The TREC Conferences: An Introduction

Ellen Voorhees

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce
Talk Outline

- General introduction to TREC
 - TREC history
 - TREC impacts

- Cranfield tradition of laboratory tests
 - mechanics of building test collections
 - test collection quality
 - legitimate uses of test collections

- IR evaluation primer
What is TREC?

- A workshop series that provides the infrastructure for large-scale testing of (text) retrieval technology
 - realistic test collections
 - uniform, appropriate scoring procedures
 - a forum for the exchange of research ideas and for the discussion of research methodology
TREC Philosophy

- TREC is a modern example of the Cranfield tradition
 - system evaluation based on test collections
- Emphasis on advancing the state of the art from evaluation results
 - TREC's primary purpose is not competitive benchmarking
 - experimental workshop: sometimes experiments fail!
Yearly Conference Cycle

- Call for Participation
- Task Definition
- Document Procurement
- Topic Development
- IR Experiments
- Relevance Assessments
- Results Evaluation
- Results Analysis
- TREC Conference
- Proceedings Publication

Text RETrieval Conference (TREC)
TREC 2002 Program Committee

Ellen Voorhees, chair
James Allan
Nick Belkin
Chris Buckley
Jamie Callan
Gord Cormack
Sue Dumais
Fred Gey

Donna Harman
Dave Hawking
Bill Hersh
Jim Mayfield
John Prange
Steve Robertson
Karen Sparck Jones
Ross Wilkinson
TREC 2003 Track Coordinators

Genomics: Bill Hersh
HARD: James Allan
Novelty: Ian Soboroff, Donna Harman
Question Answering: Ellen Voorhees
Robust Retrieval: Ellen Voorhees
Web: David Hawking, Nick Craswell, Ian Soboroff
A Brief History of TREC

• 1992: first TREC conference
 - started by Donna Harman and Charles Wayne as 1 of 3 evaluations in DARPA’s TIPSTER program
 - first 3 CDs of documents from this era, hence known as the “TIPSTER” CDs
 - open to IR groups not funded by DARPA
 • 25 groups submitted runs
 - two tasks: ad hoc retrieval, routing
 • 2GB of text, 50 topics
 • primarily an exercise in scaling up systems
A Brief History of TREC

- 1993 (TREC-2)
 - true baseline performance for main tasks
- 1994 (TREC-3)
 - initial exploration of additional tasks in TREC
- 1995 (TREC-4)
 - official beginning of TREC track structure
- 1998 (TREC-7)
 - routing dropped as a main task, though incorporated into filtering track
- 2000 (TREC-9)
 - ad hoc main task dropped; first all-track TREC
TREC (Text Retrieval Conference)

- **Retrieval in a domain**
 - Answers, not docs
 - Web searching
 - Beyond text
 - Beyond just English
 - Human-in-the-loop
 - Streamed text
 - Static text

- **Tracks**
 - Genome
 - Novelty
 - Q&A
 - Web
 - VLC
 - Video
 - Speech
 - OCR
 - X→{X,Y,Z}
 - Chinese
 - Spanish
 - Interactive, HARD
 - Filtering
 - Routing
 - Ad Hoc, Robust

Text REtrieval Conference (TREC)
TREC Tracks

- Task that focuses on a particular subproblem of text retrieval
- Tracks invigorate TREC & keep TREC ahead of the state-of-the-art
 - specialized collections support research in new areas
 - first large-scale experiments debug what the task really is
 - provide evidence of technology’s robustness
TREC Tracks

- Set of tracks in a particular TREC depends on:
 - interests of participants
 - appropriateness of task to TREC
 - needs of sponsors
 - resource constraints

- Need to submit proposal for new track in writing to NIST by November 1
TREC Impacts

• Test collections
• Incubator for new research areas
• Common evaluation methodology and improved measures for text retrieval
• Open forum for exchange of research
• Technology transfer
TREC Impacts

Cornell University TREC Systems

Mean Average Precision

- TREC-1
- TREC-2
- TREC-3
- TREC-4
- TREC-5
- TREC-6
- TREC-7
- TREC-8

Text REtrieval Conference (TREC)
Ad Hoc Technologies

<table>
<thead>
<tr>
<th></th>
<th>TREC-2</th>
<th>TREC-3</th>
<th>TREC-4</th>
<th>TREC-5</th>
<th>TREC-6</th>
<th>TREC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term weights</td>
<td>baseline start of Okapi wts</td>
<td>Okapi perfects “BM25” algorithm</td>
<td>new wts for SMART, INQUERY, PIRCS</td>
<td>Okapi/SMART wts used by others</td>
<td>adaptations of Okapi/SMART algorithm in most systems</td>
<td>new Twente and BBN models</td>
</tr>
<tr>
<td>Passages</td>
<td>use of subdocs by PIRCS</td>
<td>heavy use of passages/subdocs</td>
<td>decline in use of passages</td>
<td>use of passages in relevance feedback</td>
<td>multiple uses of passages</td>
<td></td>
</tr>
<tr>
<td>Auto query expansion</td>
<td>start of expansion using top X documents</td>
<td>heavy use of expansion using top X documents</td>
<td>start of more complex expansion</td>
<td>more sophisticated expansion experiments by many groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual query mods</td>
<td>manual expansion using other sources</td>
<td>experiments in manual editing/user-in-the-loop</td>
<td>extensive user-in-the-loop experiments</td>
<td>simpler user-specific strategies tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other new areas</td>
<td>initial use of data fusion</td>
<td>start of concentration on initial topic</td>
<td>more complex use of data fusion</td>
<td>continued focus on initial topic, especially the title</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Talk Outline

• General introduction to TREC
 - TREC history
 - TREC impacts

→ Cranfield tradition of laboratory tests
 - mechanics of building test collections
 - test collection quality
 - legitimate uses of test collections

• IR evaluation primer
Cranfield Tradition

- Laboratory testing of system components
 - fine control over variables
 - abstraction from operational setting
 - comparative testing

- Test collections
 - set of documents
 - set of questions
 - relevance judgments
TREC approach

Assessors create topics at NIST

Topics are sent to participants, who return ranking of best 1000 documents per topic

NIST forms pools of unique documents from all submissions which the assessors judge for relevance

Systems are evaluated using relevance judgments
Creating a test collection for an ad hoc task

- **Topic statements**
 - Automatic: no manual intervention
 - Manual: everything else, including interactive feedback

Queries

Representative document set

Ranked list
Creating Relevance Judgments

RUN A

RUN B

401

401

401

402

403

Pools

Alphabetized Docs

Top 100

Text REtrieval Conference (TREC)
Documents

- Must be representative of real task of interest
 - genre
 - diversity (subjects, style, vocabulary)
 - amount
 - full text vs. abstract

- TREC
 - generally newswire/newspaper
 - general interest topics
 - fulltext
Topics

- Distinguish between stmt of user need (topic) & system data structure (query)
 - topic gives criteria for relevance
 - allows for different query construction techniques

- TREC topics are NOT all created equal
 - 1-150: very detailed, rich content
 - 151-200: method of topic creation resulted in focused, easy topics
 - 201-250: single sentence only
 - 301-450: title is set of hand-picked keywords
Relevance Judgments

- Main source of criticism of Cranfield tradition
 - In test collections, judgments are usually binary, static, and assumed to be complete.
 - But...
 - “relevance” is highly idiosyncratic
 - relevance does not entail utility
 - documents have different degrees of relevance
 - relevance can change over time for the same user
 - for realistic collections, judgments cannot be complete
Relevance Judgments

• Consistency
 - idiosyncratic nature of relevance judgments does not affect comparative results

• Incompleteness
 - the important issue is that relevant judgments be unbiased
 • complete judgments must be unbiased
 - TREC pooling has been adequate to produce unbiased judgments
Consistency

- Mean Kendall τ between system rankings produced from different qrel sets: .938
- Similar results held for
 - different query sets
 - different evaluation measures
 - different assessor types
 - single opinion vs. group opinion judgments
Average Precision by Qrel

![Graph showing average precision by Qrel with different system indicators.]

- Mean
- Original
- Union
- Intersection

Text REtrieval Conference (TREC)
QA Judgments

• Judging correctness, not relevance

• Assessors have differences of opinions as to what constitutes a correct answer
 - granularity of names, dates
 - assumed context

• Comparative evaluation stable despite those differences
Incompleteness

- Study by Zobel [SIGIR-98]:
 - Quality of relevance judgments does depend on pool depth and diversity
 - TREC ad hoc collections not biased against systems that do not contribute to the pools
 - TREC judgments not complete
 - additional relevant documents distributed roughly uniformly across systems but highly skewed across topics
Uniques Effect on Evaluation
Uniques Effect on Evaluation: Automatic Only

Graph showing the number of unique documents by group against the difference in MAP for various runs.
Cranfield Tradition

- Test collections are abstractions, but laboratory tests are useful nonetheless
 - evaluation technology is predictive (i.e., results transfer to operational settings)
 - different relevance judgments almost always produce the same comparative results
 - adequate pools allow unbiased evaluation of unjudged runs
Cranfield Tradition

- Note the emphasis on **comparative** !!
 - absolute value of effectiveness measures not meaningful
 - absolute value changes as relevance judgments change
 - theoretical maximum of 1.0 for both recall and precision not obtainable by humans (inter-assessor judgments suggest 65% precision at 65% recall)

- evaluation results are only comparable when they are from the same collection
 - a subset of a collection is a different collection
 - comparisons between different TREC collections are invalid
Talk Outline

• General introduction to TREC
 - TREC history
 - TREC impacts

• Cranfield tradition of laboratory tests
 - mechanics of building test collections
 - test collection quality
 - legitimate uses of test collections

IR evaluation primer
Ad hoc results — Cornell University

Summary Statistics

<table>
<thead>
<tr>
<th>Run Number</th>
<th>User/Adell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Description</td>
<td>Category A, Automatic, long</td>
</tr>
<tr>
<td>Number of Topics</td>
<td>50</td>
</tr>
<tr>
<td>Total number of documents over all topics</td>
<td></td>
</tr>
<tr>
<td>Retrieved:</td>
<td>50699</td>
</tr>
<tr>
<td>Relevant:</td>
<td>4611</td>
</tr>
<tr>
<td>Relevant:</td>
<td>2590</td>
</tr>
</tbody>
</table>

Recall Level Precision Averages

<table>
<thead>
<tr>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.7613</td>
</tr>
<tr>
<td>0.20</td>
<td>0.5550</td>
</tr>
<tr>
<td>0.50</td>
<td>0.4500</td>
</tr>
<tr>
<td>0.80</td>
<td>0.2860</td>
</tr>
<tr>
<td>0.90</td>
<td>0.2120</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0240</td>
</tr>
</tbody>
</table>

Average precision over all relevant docs

<table>
<thead>
<tr>
<th>Precision</th>
<th>0.2139</th>
</tr>
</thead>
</table>

Document Level Averages

<table>
<thead>
<tr>
<th>Document Level</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 8 docs</td>
<td>0.4680</td>
</tr>
<tr>
<td>At 10 docs</td>
<td>0.4260</td>
</tr>
<tr>
<td>At 15 docs</td>
<td>0.4090</td>
</tr>
<tr>
<td>At 20 docs</td>
<td>0.3630</td>
</tr>
<tr>
<td>At 30 docs</td>
<td>0.3000</td>
</tr>
<tr>
<td>At 100 docs</td>
<td>0.1310</td>
</tr>
<tr>
<td>At 200 docs</td>
<td>0.1418</td>
</tr>
<tr>
<td>At 500 docs</td>
<td>0.0823</td>
</tr>
<tr>
<td>At 1000 docs</td>
<td>0.0518</td>
</tr>
</tbody>
</table>

B-Precision (precision after R docs retrieved (where R is the number of relevant documents))

| Precision | 0.2445 |

Recall-Precision Curve

Difference from median in average precision per topic

Text REtrieval Conference (TREC)
Evaluation Measure Criteria

- Related to a user satisfaction
- Interpretable
- Able to average or collect
- Have high discrimination power
- Able to be analyzed
Ranked Retrieval Chart

num_rel = num_ret

Number relevant

num_rel = R

Number retrieved

R
Evaluation Contingency Table

<table>
<thead>
<tr>
<th></th>
<th>Relevant</th>
<th>Non-Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>r</td>
<td>n-r</td>
</tr>
<tr>
<td>Non-Retrieved</td>
<td>R-r</td>
<td>N-n-R+r</td>
</tr>
</tbody>
</table>

N = number docs in collection
n = number docs retrieved
R = number relevant docs
r = number relevant retrieved
Uninterpolated R-P Curve for Single topic

![Graph showing precision vs recall for different runs.]

- **run1**
- **run2**
- **run3**
Interpolated R-P Curves for Individual Topics
Single Number Summary Scores

- Precision (n): r / n
- Recall(n): r / R
- Average precision: Avg_{rd} (Prec(rank of rd))
- R-Precision: Prec(R)
- Recall at .5 precision
 - use Prec(10) if precision < .5 in top 10
- Rank of first relevant (expected search length)
Document Level Measures

- **Advantage**
 - immediately interpretable

- **Disadvantages**
 - don’t average well
 - different number of relevant implies topics are in different parts of recall-precision curve
 - theoretical maximums impossible to reach
 - insensitive to ranking: only # rels that cross cut-off affect ranking
 - less useful for tuning a system
Average Precision

• Advantages
 - sensitive to entire ranking: changing a single rank will change final score
 - stable: a small change in ranking makes a relatively small change in score
 - has both precision- and recall-oriented factors
 • ranks closest to 1 receive largest weight
 • computed over all relevant documents

• Disadvantages
 - less easily interpreted
<table>
<thead>
<tr>
<th>P(10)</th>
<th>P(30)</th>
<th>R-Prec</th>
<th>Ave Prec</th>
<th>Recall at .5 Prec</th>
<th>Recall (1000)</th>
<th>Total Rel</th>
<th>Rank of 1st Rel</th>
</tr>
</thead>
<tbody>
<tr>
<td>INQ502 ok7ax att98atdc</td>
<td>INQ502 ok7ax att98atdc</td>
<td>ok7ax INQ502</td>
<td>ok7ax att98atdc</td>
<td>att98atdc ok7ax</td>
<td>att98atdc ok7ax</td>
<td>ok7ax</td>
<td>tno7tw4 bbn1</td>
</tr>
<tr>
<td>att98atde INQ501</td>
<td>att98atde INQ501</td>
<td>att98atdc ok7am</td>
<td>att98atde INQ502</td>
<td>mds98td ok7am</td>
<td>att98atde INQ502</td>
<td>bbn1</td>
<td>INQ502 nect’chall</td>
</tr>
<tr>
<td>nect’chall INQ501</td>
<td>nect’chall INQ501</td>
<td>mds98td bbn1</td>
<td>mds98td tno7exp1</td>
<td>nect’chall ok7as</td>
<td>bbn1 tno7exp1 tno7exp1</td>
<td>tno7exp1</td>
<td>tno7exp1 att98atdc</td>
</tr>
<tr>
<td>bbn1 mds98td bbn1</td>
<td>bbn1 mds98td tno7exp1</td>
<td>pirc8Aa2 Cor7A3rrf</td>
<td>pirc8Aa2 Cor7A3rrf</td>
<td>pirc8Aa2 Cor7A3rrf</td>
<td>pirc8Aa2 INQ502</td>
<td>ok7as</td>
<td>att98atde INQ502</td>
</tr>
<tr>
<td>tno7exp1 mds98td</td>
<td>tno7exp1 mds98td</td>
<td>acsys7al ok7as</td>
<td>acsys7al ok7as</td>
<td>acsys7al ok7as</td>
<td>acsys7al ok7as</td>
<td>Cor7A3rrf</td>
<td>ok7am Cor7A3rrf</td>
</tr>
<tr>
<td>pirc8Aa2 Cor7A3rrf</td>
<td>pirc8Aa2 Cor7A3rrf</td>
<td>nect’chall INQ503</td>
<td>nect’chall INQ503</td>
<td>nect’chall INQ503</td>
<td>nect’chall INQ503</td>
<td>mds98td</td>
<td>mds98td acsys7al</td>
</tr>
<tr>
<td>ok7as nect’chall</td>
<td>ok7as nect’chall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nect’chall</td>
</tr>
</tbody>
</table>

Ranked by measure averaged over 50 topics

Text REtrieval Conference (TREC)
Correlations Between Rankings

<table>
<thead>
<tr>
<th></th>
<th>P(30)</th>
<th>R Prec</th>
<th>Ave Prec</th>
<th>Recall at .5 P</th>
<th>Recall (1000)</th>
<th>Total Rel</th>
<th>Rank 1st Rel</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(10)</td>
<td>.8851</td>
<td>.8151</td>
<td>.7899</td>
<td>.7855</td>
<td>.7817</td>
<td>.7718</td>
<td>.6378</td>
</tr>
<tr>
<td>P(30)</td>
<td>.8676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Prec</td>
<td></td>
<td>.9245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave Prec</td>
<td></td>
<td></td>
<td></td>
<td>.8654</td>
<td>.8342</td>
<td>.8320</td>
<td>.5896</td>
</tr>
<tr>
<td>R at .5 P</td>
<td></td>
<td></td>
<td></td>
<td>.8840</td>
<td>.8473</td>
<td>.8495</td>
<td>.5612</td>
</tr>
<tr>
<td>Recall(1000)</td>
<td></td>
<td></td>
<td></td>
<td>.7707</td>
<td>.7762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Rel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.9212</td>
</tr>
</tbody>
</table>

Kendall’s τ computed between pairs of rankings

Text REtrieval Conference (TREC)
Good Experimental Design

- Three factors that can be manipulated to increase confidence in results
 - number of topics
 - evaluation measure used
 - the Δ used to consider runs “different”

1. Δ bigger than community generally using!
 - empirical investigation of past TREC results shows that with 50 topics a 5% error rate is reached with an absolute difference in MAP scores of .05
 - approximately a 15% relative difference for good runs
 - confidence can be increased by repeating experiment on multiple collections
Known Item Search Evaluation

- Known item search: find document known to exist in collection
 - named page finding in web track
- Rewarded for retrieving particular target only, not related documents
Known Item Search Evaluation

• Mean reciprocal rank
 - use of reciprocal bounds measure & emphasizes differences that matter
 - equivalent to average precision with 1 rel
 - sensitivity of measure depends on size of ranked list

• Other statistics reported:
 - number of times target in first rank
 - number of times target not retrieved at all
Set-based Evaluation

- Required for some tasks
 - traditional Boolean searches
 - filtering
 - novelty

- 2 main approaches
 - utility functions
 - combinations of recall & precision
 - $F(\beta) = \frac{[\beta^2 + 1] \times P \times R}{\beta^2 P + R}$
Summary

- TREC emphasizes individual experiments evaluated on a benchmark task
 - leverages modest government investment into substantially more R&D than could be funded directly
 - improves state-of-the-art
 - accelerates technology transfer