsets to
get an overall estimate of the effectiveness of the training procedure. The most extreme
and most accurate version of cross-validation is leave-one-out cross validation (LOOCV),
i.e. doing n-fold cross validation when there are n training examples. Cross validation
can be used to choose a parameter setting by making a cross-validated estimate of
effectiveness at several values of the parameter, choosing the parameter value with
highest estimated effectiveness, and then doing a final training run with all data using the
chosen parameter setting. (Or one can train using all training data on all choices of
parameter setting in advance, and then use cross-validation to pick the best of the already
trained classifiers, as I did.)

Method 3. xi-alpha estimation: SVM_Light incorporates a highly efficient approximation
to LOOCV called xi-alpha estimation [Joachims 2000].

It is important to stress that none of these three methods make any use of the test data.

Given the computational expense of Method 2, I first investigated Methods 1 and 3. I
had high hopes for the xi-alpha estimate but found its predictions of effectiveness seemed

both unrealistically pessimistic, and varied with the example weighting parameter in
ways that seemed intuitively wrong. On the other hand, the estimates of Method 1
seemed unrealistically optimistic in many cases, as well as disagreeing strongly with the
Method 3 estimates.

I therefore used the more expensive but accurate Method 2. SVM_Light includes support
for LOOCV which, in the case of TREC 2001 batch filtering, meant 23,307-fold cross
validation. Using this to choose among 8 values of a weighting parameter in theory
meant training 8 × 23,307 classifiers, each on 23,306 examples, for each of 84 categories.

Fortunately, the properties of the SVM algorithm are such that many of the results of
LOOCV folds can be predicted from a run on the full training data, without actually
doing the training on the subset. SVM_Light incorporates an optimization that prunes
away the folds that do not need to be explicitly run, and it meant that typically only a few
hundred to a few thousand of the LOOCV folds were actually run for each setting, rather
than 23,307 folds. In addition, I used a slightly aggressive version of pruning (the
options -x 1 and -o 1) known to work well on text classification problems [Joachims,
2000] instead of the exactly correct version of pruning (options -x 1 and -o 2). Still,
several weeks of computing time on a 700MHz PC were required to generate the results
for 8 parameter settings and 84 categories.

A minor complexity was that SVM_Light output LOOCV and xi-alpha estimates of recall,
precision, and error, but I really wanted estimates of T10F and T10U. I therefore wrote
code to work backwards from the estimates that were printed (to only 4 digits of
accuracy) to the actual contingency table entries, taking into account knowledge of the
number of training examples and the number of positive examples for a topic. The code
then computed estimates for T10F and T10U from the LOOCV contingency table entries.

These LOOCV-based effectiveness predictions were used to choose two sets of 84
classifiers, one set submitted for T10SU (run DLewis01bfUa) and one for T10F (run
DLewis01bfFa).

I also used these two sets of classifiers to rank the test documents and submitted rankings
of the top 1000 documents for each topic (runs DLewis01rUa and DLewis01rFa) for the
routing evaluation.

4. Text Representation

SVMs, like most approaches in both machine learning and IR, require text to be reduced
to vectors of numeric feature values.

Our text processing was minimal, consisting of downcasing the text, replacing numbers
and punctuation with whitespace, and breaking the text into tokens at whitespace. No
stemming was used. I discarded words on the SMART stoplist.

One innovation was motivated by the robustness of SVMs to large feature sets. It is
common in IR to give additional prominence in a document representation to words that
occur in the document title, for instance by counting them twice. It seems likely that this
is a good strategy for some words but a poor one for others. To allow the learning
algorithm to choose, I created two sets of features:

1. A set of binary features corresponding to the presence or absence of each word
in the title.

2. A set of features for the total number of words in both the title and body of the
document. Log TF weighting was applied to this feature set.

These two sets of features were combined into a single feature set used to represent
documents. With respect to this feature set, there are linear models that give a variety of
ranges of prominence to title words vs. words in the document body.

No IDF weighting or other corpus weighting was used. I did, however, apply cosine
normalization to the feature vectors, as the default settings of SVM_Light are designed
with this in mind.

5. Results

See the Appendix to these proceedings for the raw data. Comparing each of my runs to
the other 18 submitted runs as evaluated by the measure I submitted that run for, I found:

• DLewis01bfUa, my T10SU run, had greater than or equal to median T10SU on
82 of 84 topics, and equaled the maximum T10SU score on 61 of 84 topics.

• DLewis01bfFa, my T10F run, had greater than or equal to median T10F on 81
of 84 topics, and equaled the maximum T10F score on 49 of 84 topics.

• DLewis01rFa, my T10F run as submitted for the routing evaluation, had greater
than or equal to median SAP (simple average precision) on 83 of 84 topics, and equaled
the maximum SAP score on 61 of 84 topics.

What I had intended to be quick-and-dirty runs using OPS (other people’s software) were
unusually dominant in a relatively mature TREC track. I believe the most important
factors in this performance were:
 1) The good fit of the SVM approach to text classification problems,
 2) Exploring a range of relative weightings of positive and negative examples as a
uniform way of addressing both the scaling and thresholding problems, and
 3) Use of the computationally expensive but very accurate LOO approach for
choosing a distinct relative weighting for each topic.

Future work will test the relative importance of these factors versus, for example, choice
of text representation.

6. Afterword: High Frequency Topics for Dinner? Yum!

Prior to the submission of TREC Filtering runs, I made two dinner bets on the outcome of
the routing evaluation. The outcome of one of these has been determined as of the
writing of this paper. Here’s the history:

1. Avi Arampatzis wrote (15-August-2001) to the TREC filtering mailing list, worrying
that using only the top 1000 docs in the routing evaluation wouldn’t be meaningful,
because there were too many positive test documents.

2. As part of the discussion of Avi’s obvservation, I wrote: "While I have not looked at
the test data labels, I’ll go out on a limb and predict that many groups will have have [sic]
test set precision @ 1000 over 90% for a nontrivial number of topics. That suggests that
any interesting differences between systems will only kick [sic] among documents well
below rank 1000..."

4. Chris Buckley wrote "I’d be surprised with P @ 1000 of over 90% for any topics
except those that are defined by a single keyword. That’s a comment about reliability of
the target categorization, not on system performance. Ie, the system may find 950
documents that should be in the category, but only 850 of those were actually assigned
the category."

5. I wrote Chris off the list betting dinner that some system would get P @ 1000 of over
90% for some topic that was not defined by a single keyword. We discussed a bit how
"single keyword" would defined and he accepted. (Basically, if Chris can write a single
word query that gets P @ 1000 of 90% or more, the topic doesn’t count.)

6. Separately, Paul Kantor wrote me and the list that "I will buy you a dinner if any
system gets 90% @ 1000 for any topic." These were much looser terms than I’d already
proposed to Chris, so I happily accepted.

7. Paul conceded on the list on September 6, 2001, after the preliminary results were
released and several groups reported 90% @ 1000 results on 30 or so of the topics. I had
a nice dinner with Paul at TREC 2001.

8. I am eagerly awaiting the result of Chris Buckley’s single word queries to see who
buys dinner, perhaps in Finland at SIGIR 2002.

Precision of 90% at 1000 documents seems to conflict with that fact that interindexer
consistency rates are often 60% or lower [Cleverdon, 1991]. If two people can’t agree
more often than that, how can a machine do better? However, interindexer consistency
is measuring agreement on an entire collection of documents. (In practice it is typically
estimated by sampling techniques.) I made the above bets based on a suspicion that high
scoring documents are different from collections as a whole. That is, if a well-trained
statistical classifier is very confident a document belongs to a class, then it must be an
"easy" document that almost any human indexer would assign to the class. The
interindexer consistency, and thus the possible machine/indexer consistency, would be

much higher than average. Since some routing topics in TREC 2001 were clearly going
to have 10’s of thousands of relevant documents, the top 1000 would consist of
documents with very high scores.

In addition, at the time I made the bets I already knew that SVM_Light’s LOOCV
estimates of precision on the entire training set were above 90% for some topics. Since
LOOCV estimates are (almost) statistically unbiased, I was confident that results on the
entire test set would be similar, and that on the top 1000 would be even better. As it
turned out, some groups had precision of 100% on their top 1000 test documents for
some topics.

On a serious note, it’s clear that Avi Arampatzis’ original worry was on the mark:
evaluating routing runs on only the top 1000 documents meant that there was very little
distinction among systems for high frequency topics. I will go further, and suggest that
any ranking-oriented evaluation is of questionable interest when one has both substantial
training data and thousands of relevant documents.

References

[Cleverdon 1991] C. Cleverdon. The Significance of the Cranfield Tests on Index
Languages. In A. Bookstein, Y. Chiaramella, G. Salton, and V. V. Raghavan, editors,
SIGIR ’91: Proceedings of the Fourteenth Annual International ACM/SIGIR Conference
on Research and Development in Information Retrieval, pages 3-12, New York, 1991.
Association for Computing Machinery.

[Joachims 1999] T. Joachims. Making Large-Scale SVM Learning Practical. In
Advances in Kernel Methods - Support Vector Learning, B. Schölkopf and C. Burges and
A. Smola (ed.), MIT Press, 1999.

[Joachims 2000] T. Joachims. Estimating the Generalization performance of an SVM
Efficiently. International Conference on Machine Learning (ICML), 2000.

[Lewis 1995] D. Lewis. Evaluating and optimizing autonomous text classification
systems. In Edward A. Fox, Peter Ingwersen, and Raya Fidel, editors, SIGIR ’95:
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 246-254, New York, 1995. Association for
Computing Machinery.

[Lewis, et al 1996] D. Lewis, R. Schapire, J. Callan, and R. Papka. Training algorithms
for linear text classifiers. In Hans-Peter Frei, Donna Harman, Peter Schauble, and Ross
Wilkinson, editors, SIGIR ’96: Proceedings of the 19th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 298-306,
Konstanz, 1996. Hartung-Gorre Verlag.

[Zhang and Oles, 2001] T. Zhang and F. Oles. Text categorization based on regularized
linear classification methods. Information Retrieval, v. 4, pp. 5--31, 2001.

