
SiteQ: Engineering High Performance QA system Using Lexico-
Semantic Pattern Matching and Shallow NLP

Gary Geunbae Lee, Jungyun Seo*, Seungwoo Lee, Hanmin Jung, Bong-Hyun Cho, Changki Lee, Byung-

Kwan Kwak, Jeongwon Cha, Dongseok Kim, JooHui An, Harksoo Kim**, Kyungsun Kim**

Dept. of Computer Science & Engineering, POSTECH
Dept. of Computer Science, Sogang University*

DiQuest.com, Inc.**

Abstracts

In TREC-10, we participated in the web track (only ad-hoc task) and the QA track (only main task).
In the QA track, our QA system (SiteQ) has general architecture with three processing steps: question

processing, passage selection and answer processing. The key technique is LSP’s (Lexico-Semantic
Patterns) that are composed of linguistic entries and semantic types. LSP grammars constructed from
various resources are used for answer type determination and answer matching. We also adapt AAD
(Abbreviation-Appositive-Definition) processing for the queries that answer type cannot be determined or
expected, encyclopedia search for increasing the matching coverage between query terms and passages,
and pivot detection for the distance calculation with answer candidates.

We used two-level answer types consisted of 18 upper-level types and 47 lower-level types. Semantic
category dictionary, WordNet, POS combined with lexicography and a stemmer were all applied to
construct the LSP knowledge base. CSMT (Category Sense-code Mapping Table) tried to find answer types
using the matching between semantic categories and sense-codes from WordNet. Evaluation shows that
MRR for 492 questions is 0.320 (strict), which is considerably higher than the average MRR of other 67
runs.

In the Web track, we focused on the effectiveness of both noun phrase extraction and our new PRF
(Pseudo Relevance Feedback). We confirmed that our query expansion using PRF with TSV function
adapting TF factor contributed to better performance, but noun phrases did not contribute much. It needs
more observations for us to make elaborate rules of tag patterns for the construction of better noun
phrases.

1. Introduction

The goal of the QA track is to foster research on
systems that retrieve answers rather than
documents in response to a question [11][12]. The
focus is on systems that can function in
unrestricted open domains [11].

The web track features ad hoc search tasks on a
document collection that is a snapshot of the
World Wide Web. The main focus of this track is
to form a Web test collection using pooled
relevance judgments. We will describe our systems
and experiences for both QA and Web tracks in
this paper.

2. QA track: Systems and Experiences

In TREC-10, the QA track consisted of three
separate tasks: the main task, the list task and the
context task. We participated in only the main task.

The main task is similar to the task in previous
QA tracks (TREC-8, TREC-9). NIST provided 500
questions that seek short, fact-based answers.
Some questions may not have a known answer in
the document collection. In that case, the response
string “NIL” is judged correct. This differs from
the previous QA tracks and makes the task
somewhat more difficult. The answer-string
should contain no more than 50 bytes; 250-byte
runs were abandoned this year. Participants must
return at least one and no more than five
responses per question ranked by preferences.

The document collection consists of the
following six data sets: AP newswire, Wall Street
Journal, San Jose Mercury News, Financial Times,
Los Angeles Times, and Foreign Broadcast
Information Service. The documents are SGML
tagged, and each document in this collection has a

unique identifier in the field.
Distinguished from an information retrieval, a

QA system must retrieve answers rather than
documents as responses to a question. As an
ordinary course of step, we focused on what can be
a possible answer, how our system can determine
the answer type of a question, and how our system
can detect instances of each answer type in a
document. We classified possible answers and
designed a method for determining the answer
type of each question and detecting instances of it
in a document. We have not constructed the index
of document collection this time and instead used
the ranked document list provided by NIST for
each question.

Our QA system, SiteQ, consists of three
important steps; question processing, passage
selection and answer processing, which will be
explained in detail.

2.1 Question Processing

In general, a question answering system
analyzes an input question at first step. It is
important to understand what a user wants to
find; whether it is person’s name, location,
organization, or any other types. To do so, we first
classified the types of possible answers [1][2][3][6]
and used Lexico-Semantic Patterns (LSP) to
determine the answer type of a question.

2.1.1 Answer Type

We classified the type of answers to fact-seeking
questions [12]. Referring to the types used in
FALCON [3], we analyzed the questions used in
the previous QA tracks and their answers judged
correct and constructed 2-level hierarchy of
answer types. Hierarchical structure of answer
types is useful since only YEAR is available for
‘what year’ question, but YEAR, MONTH, DAY, or
TIME is available for ‘when’ question. Our answer
type has 18 types at top level as shown in the box.

2.1.2 Lexico-Semantic Patterns

Usually an interrogative in a question is an

important factor but it is not enough to determine
the answer type. LASSO first determined the
question class and the question focus, and then
determined the answer type by using them [6].
The question class is defined as an interrogative
and the question focus is defined as the main
information required by the interrogation.

We used Lexico-Semantic Patterns (LSP) to
determine the type of answer expected. Usually in
addition to an interrogative in a question, its
surrounding words or their senses are expressed
in LSP, which substitutes the question class and
focus word.

LSP grammar is composed of condition part and
conclusion part. The conclusion part is the type of
answer expected if the LSP in condition part is
matched. LSP is composed of lexical entries, POS
tag, semantic category and their sequence, and is
expressed in regular expression. For example, a
grammar “(%who)(%be)(@person) PERSON”
can be constructed from a question “Who was
President Cleveland’s wife?”. ‘%who’ and ‘%be’ is
lexical entries and ‘@person’ is a semantic
category for representing the position of a person.
We have manually constructed LSP grammar from
the questions used in the previous QA tracks and
the questions gathered from the Web by ourselves.
Among them 361 entry LSP grammar was used for
this year’s QA track.

question

TaggerTagger

NP ChunkerNP Chunker

Answer Type
Determiner

Answer Type
DeterminerQuery

Formatter

Query
Formatter

NormalizerNormalizer

RE MatcherRE Matcher

Qnorm dic

LSP grammar

query

answer type

Figure 1 Question processing

2.1.3 Determining The Answer Type

Figure 1 explains the procedures to determine
the expected answer type of an input question. At
first, an input question is POS-tagged using
POSTAG/E English tagger and, at the second step,

QUANTITY DATE TIME PROPERTY
LANGUAGE_UNIT LANGUAGE
SYMBOLIC_REP ACTION ACTIVITY
LIFE_FORM NATURAL_OBJECT
LOCATION SUBSTANCE ARTIFACT
GROUP PHENOMENON STATUS
BODY_PART

noun phrases are detected by NP chunker.
Scanning the tagged question from right to left,
this module detects the boundary of noun phrase
and its head noun. To do this, we collected the
POS patterns for noun phrases from the questions.
A noun phrase almost always ends with a noun,
usually starts with a pre-determiner, a determiner,
an adjective, a possessive pronoun, or a noun. The
rightmost noun in a noun phrase is selected as a
head noun. Two noun phrases can be combined
into a larger noun phrase by connecting them
using a preposition ‘of’ or a possessive ending. In
case of a preposition ‘of’, the head of its left-side
noun phrase is selected as a head of the combined
noun phrase, but in case of a possessive ending the
head of its right-side noun phrase is selected.

It is important that detecting a head in a noun
phrase since the sense of the head noun plays an
important role in determining the expected
answer type but its modifiers are useful for
justifying final answers. In the above question,
“President Cleveland’s wife” is detected as a noun
phrase, and ‘wife’ is its head and clarifies the
answer type of the question is PERSON. In
contrast to this question, the expected answer type
of a question “Who is Cleveland?” will be
POSITION, which means the position of Cleveland
(i.e., president) will be an answer.

At the third step, based on normalization
dictionary (Qnorm dic) and WordNet, each word
in a question is converted into LSP code to be
matched with the condition part of LSP grammar
by regular expression. “President Cleveland’s
wife” is converted into ‘@person’ since it is a noun
phrase and its head is ‘wife’, of which semantic
category is ‘@person’.

The following box shows how the answer type of
a question “Who was President Cleveland’s wife?”
is determined as PERSON.

Who was President Cleveland’s wife?

Who/WP be/VBD President/NP Cleveland/NP ’s/POS wife/NN ?/SENT

Who/WP be/VBD [[President/NP Cleveland/NP] ’s/POS wife/NNwife/NNwife/NNwife/NN] ?/SENT

%who%be@person

(%who)(%be)(@person) PERSON

TaggerTaggerTaggerTagger

NP NP NP NP ChunkerChunkerChunkerChunker

NormalizerNormalizerNormalizerNormalizer

RE Matcher (Regular Expression matcher)RE Matcher (Regular Expression matcher)RE Matcher (Regular Expression matcher)RE Matcher (Regular Expression matcher)

2.2 Passage Selection

We have not constructed an index database

from the document collection since we had no
enough time and computing resources this year.
Therefore we couldn’t help using only the
document list provided by NIST and selecting
relevant passages from them by scanning the
whole documents and matching the keywords. The
documents were ranked by document similarity
because they were retrieved by the PRISE [7], a
document retrieval system rather than a passage
retrieval system. Generally, however, a document
does not fit for detecting candidate answers within
itself since it is too large and contains too much
extra information. By analyzing the previous
questions and their answers, we can assume that
answers to a question usually occur comparatively
near to the matched keywords in a document. This
means that the answer can occur in any ranked
documents and we had better select passages from
each document and rank them by passage
similarity. Then we can use top passages to find
candidate answers. To do so, we first must define
passage and keywords to be used in selecting
relevant passages.

2.2.1 Keywords

We define keywords to be used in selecting
passages from the retrieved documents. We first
remove useless words in a question and then use
the remained words as three types of keywords
considering lexical normalization and semantic
similarity. Finally we assign weights to each
keyword.

- Removing stop words

The useless words in a question are removed
first by POS tag and stop word list, which has 568
entries. Then the following five heuristics are
applied to the remaining words.

a. When a word like ‘kind’, ‘sort’, ‘one’,
‘most’, etc. occurs in the left side of a
preposition ‘of’, it is removed; eg) What
kind of dog …? Name one of the Seven
Wonders …?

b. When a word like ‘name’, ‘nickname’, etc.
occurs in the right side of a possessive
ending, it is removed; eg) What was the
man’s name who was killed …? What is
Shakespeare's nickname?

c. When a question is expressed in
imperative sentence, the imperative verb
is removed; eg) Tell me what city …?

d. When a verb needs a to-infinitive, the
verb is removed; eg) Where do lobsters

like to live?
e. When an adjective or an adverb follows

an interrogative ‘how’, the adjective or
adverb is removed; eg) How wide is the
Atlantic Ocean?

- The type of keyword

After removing all stop words, the remaining
words are considered as question keywords. We
define following three types of keyword to solve
the mismatching problem of keywords caused by
lexical variants and synonyms.

a. Lemma form
The lemma form of a word is used as a
keyword except the superlative adjective or
adverb, in which case the word itself is used as
a keyword; eg) invented invent, inventers

 inventer, smallest smallest
b. Stemmed form
Though the lemma form solves somewhat of
the mismatching problem, it is not enough to
solve the mismatch between ‘inventer’ and
‘invented’. This can be resolved by using a
stemmer like the Porter’s stemmer [8].
c. WordNet sense (in case of noun or noun

phrase)
To match a word ‘ship’ in a question with a
word ‘steamship’ in a document, we must
compute semantic similarity between a
question keyword and a document word.
Using the WordNet [5], the synonym or
hyponym of a question keyword occurring in
documents is matched with the question
keyword.

- The weight of the keyword

The lemma form is weighted by its part of
speech. A proper noun, a common noun starting
with a capital letter, and a superlative has higher
weight than a verb, an adjective and an adverb.
The stemmed form has some of the weights its
lemma form has. The keyword (noun or noun
phrase) matched by WordNet sense has the lowest
weight relative to the number of its component
words.

2.2.2 Passages

A passage is composed of more than one
sentence segmented by punctuation. We make
adjacent two sentences into a passage if they have
a lexical chain, which indicates that a sentence has
a noun and the other sentence has its anaphora.
We however limited a passage to maximum three

sentences since the more sentences have the more
extra information, which may increase incorrect
candidate answers.
Each sentence from a document gets scored by
matching its terms with query terms (Score1) and
by considering the distance and number of the
matched terms (Socre2). Score1 consists of sum of
the weights of matched terms. Each query term is
tried to be matched with document terms in the
order of lemma form, WordNet sense and
stemmed form, and gets assigned the weight of the
first matched term type. Passages are ranked by
sum of their sentence scores.

constant:

sentenceainmatched

squery wordofnumber:_

1andorddocument w

betweendistance:)1,(

matchedwasorddocument wwhichwith

,query wordofweight:)(

query wordofweight:)(

_

(3)
1

)1,(

)()(

stentenceainappearsif

(2))(

(1)

1

1
2

1

2

1

21

α

α

cntmatched

jj

jjdist

j

idwwgt

iqwwgt

cntmatched
k

jjdist

dwwgtdwwgt

Score

qw

qwwgtScore

ScoreScoreScore

j

i

k

j

jj

i

i
i

sent

+
+

×
−

+×
+

=

=
+=

∑

∑

−

=

+

Our system selected 1000 passages from 1000

retrieved documents per question.

2.3 Answer Processing
Answer processing selects answer candidates

matching the answer type from each passage and
ranks them. It uses stemmer[8], thesaurus
(WordNet) [5], encyclopedia for its performance
elevation. Answer processing is composed of four
steps: Answer Matching, Pivot Detection, AAD
Processing and Answer Ranking.

2.3.1 System Architecture

Figure 2 shows components of answer
processing system. Answer matching (detection)
finds answer candidates in POS-tagged passages
selected by passage selection using the answer
type determined by question processing. A query

term, which shows up in various forms in the
passage, is called “pivot”. Answer ranking uses
these pivots in scoring answer candidates. When
the answer type of a question is
“LANGUAGE_UNIT”, AAD processing finds
context-based answer candidates that are in
abbreviated, appositive and definitive relation
with the pivots. Answer ranking calculates the
score of each answer candidate with various
parameters, filters them according to the range
and the type of answer, and finally sorts them.

Pivot creationPivot creation

Query-term detectionQuery-term detection

Noun-phrase chunkingNoun-phrase chunking

Answer detection coreAnswer detection core

Answer detectionAnswer detection

Query-term filteringQuery-term filtering

Term list

Answer scoringAnswer scoringAnswer filteringAnswer filtering

AAD processingAAD processing

Stemming (Porter’s)Stemming (Porter’s)

WordNet

Stop-Word

Figure 2 Answer processing

Category expansionCategory expansion

Unknown word processingUnknown word processingToken groupingToken grouping

CSMT loadingCSMT loadingResource initializationResource initialization

Morphological analysisMorphological analysisStructure constructionStructure construction

Category dictionary searchCategory dictionary search

CSMT matchingCSMT matching

WordNet searchWordNet search

POS+case processingPOS+case processing

LSP matching & scoringLSP matching & scoring

LSP constructionLSP construction

WordNet CSMT

Category dictionary

Answer-type grammar

Answer types
Tagged passages

Category verificationCategory verification

Multi-word processingMulti-word processing

AD with heuristicsAD with heuristics

Question-answer type mappingQuestion-answer type mapping

Category filteringCategory filtering

Figure 3 Answer matching

2.3.2 Answer Matching (detection)

Figure 3 shows the procedures of answer
matching. Answer matching assigns semantic
categories to each answer candidate by matching
between LSP grammar and the normalized answer
form from the following procedure. The procedure

first searches semantic category dictionary. In case
of its failure, it tries thesaurus matching between
the sense-code from WordNet and the semantic
categories in the CSMT (Category to Sense code
Mapping Table), and then uses POS combined
with lexicography.

- Searching semantic category dictionary
Semantic category dictionary has about

80,000 entries including single word and
compound one. Each entry is assigned a
semantic category among 65 ones which are
components of LSP abstraction.

- Trying thesaurus matching

Sense code retrieved from WordNet [5] is
mapped to each category among 65 semantic
categories if it has a similarity greater than a
threshold value.

- POS combined with lexicography

In case of failure of searching semantic
category dictionary, POS combined with
lexicography is used to build normalized form. If
“Newton” has “np” (proper noun) POS tag, “Np”
is used for normalization. It is because
capitalization is important for detecting
candidate answers, especially named entities.

When a normalized form matched with a LSP of

the answer type, its terms are chosen as an answer
candidate. The followings show some examples of
LSP and its actual instances.

cd@unit_lengthcd@unit_length length|1|4|4

10 feet 5 inches
cd@unit_length%per@unit_time speed|1|4|4

3 km per hour

2.3.3 Pivot Detection

Pivots corresponding with query terms emerge
in the passage in various way: full matching terms,
partial matching ones for multi-words, stem
matching ones for inflections and semantic
synonyms using WordNet. When answer ranking
scores answer candidates, pivots are weighted
according to these normalized representations of
query terms in a passage. When an answer
candidate itself is a pivot, it is excluded from
answer candidate set.

2.3.4 AAD Processing

In the case that no answer type can be

determined in question processing due to short
of information (“LANGUAGE_UNIT” answer
type), AAD processing finds context-based answer
candidates that are in abbreviated, appositive and
definitive relation with the pivots. It uses
lexicographic patterns for abbreviation, and noun
phrase chunking and clue words such as “so-
called” and “stand for” for apposition and
definition. The followings are examples of
questions, of which answer type is
LANGUAGE_UNIT.

Why does the moon turn orange?
What is epilepsy?
What imaginary line is halfway between the

North and South Poles?
What is done with worn or outdated flags?

For more improvement of performance, AAD

processing uses encyclopedia information
extracted from WordNet glossary [5]. We gathered
descriptions of about 110,000 words from
WordNet glossary and removed stop words from
the descriptions. Answer ranking reweighs each
answer candidate through its semantic similarity
with remaining terms in the descriptions.

2.3.5 Answer Ranking

Score of each answer candidate is mainly
calculated by distance between pivots within some
window in each selected passage. In addition to
basic distance measure, the type and ratio
matching each pivot with query terms, mean
distance between pivots, and semantic type of
answer candidate (especially in case of AAD
processing) are all used for scoring each answer
candidate:

∑
=

−⋅⋅

⋅⋅−⋅=

PN

j

j
j

p

i

pivot

pivotavg
pivoti

dist

dist
r

NAADfactor

S

dist

dist
RScore

1 max

.max

.

)1(

1
)1(

 (4)

Rpivot: ratio of matched pivots
distavg.pivot: average distance between pivots
distmax.pivot: maximum of distance between pivots
Si: intermediate score of ith Answer Candidate
AADfactor:

if question type is language-unit,
if NE type is AAD, 1
otherwise 4

otherwise 1

Scorei: final score of ith Answer Candidate
Np: number of Pivots
rj: weight factor of match type of jth Pivot
distj: distance between jth Pivot and ith Answer

Candidate
distmax: max value of distj

This formula (Eq. 4) reflects some of the

following assumptions: (1) Reliable answer
candidates would appear near query terms, so
called pivots, in a passage. (2) Reliable answer
candidates would show up around pivots which
matched with query terms more exactly. (3) In the
case of “LANGUAGE_UNIT” answer type, answer
candidates extracted from AAD processing are
more reliable than the others. (4) The smaller
mean distance between pivots is, the more reliable
an answer candidate around them would be. (5) If
most of query terms appear in a passage, an
answer candidate around their pivots is more
reliable. (6) Finally, reliable answer candidates
show up in some limited distance between pivots.
After scoring all answer candidates, answer
ranking filters less reliable answer candidates
according to the range and type of the answer,
sorts remaining answer candidates by their scores
and presents N most reliable answer candidates.

2.4 Experiments in TREC-10

We participated in the main task of QA track.
500 questions were given to each participant to
evaluate their QA systems. After all evaluation, it
was known that 49 questions among them have no
known correct answers in the document collection.
Eight questions were excluded from the evaluation
due to various problems with those questions.

Table 2 shows that, unlike the questions used in
the previous QA tracks, questions like “what is X?”
were remarkably increased. So, the task became
more difficult since the answer types of such
questions are often not specified definitely.

For each question, SiteQ used the top 1000
documents provided by NIST (PRISE search
engine [7]), selected top 1000 passages from those
documents, detected top five candidate answers
from those passages and picked out 50-byte string
including the candidate answer as an answer
string. When the score of a candidate answer was
lower than a threshold value or less than five
candidates were detected, we added “NIL” string
in the appropriate rank, which means that there
might be no answer.

We submitted only one run (posqa10a) and it

was evaluated by mean reciprocal rank (MRR) like
the previous QA tracks [13]. The unsupported
answers were judged incorrect in strict judgment
but correct in lenient judgment. Table 1 shows the
number of questions judged correct in each
judgment and the mean reciprocal rank of 492
questions. Comparing with the average MRR of
the 67 other runs submitted this year, our system
located correct answers at rank 1 for relatively
many questions. The difference between the strict
and the lenient MRR arises because a word of the
same answer type was added to 50-byte string
when we picked out the answer string including a
candidate answer.

Rank
of Qs
(strict)

of Qs
(lenient)

Avg. of 67
runs

1 121 124 88.58
2 45 49 28.24
3 24 29 20.46
4 15 16 12.57
5 11 14 12.46

No 276 260 329.7
MRR 0.320 0.335 0.234

Table 1 The number of questions judged
correct and MRR

Table 2 shows the MRR for each type of

question. For the questions like “What is X?”, our
system shows relatively good performance. This

means that AAD processing was effective for those
questions.

According to table 3, we know that the systems
in TREC-10 show slightly higher performance than
the systems in TREC-9. But this does not
necessarily refer to the improvement of the
systems.

TREC-10
67runs

TREC-9
35runs

Avg. MRR 0.234 0.22
Median MRR 0.121 0.115
of Qs with no
answer(%)

67.01 % 68.54 %

Table 3 The comparison between TREC-10
and TREC-9

3. Web track: Systems and Experiences

This is our first participation in the Web track of
TREC. Our system is based on POSNIR/K, Korean
natural language information retrieval system [4].
For TREC-10, we focused on effectiveness in both
noun phrase extraction and PRF (Pseudo
Relevance Feedback). While query expansion
using PRF turned out to contribute to the
performance significantly, the noun phrases were
used with single terms actually didn’t contribute
much.

3.1 Keyword Extraction

For keyword extraction, we tagged the
document collection, wt10g, and queries using
POSTAG/E, the English POS (Part-Of-Speech)
tagger based on HMM. The output of POSTAG/E
is composed of lexis, POS tag, and lemma. From
the result of the tagger, we selected keywords
using two-phase extraction. If the lemmas were
registered in the dictionary, they were selected. On
the other hand, lexes were stemmed by Porter’s
stemmer[8] and then the stemmed lexes were
selected as keywords. Stop words were eliminated
using two kinds of stop list: common stop list
containing 569 words, and query-specific stop list
containing 28 words which must be removed from
the query.

For constructing noun phrases, we made lexico-
syntactic rules based on the POS-tag patterns.
Some of the rules are described below.

Term1/{NN | NP} Term2/{NN | NP}
 Term1_Term2

Table 2 The frequency and MRR in
each type of question

MRR MRR

(strict) (lenient)

how + adj/adv 31 0.316 0.332

how do 2 0.250 0.250

what do 24 0.050 0.050

what is 242 0.308 0.320

what/which noun 88 0.289 0.331

when 26 0.362 0.362

where 27 0.515 0.515

who 46 0.464 0.47 1

why 4 0.125 0.125

name a 2 0.500 0.500

Total 492

Q-ty pe freq

Term1/{NN | NP} (’s/POS | of/IN) Term2/{NN |
NP}

 Term1_Term2
Term1/JJ Term2/{NN | NP} Term3/{NN | NP}

 Term1_Term2_Term3

3.2 Initial Retrieval

Our retrieval system uses 2-poisson model
based on the probabilistic term distribution. The
system retrieves top-raked documents after giving
scores to each document of a target data collection
with each query term list made from the keyword
extraction process. For scoring, a rank system uses
Okapi BM25 formula [9] as shown below.

+

+−=
5.0

5.0
log)1(

n

nN
w (5)

+
+

××

+×+−×

×+
=∑

∈

),(

),()1(

))1((

)1(
),(

3

3)1(

1

1

tqtfk

tqtfk
w

tf
avdl

dl
bbk

tfk
qdScore

q

q

qt
t

d

t

 (6)

, where N is the number of documents in the
collection, n is the number of documents
containing the term, tft is the term frequency of
term t in a document d, dld is the document length,
avdl is the average document length, tfq(q,t) is the
term frequency of query term t in the query q, and
k1, b, k3 are tunable constant parameters.

3.3 Query Expansion

Query expansion is achieved through PRF
(Pseudo Relevance Feedback). In the process of
PRF, top-ranked documents are regarded as
relevant and TSV (Term Selection Value) is given
to all single terms except stop words in them. Then,
top-ranked single terms are expanded and added
to the original query term list. In this process, the
weights of both original and expanded query terms
are reweighted by Eq.(7) reflecting relevance and
non-relevance information [10].

)
5.0

5.0
log()log(

)
5.0

5.0
(log)log(

66

6

5

4

5

5)1(

+−
+

+
−

−+
−

+−
+

+
+

−
+

+
=

sS

s

Sk

S

nN

n

Sk

k

rR

r

Rk

R

nN

N
k

Rk

k
w

 (7)

, where N, n is the same as in the Eq.(5), R is the
number of documents known to be relevant to a
specific topic, r is the number of relevant
documents containing the term, S is the number of
documents known to be non-relevant, s is the
number of non-relevant documents containing the
term, and k5, k6 are tunable constant parameters.

For TSV function, we developed and compared

some TSV formulas adapting diverse TF (Term
Frequency) factors.

)1(,5.05.0 w
dl

tf
TSV

Rd d

dt ×

×+= ∑

∈
 (8)

)1(
,log(w

dl

avgdl
tfTSV

Rd d
dt ×

×= ∑

∈
 (9)

)1(

,1

,

))1((
w

tf
avgdl

dl
bbk

tf
TSV

Rd dt
d

dt ×

++−
= ∑

∈
 (10)

, where w(1) is Eq. (7).

3.4 Final Retrieval

Final retrieval process is the same as the initial one
except that, this time, each query term has the new
weights given by Eq. (7) and the expanded query term
list is used.

3.5 Experiments in TREC-10
Table 4 summarizes the TREC-10 results. The

results indicate that when a query was expanded
using PRF, the performance was better, but noun
phrases didn’t give much contribution to the
performance. As for TSV function in using PRF,
Eq. (10) which is adapting TF factor of the weight
formula of Okapi was better than any others.

In order to further validate the results, the t-test
was performed on the data (Table 5). The table
shows the mean difference, the standard deviation
difference, the t-statistics and the probability of
average precision and recall-precision for no-PRF
(baseline) versus PRF (using Eq. (10)) case.
Though there are no significant differences for
average precision in TREC-9 topics, the table
shows the rest of the performance are all
significantly improved when PRF was used.

No query expansion Query expansion

title only title+desc title only
no phrases phrases phrases phrases

 baseline Eq. (7) Eq. (8) Eq. (9) Eq. (10)

TREC-9

Precision 0.1740 0.1747 0.2188 0.1758 0.1740 0.1781 0.1837

R-Precision 0.1962 0.1967 0.2399 0.1954 0.1940 0.2049 0.2082
TREC-10

Precision 0.1535* 0.1521** 0.1877*** - - - 0.1771****

R-Precision 0.1853 0.1760 0.2240 - - - 0.2081

Table 4 Average precision & R-Precision for TREC topics (* : posnire01st **: posnire01pt
: posnire01ptd *: posnire01rpt)

Mean

difference
STD

difference
T Prob > |T|

Precision 0.0091 0.0393 1.6279 0.1100 TREC-9
R-Precision 0.0116 0.0430 1.9071 0.0624
Precision 0.0356 0.0939 2.6841 0.0099 TREC-10
R-Precision 0.0480 0.0836 4.0577 0.0002

Table 5 T-test: Avg. Precision & R-Precision - no-PRF (baseline) vs. PRF (Eq. (10))

4. Conclusion

In TREC-10, we participated in the QA track and
the Web track.

We submitted a run for the main task of the QA
track and it was judged and evaluated by the
reciprocal rank. The MRR for 492 questions is
0.320 (strict), which is considerably higher than
the average MRR of other 67 runs.

In the Web track, we confirmed that our new
query expansion using PRF with TSV function
adapting TF factor contributed to better
performance.

5. References

[1] Lehnert, W. (1978) The process of question

answering: A computer simulation of cognition.
Lawrence Erlbaum Associates.

[2] Graesser, A. C., Lang, K., & Horgan, D. (1988)
A taxonomy of question generation. Questioning
Exchange, 2, 3-16.

[3] Harabagiu, S., Moldovan, D., at al. (2000)
FALCON: Boosting knowledge for answer
engines. In Proceedings of the 9th Text REtrieval
Conference (TREC-9).

[4] Lee, S. and Cho, B. (2000) Statistical Natural

Language Query System THE IR based on P-
Norm Model; Korean TREC-1, In Proceeding of
The 5th Korea Science & Technology
Infrastructure Workshop, 189-202. (in Korean)

[5] Miller, G.A. (1995) WordNet: A lexical
database, Communication of the ACM, vol 38:
No11, pp 39-41.

[6] Moldovan, D., Harabagiu, S., at al. (1999)
LASSO: A tool for surfing the answer net. In
Proceedings of the 8th Text REtrieval Conference
(TREC-8).

[7] NIST PRISE Search Engine:
http://www.itl.nist.gov/div894/894.02/works/
papers/zp2/main.html

[8] Porter, M.F. (1980) An algorithm for suffix
stripping. Program, 14(3), pp 130-137.

[9] Robertson, S.E. et al. (1995) Okapi at TREC-3.
In Overview of the Third Text Retrieval
Conference (TREC-3). 109-126.

[10] Robertson, S.E and Walker, S. (1997) On
relevance weights with little relevance
information, In Proceeding of the 20th Annual
International ACM SIGIR Conference on
Research and Development in Information
Retrieval. 16-24.

[11] TREC 2001 Question Answering Track
Guidelines,

http://trec.nist.gov/act_part/guidelines/qa_tra
ck_spec.html

[12] Voorhees, Ellen M. and Dawn M. Tice, (2000)
Building a question answering test collection. In
Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval

[13] Voorhees, Ellen M. and Dawn M. Tice, (1999)
The TREC-8 question answering track
evaluation. In Proceedings of the 8th Text
REtrieval Conference (TREC-8).

